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Abstract

Brain signal irreversibility has been shown to be a promising approach to study neural

dynamics. Nevertheless, the relation with cortical hierarchy and the influence of different

electrophysiological features is not completely understood. In this study, we recorded local

field potentials (LFPs) during spontaneous behavior, including awake and sleep periods,

using custom micro-electrocorticographic (μECoG) arrays implanted in ferrets. In contrast

to humans, ferrets remain less time in each state across the sleep-wake cycle. We deployed

a diverse set of metrics in order to measure the levels of complexity of the different behav-

ioral states. In particular, brain irreversibility, which is a signature of non-equilibrium dynam-

ics, captured by the arrow of time of the signal, revealed the hierarchical organization of the

ferret’s cortex. We found different signatures of irreversibility and functional hierarchy of

large-scale dynamics in three different brain states (active awake, quiet awake, and deep

sleep), showing a lower level of irreversibility in the deep sleep stage, compared to the

other. Irreversibility also allowed us to disentangle the influence of different cortical areas

and frequency bands in this process, showing a predominance of the parietal cortex and the

theta band. Furthermore, when inspecting the embedded dynamic through a Hidden Markov

Model, the deep sleep stage was revealed to have a lower switching rate and lower entropy

production. These results suggest functional hierarchies in organization that can be

revealed through thermodynamic features and information theory metrics.
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Author summary

Understanding the brain functioning and the mechanisms underlying the transition

between different brain states has been a key goal of modern clinical neuroscience. Global

balance of the brain could be assessed by measuring spontaneous changes in brain

dynamics. However, the subtlety of the effects demands advanced computational methods

to extract the relevant dynamical information from neuroimaging recordings. To this

aim, electrocorticographic measurements of ferrets provide a unique opportunity for

inspecting these transitions in a long fluctuating recording. Our findings demonstrate the

large, and still underexploited potential of several methods in the study of large-scale

brain dynamics. We think that our approach can be fruitfully applied to a wide array of

brain disorders, subserving both the theoretical goal of a clearer understanding of these

diseases, and at the same time, the clinical goal of maximizing patients’ classification, diag-

nosis, and prognosis. Finally, by providing detailed insight into the role different regions

and states in global brain dynamics, our approach may inform external stimulation thera-

pies that, combining with traditional behavioral therapies, may significantly accelerate

recovery in different brain disorders.

Introduction

The living brain is perpetually active, expending energy to support a wide array of behaviors,

perception, and cognition. But can this ongoing brain activity be quantifiably studied, in a

manner that aligns with observable behavioral states?

One way to answer this question is through the analysis of data acquired by electroencepha-

lography (EEG) or functional magnetic resonance imaging (fMRI). By extracting time series

features, the quantification of brain activity states, and their corresponding transitions, can be

estimated. One promising analysis framework considers the description of brain states in

terms of brain dynamics operating out of equilibrium, based on time series reversibility fea-

tures [1–6]. Generally, in a non-equilibrium system, where the balance between the elements

is broken, the net fluxes between the underlying states become irreversible, establishing an

arrow of time [7,8]. Remarkably, the reversibility signature can reflect the complexity of the

brain’s functional organization and has been shown to relate to hierarchical processing in

cases of altered states of consciousness [3,4,9]. It has been proposed that the brain processing

is shaped by a hierarchy from unimodal to transmodal areas [10,11]. The link between hierar-

chy and signal reversibility has been explored in a previous study [1] showing how non-revers-

ibility was used to estimate the level of orchestration changing according to the extrinsic

driving of the environment. Nevertheless, most previous studies are based on human record-

ings (mainly using fMRI) and thus, lack the temporal resolution to assess non-reversibility in

higher frequencies such as gamma band activity. Furthermore, much of the fMRI literature on

irreversibility focuses on characterization and comparison of different brain states but not the

transitions between them, as we present in the current study.

To this end, signal irreversibility has not yet been assessed in data recorded in a ferret popu-

lation. Here, we chose the ferret brain due to the cortical homologies to the human brain and

the possibility of measuring local field potentials (LFPs) from the surface of multiple areas dis-

tributed across the posterior half of the cortex [12]. Such mesoscale data are an ideal choice to

demonstrate the strength of the metric. Due to the difficulty of having such continuous record-

ings in humans, by using ferrets it is possible to assess the states transitions in long periods,

providing another strength to this type of data. Furthermore, the obtained results can be

PLOS COMPUTATIONAL BIOLOGY Functional hierarchies characterized by signal reversibility in ferret cortex

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011818 January 19, 2024 2 / 21

Funding: S.I is supported by the EU project euSNN

(MSCA-ITN-ETN H2020-860563). G.D. received

funding from the Horizon EU ERC Synergy Grant

Project ID: 101071900; Spanish national research

project (ref. PID2019-105772GB-I00/AEI/

10.13039/501100011033) funded by the Spanish

Ministry of Science, Innovation and Universities

(MCIU); A.K.E. received funding from the DFG

(SFB936-178316478-A2) and from the European

Union (project cICMs, ERC-2022-AdG-

101097402). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript. Views

and opinions expressed in this paper are those of

the authors only and do not necessarily reflect

those of the European Union or the European

Research Council. Neither the European Union nor

the granting authority can be held responsible for

them.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1011818


compared and validated with embedded dynamics that can be obtained by dimensionality

reduction approaches and generative models of switching behavior. In this way, we propose an

easy and fast implementable approach, comparable to already validated techniques which

reduce the noise in the signal and remove the redundancy of high-dimensional neuroimaging

recordings. Overall, these data pose a unique analytical challenge–combining high temporal

resolution neural signals with tracking of much slower behavioral changes. Can the extracted

time series metric, such as irreversibility, that is applied to the finely sampled neural record-

ings, reveal a precise transition between changing behaviors?

