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(ORORY o s

Abstract

In this paper, we investigate the local well-posedness, ill-posedness, and Gevrey
regularity of the Cauchy problem for Mildly Nonlinear and Non-Boussinesq
case-(ABC) system. The local well-posedness of the solution for this system in

Besov spaces B,Sf,IXBZr with 1< p,r<oo and s>max{1+l,g} was
, , p

firstly established. Next, we consider the continuity of the solution-to-data
map, Ie. the ill-posedness of the solution for this system in Besov space

B, xB;,. was derived. Finally, the Gevrey regularity of the system was

presented.
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1. Introduction

In this paper, we consider the following Cauchy problem for Mildly Nonlinear
and Non-Boussinesq case-(ABC) system (see [1]):

¢ +AG, +aB(L5), —oﬁc(gza)x =0, t>0,xeR,
G, +¢, +aB&G, ~a’C((5) =&'G,,, t>0,XeR, (1.1)
¢(x,0)=¢,, 6(x,0)=a,, t=0,xeR,

where & is the averaged weighted vorticity, and ¢ is the interface displace-
ment. «,& are the small parameters with @ <1 and &’ <a<¢, ie the
Mildly Nonlinear (MNL) case. Moreover, A,C,k are the nonnegative parame-
ters, and Bis a parameter. For more details, we can refer to [1] [2].

Fluid waves are a ubiquitous phenomenon in marine and atmospheric science.

An important cause of fluid internal waves is density stratification. In densi-
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ty-stratified flows, the displacement of a fluid mass from its neutrally buoyant
position results in internal wave motion. The dynamics of these internal waves
has been of great interest and has been the subject of much research (see e.g. [3]
[4]). The study of these long-wave limit currents approaches the existence of a
physical environment of rapidly varying density and produces a variety of ma-
thematical models depending on the relative strength of the different influences.
The models obtained can be dispersive or non-dispersive and are weakly or fully
nonlinear. Physically, dispersion is controlled by the relative magnitude of the
horizontal length scale with respect to the height of the domain, however, the
nonlinearity is controlled by the wave amplitude with respect to the height of the
fluid domain.

Strongly nonlinear, non-dispersive approximations take the form of hyper-
bolic or mixed-type first-order PDEs, first derived in this context by Long [5].
Weakly nonlinear dispersive approximations result in Korteweg-de Vries type
models [6] and fully nonlinear dispersive approximations lead to the so-called
Miyata-Camassa-Choi system [7] [8]. However, in this paper, we focus on the
Hamiltonian structure of 2-layer dispersed stratified fluids in the non-Boussinesq
case under mildly nonlinear assumptions (Ze. the Mildly Nonlinear and Non-
Boussinesq case-(ABC) system (1.1)).

Moreover, in Ref. [1], solutions of special forms of Equation (1.1), ie. travel-
ing wave solutions and unidirectional waves were considered and the dispersion
relation was calculated.

For the equivalent form of (1.1), we set &(X,t)=u(6x,t) and
¢(x.t)=p(Oxt) with @ =L, then we get:

e

pi +(@BO - 2a’Clp)up, =—Adu, —aBlpu, +a’Cop’u,,
and

U =A> (—pr —aB6uu, +a2C9(pu2)x),

where A®u= (1— o’ )S u and sis a integer.
In the sequel, we will, for notational convenience, demonstrate local well-posedness

of the following initial-value problem with more general coefficients:
u[=A’2(blpx—b2uux+b3(pu2)x), t>0,xeR,
p +(bu—2b,pu) p, =b,u, —b,pu, +b,p%u,, t>0,xeR, (12)
u(x,0)=u,, p(x,0) = py, t=0,xeR,

with b, =-6,b, =aB6,b, =a’CO, b, =—Af . Where u is the averaged weighted

vorticity, and p is the interface displacement. Moreover, b (i=1,2,3,4) are

all parameters, the operator A is a S-multiplier with A = (l— o )71.

Inspired by the argument of Danchin [9] [10] in the study of the local well-
posedness to the CH equation, we first establish the local well-posedness of (1.2)
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in Besov spaces.
Theorem 1.1. Suppose that 1< p,r <o and $>max {1+l,g} and the in-
p
itial data (U, p,)€ B} xB5 . Then, there exists a time T >0 such that the

Cauchy problem Equation (2.2) has a unique solution (u,p) € Ef;rl X E;,r (see
Definition 2.3). Moreover, the map (U, p,) - (U, p) is continuous from a

neighborhood of (Uy,0,) in B''xBS  into:
c([oT]:85 ) nct([0.T]8;, )xc([0.T]: 85, ) e ([0.T]:B5)

forevery S'<s when r=+w and $'=S when r<+o.