In previous studies, functional connectivity in ferrets has been studied using implanted

micro-electrocorticographic (μECoG) arrays during transitions between brain states (such as

sleep and awake) in behaving animals [12] and transitions between different depths of anesthe-

sia [13]. There, the different brain states were classified by using electrophysiological signa-

tures (spectral distributions across channels) of neural activity detected in the cortex [14–16].

Distinct brain states showed different patterns of cross-frequency phase-amplitude coupling

and inter-electrode phase synchronization across diverse frequency bands [12]. μECoG allows

simultaneous monitoring of several different functional systems, while enabling recordings

from multiple areas within the same cortical systems [12,16]. Furthermore, ferrets present a

relatively quick alternation between sleep stages, allowing a detailed study of these transitions

[17–20]. In the current study, we inspected the patterns of large-scale cortical functional con-

nectivity across time, as the animals go through distinct brain states.

We inferred a Hidden Markov Model (HMM) to represent unique brain networks of dis-

tinct activity and functional connectivity that repeat at different points in time [21–23]. HMM

offers a probabilistic (generative) model that, through a single process of Bayesian inference,

models the time series in a self-contained manner [21–24]. We investigated widely reported

metrics (such as switching rate) of brain substate’s transition dynamics in order to assess

whether there is agreement with the results provided by the irreversibility metric.

We hypothesize that irreversibility reveals differences in the neural dynamics of different

brain activity states. We showed that the awake brain had the highest irreversibility value.

Simultaneously, the awake state also exhibited the highest switching rate and other complexity

metrics in the embedded dynamics. Furthermore, the irreversibility inspection not only

revealed a hierarchical organization between different behavioral states, but also functional

hierarchies regarding brain region and frequency band. The irreversibility metric provided

information about different brain states at both the macro and meso-scale, suggesting a func-

tional hierarchical organization. These results shed light on how different approaches of ther-

modynamics and information theory can reveal hierarchical orchestration of ongoing

dynamics.

Methods

Ethics statement

All experiments were approved by the independent Hamburg state authority for animal wel-

fare (Behörde für Gesundheit und Verbraucherschutz Hamburg) and were performed in

accordance with the guidelines of the German Animal Protection Law.

Animals preparation and recordings

Data from adult female ferrets (Mustela putorius furo) were used for analyses carried out in

this study. Detailed explanation of animals housing, implantation and recording are presented

in a previous publication [12]. Neural activity was recorded over a large portion of the left cere-

bral hemisphere including visual, auditory, and parietal areas (more than 2 hours recording
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per animal). Recordings were performed with a custom designed μECoG array consisting of

64 equidistantly spaced electrodes (1.5 mm interelectrode distance) of 250 um diameter. Dur-

ing the ECoG implantation [12] the position of the μECoG on the cortex was photographed

and offline projected onto a scaled illustration of a ferret brain map [25]. Data from each elec-

trode were then allocated to the cortical area directly underlying the corresponding ECoG con-

tact. After recovery from implantation surgery, ferrets were gradually accustomed to a

recording box (45×20×52 cm) that was placed in a dark sound attenuated chamber where the

animal was able to move freely. To monitor animal movement, an accelerometer was tightly

attached to the cable-interface close to the head. μECoG signals were digitized at 1.4 kHz

(0.1Hz high pass and 357 Hz low pass filters) and sampled simultaneously with a 64 channel

AlphaLab SnRTM recording system (Alpha Omega Engineering, Israel). For further details on

the animal implantation and recordings procedures see (Stitt et al., 2017) [12].

Irreversibility

The irreversibility level was calculated on the μECoG signal of all the channels. Irreversibility

was measured within non-overlapping sliding windows (of 1 second) analysis through the data

[26], creating two different, forward and time-reversed backward, correlation patterns (the dif-

ference of which generates the irreversibility matrices) (Fig 1B). In other words, both forward

and backward correlations were generated at every one second time-window, by calculating

the shifted Pearson correlation in the corresponding direction of the signal. The difference

between these two patterns at each sliding window provided the irreversibility magnitude at

the corresponding time point [26]. The calculation of the metrics is described briefly below,

for more information, see [1].

The assumed causal dependency between the time series x(t) and y(t) (two signals obtained

from two different electrodes) is measured through the time-shifted correlation using a sam-

pling rate (fs) of 100 Hz. For the forward evolution the time-shifted correlation is given by

CforwardðDtÞ ¼< xðtÞ; yðt þ DtÞ > ð1Þ

And for the reversed backward evolution the time-shifted correlation is given by

CreversalðDtÞ ¼< xðrÞðtÞ; yrðt þ DtÞ > ð2Þ

being Δt = 1/fs based on previous literature [1]. This amounts to the minimum step size (one

frame for the window) within which irreversibility is calculated taking away the arbitrary selec-

tion of a time window duration. Furthermore, the arithmetic mean (represented in the formu-

las as<> can be calculated by

Arithmetic Mean ¼
Pn

i xi
n

ð3Þ

Where the reversed backward version of x(t) (or y(t)), that we call x(r)(t) (or y(r)(t)), is

obtained by flipping the time ordering.

The pairwise level of non-reversibility is given consequently by the absolute difference

between the assumed causal relationship between these two timeseries in the forward and

reversed backward evolution, at a given shift Δt = 1/ts. For the current study the shifting was

selected at T = 1.

Ix;yðTÞ ¼ jCforwardðTÞ � CreversalðTÞj ð4Þ

Therefore, the level of irreversibility relies on the idea of finding the arrow of time through
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Fig 1. Analysis summary: (A) Data was recorded from 64 custom micro-electrocorticographic (μECoG) electrodes placed in the ferret cortex. The

number of electrodes in each cortical functional system (auditory, visual, parietal) is depicted in the insert, which sum to 64 total electrodes. (B) Raw

signal level of irreversibility was obtained by calculating for each time window (1 second) the time-shifted forward correlation difference with the

time-shifted backward correlation. (C) Frequency spectra, classification of behavioral states and irreversibility values (difference between forward

and backward matrix) at each time point across the whole recording (> 2 hours). Irreversibility value was calculated for each behavioral state
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the degree of asymmetry obtained by comparing the lagged correlation between pairwise time

series.

The extent to which the forward and reversed time series are distinguishable determines

the reversibility/equilibrium level. Thus, when the forward and reversed time series are not

distinguishable, the system is reversible and in equilibrium, whereas when the level of distin-

guishability increases, the system becomes more irreversible and away from the equilibrium.

Hidden Markov Model

The Hidden Markov Model (HMM) is a statistical model that relies on the assumption that the

signal can be well characterized as a parametric random process, and that the parameters of

the stochastic process can be determined (estimated) in a precise, well-defined manner [27]. It

describes a time series as a sequence of states, where each state has its own model of the

observed data (i.e., the observation model) [23]. For this study, we used the multivariate auto-

regressive form of the HMM (HMM-MAR) as extensively described in previous literature

[28–30]. Briefly, the MAR model characterizes the behavior of time series by linear historical

interaction between the observed time series from different brain areas. MARs are able to char-

acterize the frequency structure of the data, and by making the model multivariate, are able to

capture interactions (e.g., coherence) between multiple brain regions [23]. As input for the

model, we performed a principal component analysis (PCA) for the data of each brain region

and used the first component from each area. In order to attenuate the effect of possible spatial

leakage (due to the adjacency of neighboring areas), symmetric multivariate leakage correction

was applied across the whole network as proposed by the creators of the used toolbox [24,31].

The model optimal output was found to be at 5 network states as it showed no predominant

presence of one network state over the others exposing a heterogeneous distribution of them.

For the outcome of the model, three metrics are reported in our result section. We selected

these metrics as they have been reported extensively in previous literature and suggested as

metrics of analytical interest by the toolbox used [22–24].

Switching rate

Switching rate is defined as the metric of the algorithm that can be interpreted as the probabil-

ity of switching between different substates [32] and it represents the stability of the dynamics

[33].

Maximal fractional occupancy

The fractional occupancy reveals the proportion of time points for which the HMM–MAR was

in each particular state [23]. In other words, fractional occupancy is defined as the fraction of

showing the AA/REM as the one with the highest level. (D) PCA was calculated for each brain region and the three first components (one from each

area) were used as the input signal for the Hidden Markov Model Analysis (HMM). The HMM resulting network states are presented with their

corresponding transitions. (E) The switching rate between the obtained network states was grouped by behavioral states, showing the AA/REM as

the state with the highest switching rate (AA/REM: 0.15; QA: 0.13; SWS:0.12). (F) The maximal fractional occupancy of the 5 network states was

calculated for each behavioral state, showing the SWS as the one with the highest value (AA/REM: 0.32; QA: 0.37; SWS:0.45). (G) We applied a deep

autoencoder to reduce the dimensionality of the source data in order to explore the embedded dynamics of the system. (H) The distinction between

the three behavioral states was assessed through a classifier at each reduced dimension, showing the highest level of performance at dimension 7. (I)

The entropy production of each behavioral state is displayed at dimension 7 revealing that the greatest departure from equilibrium occurs in the

stage AA/REM ([F(2, 1787) = 390,p< .01]). The highest entropy production was at the AA/REM state (mean = 0.0034, std = 0.0012), followed by

the SWS state (mean = 0.0023, std = 0.001) and QA state (mean = 0.0017, std = 0.0011).

https://doi.org/10.1371/journal.pcbi.1011818.g001
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time spent in each state:

Fractional occupancy kð Þ ¼
1

T

X

t
ðut¼¼kÞ ð5Þ

Where, in the state space dimension K, the most probable a posteriori state (ut) is one if

ut = k and is zero otherwise, and T is the length of the network state sequence in samples [22].

We display the maximal value of this metric to reveal the preference of one substrate above

the others in the different behavioral states as reported in previous literature [34].

Average lifetime

The average lifetime represents the mean duration of the sub-states visit. In the scenario that

the amount of time spent is the same for each sub-state, the average life-time would be identi-

cal for all of them [35].

Irreversibility at different frequencies

We applied a bandpass filter of 1Hz in the range of 0 to 50 Hz resulting in 50 different filtered sig-

nals. We calculated the irreversibility metric to each of these signals and displayed the results (Fig

2B) indicating the average value of irreversibility by frequency band: Delta (1–3 Hz), Theta (4–6

Hz), Alpha (8–16 Hz), Beta (17–30 Hz) and Gamma (30–50 Hz) as reported in a previous study

[12]. We will explore the influence of each frequency band to assess the driving effect of each one

of them and to assess if there is a bias towards higher frequencies as reported previously [3].