Remark 1.2. In the proof of Theorem 1.1, we use the transport equations theory
and the transport diffusion equations theory to establish the local well-posedness
of Equation (1.2) in nonhomogeneous Besov spaces. It is well-known that the Be-

sov spaces B, xB;, coincide with the Sobolev spaces H*'xH®. Theorem

1.1 implies that under the condition (Uy, o) € H**xH® with s> g, we can

obtain the local well-posedness for the data-to-solution map in Sobolev spaces.
In Theorem 1.1, we have proved that for every s'<S when r=+0 and
s'=s when r<+owo, the data-to-solution map of system (1.2) is continue in
B;:*rle;:r. Now, another natural question raised: whether or not the da-
ta-to-solution map of system (1.2) is continue in B;:ﬁlx B;r for s'=s and

r = +oo . In our next theorem, we shall further show that this data-to-solution

s+1
p,o

(Uy, py) are discontinuous at t=0 in the metric of B;,*ixB
that:

map is ill-posedness in B, xB; , in the sense that the solutions starting from

s
p,o?

this means

Theorem 1.3. Suppose that 1< p<oo and s>max{1+l,%}. Then, the
p

o xB; . More precisely, there

system (1.2) is ill-posed in the Besov spaces B,

exist (Uy, pp) € B;fi xB;, and a positive constant § for which the Cauchy

problem of system (1.1) has a unique solution (u,p)eL” ([O,T]; B x Bfm)

forsome T =T ("u0

while
ot [Polls, )

iminf (Ju=uyle. + [0 - ol )2 €5
Motivation by [11] [12], we use the generalized Ovsyannikov theorem to solve
the Gevrey and analytic regularity for (1.2). To begin with, we introduce the So-
bolev-Gevery spaces [11] [12], a suitable scale of Banach spaces, as follows:
1

G, = feC”’(R):IIfIIi,g,Sin(1+|§|2)se“‘f‘; f(&) de<op, 0,60,

It is easy to cheek that Gjys equipped the norm ||||G,; is a Banach space by

the completeness of H°®. Then, we can define the Gevrey and analytic regularity
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as follows:

Definition 1.4. Denoting Fourier multiplier Sl by

N 1
U - S{e‘m I‘AJ, Le. "f"G:i.s -

tra-analytic function. If o =1, it is usual analytic function and & is called the

1
okt fll .1f 0< o<1, it is called ul-

HS

radius of analyticity. If o >1, it is the Gevrey function.
Now, we establish that solutions of (1.2) are analytic in both space and time

variables.
1
Theorem 1.5. Let c>1 and s> > Assume that z, =(U,, p,) € GL (xG} .

Therefore, for every 0< ¢ <1, there exists a T, >0 such that the system (1.2)

, . o . T,(1-6)"
has a unique solution (U,p), which is holomorphic in [t < with

values in st X Gis .

The rest of our paper is organized as follows. In Section 2, we recall several
results in the Littlewood-Paley theory and some properties of Besov spaces are
reviewed. In Section 3, we establish the local well-posedness result for Equation
(1.2). Moreover, the ill-posedness result for this system is presented in Section 4.

Finally, we give the Gevrey regularity in Section 5.

2. Preliminaries

In this section, for the convenience of the readers, we will recall some facts on the
Littlewood-Paley theory, which will be frequently used in the following arguments.
Then, we introduce some properties of the Besov spaces which will play a key role
in proving the local well-posedness and other properties for the system (1.2). One

may check [10] [13] for more details. First, we introduce some notations.

Notation. For simplicity, the norm || s~ means || in the following,
p.r

Bp.r(R)
the symbol A <B means that there is a uniform positive constant C indepen-

dent of A and Bsuch that A<CB.

Proposition 2.1. (See Proposition 2.10 in [13]) Let Bi{ﬁeRd,MS%}

and C= {é cRY ,g < |§| < %} . There exist two radial functions y € C (B) and
@eC(C) such that:
Z(§)+Z<ﬂ(2’qé)=1, forall £ eR?,

q=0
lo-q|>2= Supp(p(Z‘q ) N Supp(p(Z‘q' ) =0,

q=1= Suppy(-) Suppp(2¥ -) =2,

%g 2(EF +X0(29¢) <1, forall £ R

q=0

Moreover, let h=F"'p and h=F"y.Then, forall fe S’(Rd ) , the dya-
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dic operators A, and S, can be defined as follows:

A f=p(2°D)f =2%[ ,h(27y)f(x-y)dy, forg=0,
S,f=7(2°D)f= X A=2%[ A(2"y)f(x-y)dy,

—1<k<qg-1

A f=8,fand A, f=0 forqg<-2.

Therefore,

f=YA.f ins'(RY),

q=0

and the right-hand side is called the nonhomogeneous Littlewood-Paley decom-

position of £
Definition 2.2. (See Definition 2.68 in [13]) Let se R, 1< p,r <o. The
inhomogenous Besov space B, (}Rd ) (B,, forshort) is defined by:

B:, =1 8/ (R)] g, <=},

where

1
Aqf"er]r , forr<oo,

s
Bp.r

[z Qs
qeZ

sup2%®

qeZ

It

forr =oo.

A, f

1
Lp

If s=w0, By, =(B;,.

seR

Definition 2.3. For T >0,s€R and 1< p<+w, we define:
E; (T)=C([0.T]:B, )nC ([0.T]:B; ), if r<eo,
E;.(T)=L"([0T]:B;, ) nLip([0.T]:B;2 ) and E3, =1 E:, (T).
Proposition 2.4. (See Corollary 2.86 in [13]) For any positive real number s

and any (p,r) in [L,c0]’, the space L (Rd )m B, (]Rd) is an algebra and a

constant Cexists such that:

s 1) 5 Il e v o

o )+l

B;‘,(

If S>g or S=E, r =1, then we have:

p p

[ ) <Cl

BZV,(IR") "V B;‘,(Rd)'

Proposition 2.5. (See Proposition 1.3.5 in [10]) Suppose that seR,
1< p,r,p,r <0 (i=1,2). We have:

1) Topological properties: B: . is a Banach space and is continuously embed-

p,r
dedin S'.
2) Density: C isdensein B, <1< p,r<co.
1 1
3) Embedding: B, . < szépl pz},if p<p, and <. B2 < B},

locally compact, if s, <5, .
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4) Algebraic properties: for all s>0, B, NL" is an algebra. Moreover,

B,  isanalgebra < B, < I” os> (or s=" and r=1).
' ' p p

5) Complex interpolation:

-0

s
Bp%r !

Bg‘srr(lfo)sz < C ||u||l;’s;1r "U

forall ue B;{r N B;%r ,forall e [0,1].
6) Fatou lemma: If (u,)

ueB,, and

is bounded in B}, and u, »>u in S’, then
neN p.r n

Ju

o, <liminf Jlu,

n—o0

Bpr
7) Let meR and let £be an S™ -multiplier (ie. f: RY 5> R is smooth
and satisfies that for all « € N, there exists a constant C_, s.t.

o°f (§)| <C, (1+|§|m7‘a‘) for all £eR"). Then, the operator f(D) is con-

tinuous from B, to B .

Lemma 2.6. (See Lemma 2.8 in [14] or [13]) Suppose that (p,r)e [1,+oo]2

and s> —min{%,l—%}. Assume f,eB; , Fel ([O,T]; B:’r), and

oyel([0T]:Bs}); if s>1+%(s:1+%,r:1j,

1
Ve L{[O,T];B’fr A Lw]; if s<1t.
| p

If fel”([0,T];B

port equation:

)r\C([O,T];S') solves the following 1-D linear trans-

s
p.r

o f+v-0,f =F,
(2.1)

f |t:0 = fO’

then exists a constant C depending only on p,r,s, such that the following
statements hold:

1)If r=1 or s¢1+1,
p

<[t

Byr

[

Bp.r + .[r;”F (T)

+CV'(7)| f(2)

dr
B} B.r !

or

[

< eCV(I) (" f0 B, +J'te’CV(1) F (T)

0

. dz’),
Bp‘r

B}, r

with

BY rnL”

Jolov

g1 d7, ifs>1+£(ors:1+i,r:1}
p.r p p
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2)If f =v,thenforall s>0,1)holdstrue with V(t):J.;”é‘xv"I:c dr.
3)If r<oo,then feC([0,T];B;,).If r=co,then feC([0,T];B3,) for

all s'<s.
Lemma 2.7. (See Theorem 3.3.1 in [10] or [15]) Let (p, p,,r) e[O,T]3, and

-1
let s>—min[i,i,J with p'i(l—lJ . Assume that foeB;,,
D ,

Py

Fel ([O,T ]; B;'r ) Let vbe a time-dependent vector field such that
vel” ([O,T];B;,"fc) for some p>1, M >0 and

Py

1
ove L{[O,T];BQWJ, if s <1+,

and

o\Ve Ll([O,T];Bf)l‘lr), if s>1+l, or[s:1+i, r =1].
' Py P

Then, Equation (2.1) has a unique solution
fel” ([O,T]; B, ) m(ﬂ C([O,T ]; B;/‘l)j and the inequalities in Lemma 2.6 hold
s'<s

true.
Moreover, if r <o, then we have f e C([O,T]; B;,r) .
Lemma 2.8. (See [13]) Let s>0, 1< p <, then we have:

| _=¢(lo.ul Iv

where [AJ. : u]axv =A;(ud,v)-uA;(6,v).

25 [A;,ulov

B, )’

o o, ol

3. Local Well-Posedness in Besov Space

In this section, we shall discuss the local well-posedness of the Cauchy problem
(1.2) in nonhomogeneous Besov spaces, and prove Theorem 1.1. In the follow-
ing, we denote C >0 a generic constant only depending on p,r,s,b;,b,,b,,b,.
Moreover, uniqueness and continuity with respect to the initial data (uo, po)

are an immediate consequence of the following lemma.

Lemma 3.1. Let 1< p,r<+c and S$> max{1+£,g}. Suppose that:
p

(up)e{L([0.T]:Bs ) (0TS ) <L ([0.T]: By, ) ne([0.T 58} (i =1,2)

be two given solutions of the initial-value problem (1.2) with the initial data
(u;(0),p(0)) e By xBy, (i=1,2), and denote Uy, =U~U,, P, =p—p,-
Then, for every te[0,T], we have:

oir <l 0)

luieles, +loe o +lPa(0) Bﬁ)exp(c [ir, (T)df), 3.1)

for s# 2+1,where
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2
(1) =2 g +llig Lo, +lecl;, )

1
For the critical case s=2+—,

p

10
2

"Ulz rez,
3+—
p

s +How| 1 <C| |u.(0)

2+B HE
Bp.q Bp.g

p p
Bp.g Bp.g P

4
eIl |enfeo o]

where 6 =1—ie (0,1).
2p

Proof (Proof of Lemma 3.1) It is easy to see that
u, € L*([0.T];B5)nC([0.T];S) and p, " ([0,T];B;, )nC([0.T]:S)
which implies that the solution pair (u,, 0, )€ C([O,T]; B;r)xC([O,T]; B;‘rl) ,
and (U, p,,) solves the following transport equations:
Oy, = A0,H (U, Uy, o1, 0, ),
0,1, + (b, —2b,0U, )0, o1, =G (U, Uy, 21, 2, ), (3.2)
Uso,_o =y (0) =1, (0). izl o = £1(0) =, (0),

where
b
H=bp, _?Z(ljl +U, )ulz +b, (plzulz + 0, (ul +U, )ulZ )!
and
G =-h,u,,0,p, +2b,0,0, (p1u12 +U, 0, ) +b,0,uy,
-b, (plaxulz + P1,0,U, ) +b, |:p126xu12 +0,U,05, (p1 + 0, )J

Integrating the first equation of (3.2) with respect to variable ¢ it is easy to see
that:

dr.