Information theory metrics

Entropy production. To perform basic biological functions such as information process-

ing, organisms need to break detailed balance [2]. For a system that obeys detail balance, the

probability of observing a transition between any given two states in the configuration space is

the same as the probability of observing the reverse transition. Such a regime is called thermo-

dynamic equilibrium. However, in systems far from equilibrium, the transition probabilities

are asymmetric, and the detailed balance is broken, giving rise to temporally irreversible

dynamics. Entropy production is a central concept of nonequilibrium statistical mechanics

used to quantify the extent of this violation [36,37]. To define this quantity, we first consider a

system with a set of joint transition probabilities P(i!j)� P(xt = i, xt+1 = j). We note that P
(i!j) differs from the conditional transition probability P(j|i) = P(xt+1 = j|xt = i). In particular,

for a Markovian system with a stationary distribution π, both quantities are related by P(i!j)
= P(j|i)π(i). In such systems, an information-theoretic form of entropy production is obtained

by computing the Kullback-Leibler distance or relative entropy between forward transition

probabilities P(i!j) and the reverse transition probabilities P(j!i)

S ¼
X

i;j
Pði! jÞlog

Pði! jÞ
Pðj! iÞ

ð6Þ

This distance measures the departure from detailed balance by comparing the probabilities

of the observed process and its time-reversed version. If the system satisfies the detailed bal-

ance condition, the joint transition probabilities between any two states are equal to the reverse

probabilities, P(i!j) = P(j!i), making all arguments of the logarithms in (6) equal to 1, and

consequently leading to null entropy production. On the other hand, any deviation from

detailed balance, P(i!j) 6¼ P(j!i), makes the transition probabilities asymmetric, resulting in

a positive increase in entropy production.
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Fig 2. Irreversibility level across time and regions: (A) The irreversibility level was assessed at each time point, displayed next to the

behavioral state at the corresponding moment. Over time, a significant increase in irreversibility can be observed during the Active-

Awake(AA)/REM stages. (B) Signal irreversibility was calculated for the three different behavioral states. AA/REM (left), Quiet-Awake

(QA) (center) and Slow-wave-sleep (SWS) (right). For each state, it is displayed the level of irreversibility for each functional system

(Visual, auditory, and parietal) and the level corresponding to the within-system relations and the between-system relations. Across

PLOS COMPUTATIONAL BIOLOGY Functional hierarchies characterized by signal reversibility in ferret cortex
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In certain situations, it is meaningful to compute a pairwise form of entropy production. In

a system composed of multiple interacting elements, the deviation from the equilibrium due to

the interaction of two elements a, b is given by:

Sab ¼
X

i;j
Pabði! jÞlog

Pabði! jÞ
Pabðj! iÞ

ð7Þ

where Pab(i!j) represents the forward transition probabilities of the subsystem composed

only by the elements i and j, and Pab(j!i) the backward transition probabilities. We refer to

this metric as pairwise entropy production. In previous works, pairwise entropy production

was shown to capture most of the irreversibility of neural data, with respect to higher-order

entropies [38]. Taking this into account, we tested the hypothesis whether the different stages

could be classified using pairwise entropies Sab alone.

Determinism

Determinism measures how much information a system’s state transition graph encodes

about its future evolution. The determinism is low in a system where each state has an equi-

probable chance of evolving into one of many future states, while a system where each state

evolves with probability equal to 1 to a subsequent state would be highly deterministic [39,40].

The average determinism of a directed network x with N (amount of states in the transition

probability matrix) can be quantified as

Det xð Þ ¼
log2N� < HðWout

i Þ >

log2N
ð8Þ

where< HðWout
i Þ > corresponds to the average entropy of the probability distribution of pos-

sible futures (weighted out-going edges) for each node i [40].

Degeneracy

Degeneracy gives a measure of how much information a system’s state transition graph

encodes about its past evolution. A system where all states feed into the same future would be

described as highly degenerate, while a system where each state had a well-defined past would

exhibit low degeneracy [39,40]. Degeneracy is calculated as

Deg xð Þ ¼
log2N � H < ðWout

i Þ >

log2N
ð9Þ

Where the ðWout
i Þ is a vector in which every component contains the mean probability of

transition of each state. Therefore, the entropy is calculated over the distribution defined by

the components of the vector.

Mutual information

The calculation of mutual information (MI) quantifies how much knowledge of the past state

of the system reduces our uncertainty about the future state of the system [41]. MI is one of the

many approaches to measure independence between different variables [42]. MI is zero if and

sleep stages, the parietal cortex and within-system relations were revealed to be the drivers of the irreversibility in the system. At the

bottom, the irreversibility level was measured at bins of 1 Hz between 0 and 50 Hz. The analysis was also performed for all the different

behavioral states. Bar figures indicated the level of irreversibility when grouping the frequencies by previously reported frequency bands

being the theta range the one with the highest irreversibility value.

https://doi.org/10.1371/journal.pcbi.1011818.g002
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only if, the two random variables are independent. MI’s theoretical advantages are unique in

its close ties to Shannon entropy [43]. The quantification of mutual information exposes infor-

mation between the future and past joint states of the variables that make up a network. There-

fore, as a result, mutual information is calculated by adding the information (entropy) of the

previous (H(X)) and future (H(Y)) state and subtracting the joint entropy (H(X,Y)) of them.

The equation is as follows:

MIðX;YÞ ¼ HðXÞ þHðYÞ � HðX;YÞ ð10Þ

Dimensionality reduction and classification of stages

Here we applied a similar methodology used in a previous publication [12] to classify record-

ings into brain stages. Briefly, a spectrogram (sliding window of 60 s in steps of 5s, 14 frequen-

cies logarithmically distributed between 0 and 128 Hz) was constructed individually for each

of the 64 channels and z-scored in the frequency axis to equilibrate the weight across frequen-

cies. Posteriorly, all 64 spectrograms were averaged into a single global spectrogram. Epochs

with mean z-score higher than 10 were considered as noise epochs and consequently data

were rejected in a window of ± 10 seconds from all time points that exceeded this threshold.

By means of PCA (applied on the entire 64 channel data), the dimensionality was reduced to

the 8 strongest components on which a k-means cluster analysis was applied to classify each

recording session into 3 clusters. Based on the physiological characteristics, the stages were

classified as Active-Awake(AA)/REM, Quiet-Awake (QA), and SWS.