+ j; [a20,H

g <[u, (0)

Jus,
p.r

S
Bpr B?J,r

Note that the operator A is a S‘multiplier. Applying Proposition 2.4, Propo-

1
sition 2.5 and the algebraic property for B;’rl for s>1+—, we have:

||A‘26xH

b
. <Clo,p, __2(u1+u2)u12+b3(/312U12+P2(u1+u2)ulz)
o 2 Byt

<c(jew

<0 ((Jus

Therefore, we obtain:

sy, <[z (0)

a2 (v +u2)uy +e (u+u,)u, BE.’J

BZ,’E)FS (T))

2

+ "p u
s-1 127 -1
Bp.r B¢

BZ . + ||1012

Jus, B, +CI;(||U12 B, +[e1 B;;})Fs(f)df- (33)

Applying the Lemma 2.6 for s> max {1+£,§} and s# 2+1, we get the
p p
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following inequality:

",012 B;j} < "plz (0) ng} +,[(;||G (T) B;j} +CV’(T)”/012 Bf,j} dT’ (3'4)

with

t
Jo
\Y, (t): BYAL”

_ﬁ 0, (byuy — 20, 1)

Using Proposition 2.5 (3) (B2, < B, locally compact, if s <s,) and

. 13 5
ax(b2u1—2b3plu1)|| . dr, if max{1+5,5}<s<3,

Ldr, sz
5. 2

Proposition 2.5 (4) ( B; . © " <5 >£ ), for s> max {14—1,%}, we get:
' p p

V'(t)<

0, (byu, —2b; pyu; )

1 +
Bf, NL”

0y (bzul - 2b3p1U1)
)

For s> max {1+£,%} and s#2 +l , applying Proposition 2.4, we can ob-
p p

0, (bu; — 20, pu;)

-2
Bpr

<2

(3.5)

s-1
Bpr

U

<20 (ol ol + o

tain that:

I

u12

<C{[u +uflg; +] I
S
Byl 12lgs, P2 B, 12]les P B, P B, BS,

P B + "plz

-1
By (

+| L + || o u
Prella Melogy |+ Ml o1 2o
Bpr ))

(3.6)
+[ug,

y2 zB?M +||uz Pro Pillgs, +||P2

e a5
<c ((||u12 2 T ()

Submitting (3.5)-(3.6) into (3.4), we may derive:

By} +.[;"G ()

BT + CJ'; (||U1z

B, + "plz

BS ! = ",012 (0)

< "/712 (0)

lra g1 TCV' ()l

g )Fs (r)dr

L dr
BT

(3.7)

B, + "/312

for s>max{1+l,§} and S¢2+l.
p 2 p

Consequently, combining (3.3) and (3.7), we have:

Jlu

< ||u12 (0)

+| B
B P12 By

BS.r + "'012 (0)

B +CL§("U12 BZ,’?)FS(T)dr.

Applying Gronwall’s lemma to the above inequality leads to (3.1).

Bf) . + ||p12

For the case s=2 +l , choosing 0= 1—2i IS (0,1) , then we have:
p p
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1+%=9(1+$j+(1_9)(2+%}
2+%= (2+%)+(1_9)(3+2_U.

And according to the interpolation formula in Proposition 2.5 (5) and the ob-

and

tained result (3.1), we can see that:

U, o +] <l s ol ]
" 2|l ,.1 TPl 1 12 2+7 12 2. 1 plz 1+f
B p prqp Bp q prq P Bp q pvq p
0
< +|| Jue |
Pl 1 12 3+7
B, 2P
Pq p.q pq pq
0 1-0
< +|| ) +lual, 2 +led, . +]edl
L Pr2 1+21p 1 3+2i 2 3+2i P z+2ip P2 2+$
BP q prq Bp q Bp q prq prq
0
: o
<C| u (0)] , 1 +[ 1 (0)] exp|CO[ T ,dr |2
12 2+% Pr2 1+% p 0 3+1 3+1
Bp.a Bp.a P P

which yields the Lemma 3.1.

Now, let us start the proof of Theorem 1.1, which is motivated by the proof of
local existence theorem about Camassa-Holm type equations in [15] [16]. Next,
by using the classical Friedrichs regularization method, we construct the ap-
proximate solutions to (1.2).

Lemma 3.2. Let p, rand sbe as in the statement of Lemma 2.6. Assume that
u(0)=p(0):=0. There exists a sequence of smooth functions
(U o) e C(R+ ;B )x C(]R*; B, ) solving:

Oy = A0, H, (U )
8 Pia +(BU = 20,91, )0, P2 = Gy (Uy, 4 ), (3.8)
Uz (0) = S0t (0), pe.1 (0) = Si.ap(0),

where

b
Hy, =bp, _?zuf +byp U,
and
G, =b,0,u, b, 0,u, +b;0(0,u,.

Moreover, there is a positive time 7 'such that the solutions satisfy the follow-
ing properties:

1) (U, /),y isuniformlyboundedin E;(T)xE; (T).

2) (U, /), isaCauchy sequence in C([O,T |:B;, )>< C([O,T |; B:’rl) .

Proof (Proof of Lemma 3.2) Since all the data S,,,u, and S, ,p, belong to

B,.> Lemma 2.7 indicates that for all k € N, Equation (3.8) has a global solu-
tion in C(R+, ﬁr)xC(R+, p,r)'
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Obviously, we can get the following inequality:
B;f,l S "u (O)

s"u(O)

dr

s+1
Bpr

YA -2
||uk+l gs+l +I0||A a><Hk
p.r

Uy

+Clyllodly, + ol +1 oy
syt JollPclleg TPl TNy Wl B

Using Lemma 2.6 again, for s> max {1+£,g} , we can see that:
p

loally, <& (lo Oy, + e ™6 (0l d7).
with
V(1) =], |o. (b, - 20, ) o2 07
<Cf g+l o g d
And with the help of Proposition 2.4 again, we have:
|6 (7) B, £C(”uk B +o 83, IUkllss: +|o i;,r Uy Bgf})'

Combining the above inequalities, we get:
t
., < exp[CJ'O”uk

+ I; exp[CLt

o, )dr}"p(O)

B 0 )dr'}

lPea By} (1+ lox

s
Bpr

U

Byt (1+ 128

ol (24 1ol +Iouli, )]
Therefore, if we define U, (t) = ||uk Bt -i—"pk B, +1 and
U, :"u(O) - +||p(0) o, +1, then
t
|| Ui ||Bs+1S UO + Cjoulfd 7, (3.9
p,r
and
||pk+1 g S eXp(CL;Uk2 (T)dT)UO +CI;eXp(CItUk2 (T')d‘r')der. (3.10)
p.r T
Choosing T" = % , by induction, we show that:
256CU
U, <—=_ vie[oT), (3.11)

L <
J1-64CU2t
In fact, suppose that (3.11) is valid for 4, then for

3 1
<
256CU.  64CU;

1

¢ t 16CU2 1-64CU27 |4
exp(C[ U2 'd')sex 70 g = —==0 | (312
p( J Ui (e)de pU’l—64CU§T’ TJ [1—64CU§tJ (3.12)

0<r<t<T"=

, we have:

and it is easy to see that:
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1< !

_—
(1-64CU;t)"

Submitting (3.11) and (3.12) into (3.9) and (3.10), we obtain:
1

<————|u
Bf],r 1 k+1

(1-64cUjt)*

||uk+1 By + ||Pk+1

]
Bl Pt B,

% +CJ';der+CJ-;(l—64CU§r)%Uksdz'

(l—64CU§t)%

- , 2U, 1 1 1
(1-64cUjt)t (1-64CUSt)* | (1-64CUzt)*
L W : 1 1
(1-64CU;t)* | (1-64CUgL)
4u U
< T+ L 2 ——4
(1-64cUjt)* (1-64CUSt)* | (1-64CUSt)*
SL
J1-64CU2t
. : . . 3
in the last inequality we used that t<T = ——-—-.
256CU 7

Therefore, (U, oy )kEN is uniformly bounded in
C([O,T]; B;frl)xC’([O,T]; B:,r)' Using Equation (3.8) and the similar argument
in the proof Lemma 3.1, one can easily prove that (d,U,,0,p,),_,, is uniformly
bounded in C([O,T]; B,, )x C([O,T]; B;’rl) , Le. the sequence
(U ),y is uniformly boundedin E37(T)xE; (T).

Then, let us show that (U, o, )keN is a Cauchy sequence in
C([O,T]; B, )>< C([O,T]; B;’rl) .Forall k, jeN,from (3.8), we can obtain that:

at (uk+j+1 _uk+l) = A_Zax (bl(pkﬂ _pk)_b?Z(ukﬂ' +uk)(uk+1 _uk)

+b, (pk+j _pk)ulij +by (uk+j +uk)<uk+j _uk)]'

and
0 (Peviin = P ) + (02U} = 20,030, )0, (i o1 — Pt ) =G
with
G = _[bz (“k+j — Uy )_ 2b ((pkﬂ- ~ P )Um +(uk+j —Uy )Pk )}@Pm
+b,0, (U.; U, ) —b, ((pkﬂ- =P )0\, +0, (U, —uk)pk)
by (P =) (Pvs + 2 )0y + 0, (U~ ) 27 ).
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Using the fact that B;}l is an algebra and the operator A is a S-multiplier,
andlet Vv, (t)= |

uk+j —Uy

+|
r

Pics ™ Prlgs> for every te [O,T* ) , we have:

S
Bp

s <
BS.r

uk+j+1 (0) —Uey (O)

: (1 + |,
moreover, using Lemma 2.6 again, we get:
| i1 < exp(C'[;(
P11 (0) = £ (0)

+ j; exp (CI‘(
(21w
By using Proposition 2.1, we can obtain that:

[9c:1:1(0)= s (O)] . =[8c.1.40(0) =S (0)

o =]
Bp.r

k+]j
- “Zd:k+1Ad Uo

t .
. +C[ V()

uk+j+1 Uy

B! + Ui+ j +||pk B3, +|pk+j

2
. ) dr,
B

. )drj

Bp.r

o i W)

2
dr.
Bf,yrj

s+1
Bo.r

+

s+1
Bp.r

Prr it~ Praa U, j U, j By Pisj

s-1
Bp.r

Uirj[lgsa Ui j | gsoa [|Pics i
p.r p.r

4

Byt +|uk+j 832 +||Pk By, [Pk

s-1
Bp.r

-1
Bor

_ [Z ) 2k(s—1)cr
>-1

A, ( Z:LlAd Uo)

1
7 o
LP

1
<C(Xyi" 22 Al )
<C2|p,

By
and

uk+j+1 (0) - uk+1 (0)

-k
<C27|u }
- ollsg

In view of (U, o )keN being uniformly bounded in E;+r1 (T)x E. (T), and
combining the above inequalities, one may find a positive constant C; inde-
pendent of K, j such that:

v, (t)<C, (2-k i) (r)dz’),

for all te[0,T). Moreover, using the induction procedure with respect to the

index &, we have:

Uiz = Yo g 1 + 2012 = A
K+ j+1 k+1 I-T(B?),r) k+j+1 k+1

k+:
_(1c) ("uj

~ (k+1)!