Deep autoencoders

Autoencoders are deep artificial neural networks that are used to reduce the dimensionality of

data. Specifically, an autoencoder is a feedforward network that is trained to output an approx-

imate reconstruction of its input while learning a low-dimensional representation of the data.

Unlike other methods such as PCA (or derivatives of it), autoencoders reduce the dimension-

ality by nonlinear coordinate transformations. Autoencoder networks consist of two parts: the

encoder, which compresses the data into a lower dimensional space (called latent space) and

the decoder which reconstructs the data in the original dimension [44–47].

In this work, we implemented an architecture of 6 fully connected layers (64, 32, 16, d, 16,

32, 64). The dimension of the latent space “d” was chosen as small as possible, as the minimum

number of units that preserves the relevant information of the arrow of time in the data (see

Results). The input of the network was an array of 64 dimensions representing the state of

each channel at a certain timepoint. We used batch normalization and rectified linear unit

(ReLU) activation functions in all layers, except the middle and last one which acted as linear

units. The minimization of the mean square error (MSE) between the input data and the out-

put layer was used to train the network, through the Adam optimizer [48]. The data was previ-

ously z-scored and split into a training and test set (70–30% of the dataset). The batch size was

256 timepoints and the networks were trained for 400 epochs, or until the validation error was

no longer improving for the last 50 epochs.

Classification of stages in the low dimensional space

To investigate the minimal number of latent dimensions needed to preserve information on

the arrow of time, we trained classifiers to distinguish stages in the low dimensional space. In

this way, we intended to assess if signal irreversibility provided enough information to disen-

tangle the different brain states in lower dimensions.
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For each d-dimensional representation of the data, we binarized the timeseries (with a cut-

off value of zero) and computed the pairwise entropies S(ij) between all pairs of encoded coor-

dinates, as described previously in the methods section. The irreversibility was computed in

windows of 5 seconds (2500 points with 500Hz of sampling rate). Thus, we obtained arrays of

entropies for each encoding model that we used as features for the classification. As the signal

got binarized, we intended to prove that having only two “Micro-states” (0 and 1) it is already

enough to achieve our goal of entropy calculation.

We implemented a random forest classifier using the Scikit-learn library in Python as per-

formed in previous studies [49,50]. As the dataset was imbalanced (the number of windows

corresponding to the three stages was not the same), we applied under-sampling without

replacement to achieve the same number of elements of each class. The under-sampling pro-

cess was repeated 50 times. To achieve statistical significance, we used leave-one-out cross vali-

dation, splitting the set into train (80%) and test (20%) 50 times for each sampling.

Statistics

We performed paired statistical analyses (t-test/ANOVA, depending on the group number) as

the comparison was performed for the same animal in different brain states. Animal ID was

added as a random effect to control the violation of independence of the data. Statistical signif-

icance was assessed with a threshold of p = .05. All post hoc comparisons were Bonferroni cor-

rected for the number of comparisons taking place. The code for obtaining the metrics and

estimation of the results can be accessed in the provided link.

Results

To investigate the functional organization of large-scale dynamics, we analyzed electrophysio-

logical information obtained from recordings performed in ferrets. We obtained data from 4

animals in resting activity during the light cycle between 12 a.m. and 6 p.m (more than 2 hours

recording per animal). We recorded LFPs by using 64 custom micro-electrocorticographic

(μECoG) electrodes displayed in arrays chronically implanted in the animals (Fig 1A). To dis-

entangle the level of temporal irreversibility, we used the electrocorticographic (μECoG) time

series obtained during spontaneous behavior, including movement, quiet-awake, and sleep

periods. In this study, we replicated results reported in previous articles [12] using the same

dataset in order to validate the presented results, showing that the highest recording time was

in the slow wave sleep state and that the most probable state transition was from active-awake/

REM to quiet-awake (S1A and S1B Fig). Furthermore, we compared the power spectrum of

each corresponding state as presented in [12] (S1C Fig).

We looked at the brain dynamics of behavioral states transition through electrophysiologi-

cal data. Benefitting from the ferrets’ shorter duration of states, we inspected the temporal

asymmetry of the data by extracting both the forward time series and its reverse version. By

comparing the difference between these two, we were able to extract the level of non-reversibil-

ity of the system. Along these lines, irreversible macroscopic dynamics have been treated as a

signature of non-equilibrium processes occurring at the micro-scale in biological systems [2,

51]. This approach sheds light onto the brain dynamics and hierarchy at the different brain

states.

We evaluated the shifted correlation in both directions (forward and backward) in a sliding

time window of 1 second (Fig 1B). The absolute difference between the irreversibility matrices

(forward minus backward) displays the irreversibility value for each of the time points (Fig

1C). In other words, the irreversibility metric was calculated over all channels (by assessing the

difference in the corresponding matrices, see methods), providing one unique reversibility
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value for each time point. The frequency spectrum was used to determine the behavioral state

of the animal across the whole recording time (Fig 1C). Using a mixed-effect ANOVA (See

statistics section), we found that there was a significant difference in the irreversibility level

between all the behavioral states ([F(1, 3660892) = 3928,p< .01] being “Active-awake/REM

(AA/REM)” sleep the state with the highest value of irreversibility (mean = 0.05 +/- 0.002), fol-

lowed by “Quiet-awake (QA)” (mean = 0.03 +/- 0.002) and “Slow wave sleep (SWS)”

(mean = 0.02 +/- 0.001) (Post-hoc Bonferroni corrected while all comparison where signifi-

cant: p< .01) (Fig 1C). We incorporated complementary approaches in order to analyze the

embedded dynamics of the system and their differences in the different brain states. With that

goal, and to add robustness to the obtained results, we inspected recurring activity patterns

across time by applying HMM in order to observe, in a different way, the embedded dynamics

in the signal. For that goal, we calculated a PCA of each brain region (see Methods) and used

the first component from each area as input for HMM. The HMM analysis resulted in 5 net-

work states (Fig 1D). We defined the number of network states after an exploration of differ-

ent value between the range of 4 to 7 which indicate 5 as the optimal [29]. We inspected the

properties of the network states by comparing their dynamics in the different behavioral states.