L?(B;j,l)
kin) (TCT )n+l

L%(B?,,r)j " 2:1027( (n+1)t°

may be bounded independently of j we

(o) e

Since that ||u i

t(o5t) 13 o3, )
conclude to the existence of some new constant C; independent of k,j such
that:
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Thus, we have proved that (u,, o, )keN is a Cauchy sequence in

C([O,T]; B, . )xC([O,T]' BH). Hence, the proof of Lemma 3.2 is complete.

TP

uk+j+l —Uga

1 n—k
(85 +||pk+j+l = Pru 5 (e5) <Cr27

Finally, we prove the existence and uniqueness for (1.2) in Besov space.
Proof (Proof of Theorem 1.1) By using lemma 3.2, (u,, g, )keN is a Cauchy

sequence in C([O,T];B;,r )xC([O,T]; B;frl), so it converges to some limit func-
tion (u,p)e C([O,T]; B;. )xC([O,T]; B:’rl) . Next, we have to prove that
(u,p)€E;(T)XE;, (T) and solves (1.2). Using lemma 3.2 again, we can see
that (uk,pk )keN is uniformly bounded in L” ([O,T]; B;*rl)x L ([O,T]; B;Yr) )
Fatou property for Besov spaces (Proposition 2.5 (6)) insures that (u, p) also
belongs to L~ ([O,T]; B;+r1)>< L ([O,T]; B, ) .

On the other hand, as (U, p, )kEN converges to (U,p) in
C([O,T];B;’r)xC([O,T]; B;}l), an interpolation argument guarantees that the
convergence holds in C’([O,T]; B:'f)xC([O,T]; B::r ) ,forany s'<s.

Passing limit in (3.8) reveals that (u, p) satisfy system (1.2). In view of the
fact that (u,p) belongs to L~ ([O,T]; B;*rl)x L ([O,T]; B:,r) , for s >1+% ,
B, and B, arealgebras, we obtain that the right-hand side of the equation:

u =A" (blpx ~b,uu, +b3(pu2)x),
belongs to L~ ([O,T ]; B:*rl) , and the right-hand side of the second equation:
p +(b, = 2b,p)up, =bu, ~b,pu, +b,pu,,

belongs to L~ ([O,T]; B, )

In particular, for the case r <o, Lemma 2.6 implies that
(u,p)e C([O,T]; B;';l)x C([O,T]; B;:r) for any s'<s. Finally, by using the equ-
ation again, we see that (9,u,0,p)e C([O,T]; B;vr)xC([O,T]; B;‘rl) if r<ow,
andin L® ([O,T]; B, )x L ([O,T I; B;’rl) otherwise. Therefore, the pair
(u,p)e EH(T)XE (T).

The continuity with respect to the initial data in:

[c([o,T]; B:)nC([0.T]:BE, )] x [c([o,T]; B )nc([0.T]; B;’;Z)]

for all s'<s, can be obtained by Lemma 3.1 and a simple interpolation argu-
ment. The case §'=S can be proved through the use of a sequence of viscosity

approximation solutions (u,, p, )DO for System (1.2) which converges uniformly

[c([o,T]; B )nC([0.T]: B, )] x [c([o,T]; B )nC([0.T]; B;jf)],

gives the continuity of solution (U,p) in E;*rl (T)x E,. (T). Hence, the proof
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of Theorem 1.1 is complete.

4. 11l1-Posedness in Besov Space

Next, we select the appropriate initial data to complete the proof of the Theorem
1.3. And we choose the initial data:

po ()= :2;:02’”5¢(x)cos(/12” X),

M

27" g x)cos(/iz” x),

Uy (X)=

0

>
I

here A e[%,%} and q?e Co (]R) is an non-negative, even and real-valued
function satisfying:

N

30 \

0, if|X|2—.

2

It is easy to prove that:
ﬂmpMJ&ECEF)c{a—%+zzuqﬂs%+zw}

then it can be verified for j>3,

A, (¢(x)cos(/12"x)) = {?(x)cos(ﬂzn X)' j ; : (4.1)
so we have:
ol =Jl2 ),
— [2](34) Aj i 2*n(s+1)¢(X)COS(/12n X) J
n=0 L jez ||
= H(21(5+1) 2_j(s+1)¢(X)COS(ﬂ,2] X) B )
jez ||
su”qﬁ(x)cos(ﬂij)“Lp .
<C.
Similarly, we have:
(e . <C,|u, st <C. (4.2)

Next, we give several estimates that play an important role in the proof of the
Theorem 1.3.
Lemma 4.1. Let s> 0. Then, for the above constructed initial data (Uy, o, ),

we have:

lupAn0,Ug,» =C27™, (4.3)

LP

and
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luoA, 0,005 = C27"Y, (4.4)

for nlarge enough.
Proof We only show (4.4), because (4.3) can be obtained in a similar way.
According to (4.1), we get:

A py =A, (i 27 ¢(x)cos( 42" X)J =2 ¢(x)cos(12"x),
n=0
therefore, one has:
UpA, 0, 0 =Up2 ™0, <¢(x)cos(/12“ x))
= Uy2™ [ 9, pc0s(42"x) - g (x)sin(22"x) 22" |
= 27" U,0,$c0s( 12" x) = A2 " VU (x)sin (42" ).