By means of a mixed effect ANOVA (see statistics section), we observed a significant differ-

ence between the three behavioral states ([F(1, 10) = 26.47,p < .01]) where AA/REM had the

highest level of switching rate (0.155), followed by QA (0.133) and SWS (0.124) (Fig 1E).

There was a significant difference in all the comparisons between the conditions (AA/

REM-QA: p< .001, AA/REM-SW: p< .01, QA-SWS: p< .05). The reversed pattern was

observed when looking into the maximal fractional occupancy (“MaxFO”, the highest value of

time staying at each network state). There was a significant difference between the three behav-

ioral states ([F(1, 10) = 170.15,p < .01]) where SWS displayed the highest MaxFO (0.44), fol-

lowed by QA (0.37) and then (0.32) (Fig 1F). There was a significant difference in all the

comparisons between the conditions (AA/REM-QA: p< .05, AA/REM-SW: p< .001,

QA-SWS: p< .001).

We used a deep autoencoder to reduce the dimensionality of the signal and inspect the

latent information (Fig 1G). The pairwise entropy production in the reduced space was shown

to be sufficient to classify different stages, achieving an accuracy of 0.67 when using only 7

latent dimensions, comparable with the performance of the model using the pairwise entropies

of the raw data (consisting of 64 channels). Adding more dimensions did not result in a signifi-

cant improvement in the accuracy, showing that 7 dimensions are enough for capturing the

relevant information on the arrow of time that characterizes the stages (Fig 1H). When com-

puting the total entropy production in this dimensionality, there was a significant difference

([F(1, 1788) = 2867,p< .01]) where the AA/REM showed the highest level of entropy, as

observed previously in the switching rate of network-states of the HMM and in the irreversibil-

ity analysis at the source space (Fig 1I). There was a significant difference in all the compari-

sons between the conditions (AA/REM-QA: p< .01, AA/REM-SW: p< .01, QA-SWS: p<
.01). It is relevant to clarify that even if the AA/REM state revealed to be the predominant state

in both metrics (irreversibility in the source space and entropy production in the latent space),

the order between the remaining two states is inconsistent. Further studies should dive into

this difference to understand this phenomenon.

In summary, AA/REM showed to have the highest level of irreversibility between all the

possible states. Accordingly, it also revealed to have the highest switching rate between the net-

work-states (derived from the HMM), the lowest value of fractional occupancy and the highest

entropy production (derived from the dimensionality reduction). These results probed how

metrics of non-equilibrium contribute to the disentanglement of the different brain states.
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Irreversibility reveals brain hierarchy for different states and cortical

systems

The information obtained through the irreversibility analysis showed how the different behav-

ioral states vary in their dynamics. Here, we explore these dynamics in more depth by taking

into account the functional structure of the brain.

We inspected the level of irreversibility for all the electrodes across time with the corre-

sponding behavioral state at each time point (Fig 2A). For each state, we performed the same

analysis but segmented for the different cortical functional systems (auditory, visual, and parie-

tal). The recording electrodes were grouped into either the occipital (brown), parietal (orange),

or temporal (purple) functional system based on the cortical area that was underlying each

electrode (Fig 2B). We compared the level of irreversibility observed at each system (top). The

level of irreversibility was higher in parietal cortex in all the states (AA/REM: .0083, QA: .0080,

SWS: .0097) compared to visual (AA/REM: .0082, QA: .0054, SWS: .0060) and auditory (AA/

REM: .0041, QA: .0035, SWS: .0054). The difference was significant in all these comparisons:

AA/REM (F(1, 1500) = 60.68,p< .01), QA (F(1, 1500) = 51.82,p< .01) and SWS (F(1, 1500) =

52.76,p< .01). This suggests differences in the processing dynamics between higher-order

parietal regions and sensory areas, compatible with the notion of functional hierarchies. Irre-

versibility provided information about this distinction and allowed further exploration of the

comparison between different cortical subnetworks.

Given these proposed organizational principles, we set out to investigate how the brain bal-

ances the irreversibility of local within-system relations (e.g., intra-system edges; on-diagonal

black blocks in Fig 2B), and long range between-system relations across brain states. For

within-system relations we combined signals from μECoG recording electrodes that were posi-

tioned over occipital, parietal, and temporal cortical systems, respectively (Fig 2B) while

between-system relations consisted of the signal combinations between the remaining areas.

In other words, we compared the level of irreversibility of the within-system relations (each

area with itself—inside black squares in center figure) against the level of the between-system

sections (each area with the others- outside black squares in center figure) (Fig 2B). The

observed pattern was consistent disregarding the different number of electrodes per system

(Fig 1a). By means of paired t-student comparisons, we found a significant difference between

the within-regions (connections between brain areas of the same regions) and between-regions

(connections between brain areas of the different regions) irreversibility values (p< .01). The

difference was significant at AA/REM state (t(4095) = 215.30, p< .01), QA (t(4095) = 215.73,

p< .01) and SWS (t(4287) = 225.86, p< .01). The level of irreversibility was higher in the

within-system relations in all the states (AA/REM: .0069; QA: .0057; SWS: .0074) compared to

the between-system relations (AA/REM: .0045; QA: .0052; SWS: .0063). It is important to clar-

ify that existing literature has already proven how the cross-correlation of neighboring cortical

areas is a genuine feature of the data and does not reflect statistical noise. In this way, the

cross-correlation and spatial leakage (see methods) would not be potential driving factor for

the estimation of the signal irreversibility [52].