Since Uy (X) is a real valued continuous function on R, then there exists

o >0, we have:

1 1& (s 2°4(0
oo (] 50 (0)= 5327 19(0)= 24C) 9
forany xeB, (0).
Therefore, we derive from (4.5) that:
[TNNGIEN e (2-”<5-1> |¢(-)sin(22") ‘LP(BJ(O)) -2 |ud,peos(22'x)|, j

>(C2"-¢,)2™.

By choosing n large enough such that C, <C2"™, then we can yield (4.4). So,
Lemma 4.1 has been proved.

13
Lemma 4.2. Let S > max {l+—,§}. For the above constructed initial data
p

(Uy, 2y ), then there exists some T =T (”u0 2

"u (t)_uo

Proof Since (uo, po) € Bffi X B;,w and according to the local existence result

gst 1|20 [|gs ),for 0<t<T,wehave:
p.r p.r

5, <Ct le(t)- 2, g1 <CL (4.6)

(see Theorem 1.1), hence the system (1.2) has a unique solution

(up)el” ([O,T]; B;*i X B;S),oc) forsome T =T ("u(J o5, ), and

Ju(t) . ) < C(||uo

Using the differential mean value theorem, the Minkowski inequality, Propo-
sition 2.4 together with (4.7) for te [O,T] , we have:

t
<
By % _Io
t
cf]
0

t
< Cj0||u
<Ct,

Byl es

i ) (4.7)

sup (

0st<T By +||p (t) By +||p0

lo—p, 0 Pllgs 1 d7

dr

Bpo

2
dr
Bp o )

u

B, +||Up B, +||p2u

o2 (Lol +le
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and

dr <Ct.

Ju-u B 2

t
BS . < CIO||p B = +||u2 ByL +||pu2
Therefore, we have completed the proof of Lemma 4.2.

Lemma 4.3. Under the assumption of Theorem 1.3, forall 0<t<T , we have:

lo(t)= o —tv, <Ct%. (4.8)

-1 —
Bps

sz <CU Jlu (t) —u —tw

where
Vo =b,0,U, —b,0, (peU, ) +bs0, (p§u0 )
W, =A" (blé’x,o0 —b,U,0,U, + 0,0, (poug ))
Proof We denote that:

ﬁzp(t)—po — W,
T=u(t)—uy —tw,.

Firstly, using the differential mean value theorem and the Minkowski inequa-

lity for te[0,T], using Proposition 2.4, Proposition 2.5 and (4.7), we get:

1Al;2 < [ole.o—v, 2 0
<C[ Ju-u, e Y- +|up® —uop g 07 (49)
<C[ rdr<cCt?,
and
[y, < [olo.u—w, R Cf;zdr<cCt?, (4.10)

Thus, the proof of Lemma 4.3 is completed.

Proof (Proof of Theorem 1.3.) Based on the definition of the Besov norm, we

have:
"p_po Bf;_w > 2" An (p_po )| LP =2" An (/5+tv0 )"Lp
12 ol -2 A Can
> 12" ||A, (U8, )| 5 = Ct2™ [An260,Uo o =2 |00
> 12" A, (Us0,5 )| 5 —Ct]268,ls 5, ~C2" A2 -
Since
A, (uoaxpo ) =A, (U06Xp0 ) —UpA, (axpo ) +UpA, (axpo)
= [An 1 uO]axpO + uOAn (axpo ):
Using Proposition 2.5, Lemmas 2.8 and (4.2), we deduce that:
[260,0ols; . <Cllpollss . [Uollsz2 <C.
and
2" [An’uo]axpo "U’ | < C("axu0|||_°° ”'DO B o +||5Xp0 ||L°° ”uO B}, ) =C.
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Taking above estimates into (4.11), we have:

UpA, (8,25 )||Lp -Ct-C,2"|p

"p ~Pollgs . = t2"

s s-2 ¢+
Bp, Bpo

And using Lemma 4.1 and Lemma 4.3, we have:

lp=pollys =Ct2™2"H —Cit—C,2%"t* 2 C,t2" — C,t - C, 2°"t%.

B,
Choosing nlarge enough such that C,2" > 2C,, then we get:

> 0322 —-C,2""t%

"p P

B} o

C
Picking t2" ~5 <—- when t— 0, we have:
2

C C
"p—po Bf),w 2735—(:252 2735
Likewise, we have:
C
lu—u, ot 2 745.

This completes the proof of Theorem 1.3.

5. Gevrey Regularity for System (1.2)

In this section, we will apply nonlinear Cauchy-Kowalevski theory to establish
the existence of analytic solutions to system (1.2). To this purpose, it is necessary
to introduce the Cauchy-Kowalevski theorem.

Theorem 5.1. (See [11] [12]) Let (X 5 |||| 5 )O«Kl be a scale of decreasing Banach
spaces, such that for any 0<d'<6 <1, we have X; c X, with ||||5 <||-||§.

Consider the Cauchy problem:

(3_1:2 F(tu®), (5.1)
u(0)=0.