Lastly, we inspected the irreversibility of the system at different frequency bands. For that

goal, we obtained the irreversibility value at each frequency bin (1Hz) and compared the

results divided on the previously reported bands. We observed that the predominant frequency

band was the theta band (3–7 Hz) showing a significant difference from the remaining bands

(F(4, 44) = 33.18,p< .01) while the least prominent was the beta band (17–30 Hz) (Fig 2B).

In summary, the irreversibility of the signal not only provided information about the differ-

ent states and their transition, but also about the different roles of distinct brain areas and fre-

quencies over the non-equilibrium of the signal. The parietal system demonstrated the highest
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influence on the dynamic hierarchy (by having the highest irreversibility levels of any system)

while generally, within-system relations were shown to have a higher value of irreversibility

than the between-system relations.

Embedded network system revealed different entropy dynamics according

to the behavioral state

The behavioral states dynamics can be inspected through the observation of the transition

between them. We revisit the results obtained in Fig 1D to extend the analysis. In this section

we aim to reconnect the results presented previously with several metrics obtained through the

observation of the transitions across the different network states.

Using the HMM framework, we obtained 5 network substates and inspected information

theory metrics in order to study if the dynamics between the substates are consistent with the

previously reported results.

As an input to the HMM, we used the first principal component of each functional system

(Fig 3A). The resulting 5 network states were displayed with their corresponding probability

at each time point, while the predominant state (network state with the highest probability at

that moment) is displayed below (Fig 3B). The average amount of time spent at each network

state is shown for each behavioral state (Fig 3B). From this visualization, we observe that dur-

ing SWS, the HMM disproportionally labeled that time as network state 3. We calculated the

entropy production of the system by comparing the temporal symmetry between the different

network states. If the relation between the network states was the same in both directions

(symmetrical), then the entropy production level would be 0. The more different the relations

were (asymmetrical), the higher the entropy production value (Fig 3D). There was a significant

difference between the different states ([F(1, 10) = 5.73,p< .05]) being the difference between

AA/REM and SWS, the highest one. The AA/REM had the highest entropy production level

(mean = 0.0135, std = 0.0079), followed by QA (mean = 0.0118, std = 0.0075) and lastly SWS

(mean = 0.0087, std = 0.0054) (Fig 3E). The only significant difference between the conditions

was observed in the AA/REM-SWS comparison (p< .05). The transition probability matrix of

each behavioral state is displayed next to the corresponding difference matrix (upper triangle

minus lower triangle) (Fig 3F). The difference between the behavioral states was also assessed

using three different metrics of information theory resulting in the same pattern where

AWREM showed the lower value, followed by AA/REM and SWS: determinism (AA/REM:

.54; QA: .55; SWS: .57) (Fig 3G), degeneracy (AA/REM: .11; QA: .15; SWS: .22) (Fig 3H) and

mutual information (AA/REM: 1.30; QA: 1.42; SWS: 1.57) (Fig 3I). There were no significant

differences neither in determinism ([F(1, 10) = 0.06,p = .79]), nor degeneracy ([F(1, 10) = 1.08,

p = .32]), nor mutual information ([F(1, 10) = 0.01,p = .89) (multiple comparisons were not

significant and addressed via Bonferroni correction). Despite showing a consistent trend, in all

the information theory metrics (Fig 3G, 3H, and 3I), the difference between the states was not

significant (p>.13) mostly due to the low number of animals considered for the analysis. An

extra analysis, through a Bayesian ANOVA (https://github.com/klabhub/bayesFactor) showed

a high level of certainty in the three metrics confirming the support for the null hypothesis

(Certainty: Determinism 84%, Degeneracy 90%, Mutual information: 84%).

In summary, the results obtained from the HMM inspection revealed a consistent pattern

with the outcome of the irreversibility analysis. AA/REM showed the highest entropy produc-

tion while the lowest level in determinism, degeneracy, and mutual information. These results

revealed how the different behavioral states are disentangled using information theory metrics

consistently to the previously reported thermodynamic features. By incorporating these met-

rics, we show converging evidence that this phenomenon is supported by several lines of
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Fig 3. HMM analysis: (A) Principal component analysis was calculated for each functional system and the three first components (one

from each system) were used as the input signal for the Hidden Markov Model Analysis (HMM). (B) At each time point, the probability

of occurrence of each network-state is displayed, next to the predominant one for the corresponding moment. (C) The average life-time

(time spent at each network state) was calculated for each behavioral state and displayed together to observe the similarities between
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evidence. Through coherent results obtained in the distinct metrics, the underlying brain

dynamics can be explored in order to shed light on this topic.

Discussion

We used electrophysiological data to study functional dynamics of cortical areas, involving

visual, auditory, and parietal regions. We inspected the irreversibility of these neural signals

and used this feature to label different behavioral states. Furthermore, results obtained from

HMM analysis were in agreement with the observations made in the irreversibility analysis.

We measured the irreversibility of the data and implemented it as a proxy of the degree of

non-equilibrium. Furthermore, this approach can be used in a manner to localize the differen-

tial influences of various cortical subsystems on this phenomenon. Its application contributes

to enriching the knowledge of the brain’s organization and could potentially serve as a future

biomarker.