Let T,R>0 and o 21. For given u, € X,, assume that F satisfies the fol-
lowing conditions:
(H,) If for any 0<d'<6 <1, the function tHu(t) is holomorphic on

|t| <T and continuous on |t| <T withvaluesin X; and

supu(t)], <R,

t|<T
then t— F (t, u (t)) is a holomorphic function on |t| <T withvaluesin X, .
(H,) For any 0<6'<d<1 and u,veB(uy, R)c X, there exists a positive
constant Z depending on U, and Rsuch that:

sup||F (t,u)-F(t.v)], <

L Juv,.
j<T (5 _ 5’)" 4

(H;) There exists a M >0 depending on U, and R such that for any
0<o<l,
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M
i‘gE"F (t’o)"(? < (1_5)0 '

Then, there exists a Ty €(0,T) and a unique function u(t) to the Cauchy

-5)'T,
problem (5.1), which is holomorphic in |t| < % with valuesin X, for

every O € (0,1).

We would like to include four properties of the spaces G_,, which will be
used in the proof of Theorem 1.5 (the proofs of these properties can be find in
(12]).

Proposition 5.2. Let 0<6'<8, 0<o'<o and §'<S. From Definition
1.3, one can check that G, © ijs , Gl o G, and G, © GJ,.

Proposition 5.3. Let sbe a real number and o >0. Assume that 0<6'< 8.

Then, we have:

12, fl., < (5.2)

e o
— ] -
o5 (5_5,)0' || ||G;,s
Proposition 5.4. (Product acts on Sobolev-Gevrey spaces with d =1) Let

s>%,521 and §>0. Then, G°

o,S

is an algebra. Moreover, there exists a

constant C_S such that:

[fols, <C.lflles,

9||ngs ' (5.3)

Proposition 5.5. Let s>%, 021 and 6>0. There exists a constant C,
such that”

Ifal;.., <C:1fl:

7,51 o.s-1

|g||G§VS : (5.4)

Now, we use all the above tools to prove Theorem 1.5.
Proof (Proof of Theorem 1.5) Assume that:

F(Z)i(Fl(Z)j= A_z(blpx ~buu, +bu’p, +2b3puux)
FZ(Z) b4ux _bzpux _b2upx +b3p2ux +2b3pupx
By using Definition 1.3 and Proposition 5.2, we can see that G, is a scale of

decreasing Banach spaces for a fixed 021, s >% and 0< o6 <1. Moreover,

for 0<6'<d, o=1, s >% and the estimates (5.2)-(5.4), we have:

|7, (u, p) o, < ||b4uX —b,pu, —bup, +b,p’u, +2b,pup, o,
<Comn (s, +lPul, +lunly, +lo?uley +loueil, )
<Cun ﬁ(upn% ks, J(oles, +lules, +1)
and
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" Fl (U, p)"Ggs < ||b1px - bzuux + bsusz + 2b3puux

Ggts—z
. )(Ie]

where Cgy .\, 1., is @ constant depends only on s,b;,b,,b;,b,. Therefore, we

e %5° 2
<Contoy W(M '

o+ o, +1)

sz, +lul

can obtain that:

IR £)les, [ (u.0)

5
Go‘.s

2
’

o, +1)

(e

Similarly, for any 0 < ¢ <1, we also can obtain that:

e*a' o
< Coyy byt (—0(||P| s, Tl o, Tl

5-6)

LCHES Wing LACEY ¥

2
+1) .
Ghs )

|

o, (o]

Therefore, these spaces and F (u, p) satisfy condition (H,) and (H;) in Theo-

rem 5.1.

+ [l
[ G5 0

e %0’
<G £
by bz b3 by (1-5) ||p0|

Next, in order to prove our desire result, it suffices to show that F (u, p) sa-

tisfies the condition (H,) in Theorem 5.1. Assume that ||Z -7, || s <R and

| -z], <R with 2], =[]

G(,szr||u||G(,;,s, for 0<48'<8, s>%, we can see

that:
"Fz (2)-F(2) el
< ||b4ux _bzpux _bzupx +b3p2ux + 2b3pupx Gg‘:g
<Cop, byt ("Ux - “;|ng§ +[(p- p')”x"ngs +or(u, -up) ol
+WU—U?pA@¢+Uprv%)@;+Wp“%PUﬂux@g
+“(p')2 (ux —U;) o, +||(pu —p'U')px o, +||p'u'(px —,D)'() » )
e %0’
<Connn o gVl “lorl
2
(lolls, g, +Moles, +lules, +2)
and
e 70’
[F(2)-Fi(2)]s, <Conons W(nu s +lp-rls. |
2
(Iols, 1ol +lols, +loles, +1)"
Thus,
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"F(Z)_ F(z') 6l

<|F(2)-F(2) o, +|F,(2)-F,(2)

e*o'ao'
<Coppppyn
by b b3 by (5_5,)0

5
GJ,S

(lu-vly +lo-r1 )

2
(Iols, el +Mull, +lules, 1)

e—O' o , , 2
<Cunn g 7 12 )

[ dlond
< Cs by by by W

2
’

(l2=21,)(2lz], +2R+1)

where in the last inequality we apply the fact that ||Z - 20” s <R and
||Z’— 2(3"5 <R. From the above inequality, for 0<6'<d, 021, s >%, we ve-

rify that F (Z) satisfies the condition (H,) of Theorem 5.1 with

L=Cspt,050,€ O (2"20”5 +2R +1)2. This completes the proof of Theorem
1.5.
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