Previous studies have inspected non-equilibrium of signals in macaque monkeys [1,4],

allowing to disentangle different consciousness levels through the non-reversibility of the sig-

nal. Nevertheless, the distinction between the brain states was due to pharmacological inter-

vention instead of occurring spontaneously as in the present paper. Our study benefits from

the relatively short duration of behavioral states in the ferret model and the extensive recording

time (>3 hours per animal) in order to study the transition between the different states.

Besides the significant difference in the recording durations, our study consists of continuous

recordings from the same animals, allowing the exploration of the transition between the

states, in contrast to previous studies, where the recordings of the different states were discrete

and recorded in different periods of time.

A previous work has proposed that increases in irreversibility relate to changes in hierarchy

levels, with low irreversibility signaling a flatter hierarchy in non-wakeful states [1,10]. We

expanded our inspection on functional hierarchies in brain dynamics by comparing the irre-

versibility of the signal at different brain regions. We found a difference in irreversibility level

in the distinct functional systems, that was consistent across all behavioral states, in which the

parietal cortex appears showed the highest degree of irreversibility. Furthermore, within-sys-

tem edges [53,54] were shown to be more irreversible than the between-system relations,

showing a specific organization of the brain dynamics. Also, while comparing the influence of

different frequencies, we reported a clear predominance of theta oscillations, which could be

driving this metric of non-equilibrium as the main influence for the transition between the

behavioral states [55]. Surprisingly, even though there is a higher presence of autocorrelation

in lower frequencies, this did not interfere with the predominant role of the theta oscillations

in the brain state transition dynamics. This is the first study considering the influence of both

brain localization and frequencies influence in the measure of brain hierarchy through the

irreversibility of the system.

The relation between brain organization and HMM have been explored in previous studies

[21,56] showing how networks dynamics were hierarchically organized in different sets of

metastates. In this study, we presented evidence to link this phenomenon with the dynamics

presented in the irreversibility analysis. With this goal, we showed that there is a similar pattern

them (D) Entropy production was calculated by observing how asymmetrical the transitions between the network-states were. (E) The

results, grouped by behavioral state indicated a higher level of transfer entropy in the AA/REM state (F) The joint transition probability

between the network states is displayed for each behavioral state. Furthermore, the difference matrix (upper triangle minus lower

triangle) is displayed to enhance the visualization of the effect (G) The level of determinism was calculated showing the highest value for

the SWS state (H) The level of degeneracy was calculated showing the highest value for the SWS state (I) The level of mutual information

was calculated showing the highest value for the SWS state.

https://doi.org/10.1371/journal.pcbi.1011818.g003

PLOS COMPUTATIONAL BIOLOGY Functional hierarchies characterized by signal reversibility in ferret cortex

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011818 January 19, 2024 16 / 21

https://doi.org/10.1371/journal.pcbi.1011818.g003
https://doi.org/10.1371/journal.pcbi.1011818


between the metrics, as the SWS behavioral state exhibited a higher reversible level while simulta-

neously showing a lower entropy production, and the lowest switching rate. The obtained results

demonstrate how a common underlying mechanism which is altered in different behavioral states

as reported in previous literature [6,9] can be captured in diverse ways, including direct metrics,

such as irreversibility or indirect calculations through dimensionality reduction, such as HMM or

the use of autoencoders. Previous studies have found distinctive levels of entropy production at

different awareness states through fMRI data [6,9] showing convergent evidence with the results

presented in this study, disregarding of the used neuroimaging technique.

Further embedded information about brain dynamics could be provided via information

theory, which can denote interactions, associations or even dependencies between different

systems [39]. We applied several information-theoretic metrics to the network states obtained

through the HMM analysis and observed a congruent trend (despite not being significant due

to the low sample size) with previous literature comparing different levels of complexity

according to the corresponding brain state [40]. This is the first study comparing such embed-

ded metrics with irreversibility dynamics of neuroimaging data across different behavioral

states and proving the similarity between both outcomes, showing that direct and indirect met-

rics converge to the same hidden dynamics.

Furthermore, the brain is a highly complex dynamical system able to produce a vast reper-

toire of activity patterns. However, in spite of all the possible neural patterns available, only a

few types of temporal patterns are observed [57]. Therefore, it has been hypothesized that the

collective dynamics of the underlying neural processes are low dimensional. Indeed, multiple

experiments showed that the dimensionality (degrees of freedom, or the number of variables

required to explain a fixed variance) of the neural data is much lower than the number of

recorded units [58]. In consequence, the dimensionality of the system can be reduced to

lower-dimensional space. The classification of the brain states at lower dimensions revealed

how the metric of entropy could disentangle between different states in lower dimensions with

accuracy similar to the original dimension. This result demonstrates the feasibility and effec-

tiveness of using these dimensionality reduction techniques. Even though the dimensionality

of the system was reduced by approximately an order of magnitude, similar dynamic patterns

were observed. By presenting results obtained through HMM and autoencoder dimensionality

reduction, we show convergent evidence that strengthens the hypothesis framed in this article.

The alternative approaches show different features of the same underlying phenomena, pro-

viding robust techniques for its exploration. Furthermore, it shows the association between

entropy production and time-irreversibility, as it has been previously proposed [59,60].

In contrast to similar methods, the irreversibility framework has the flexibility that allows it

to be applied to many different modalities including fMRI and MEG [5,26,61]. As it can be eas-

ily adapted to other techniques, it allows for an easy comparison of different datasets with dif-

ferent modalities of similar samples of subjects, in humans or other animals. In addition, we

can assess whether the levels of non-equilibrium change with disease and therefore could be

used as a potentially sensitive and specific biomarker. The irreversibility approach provides an

indirect proxy to the nonequilibrium phenomenon of the system. Other more direct ways to

unveil a system’s thermodynamics, coming from methods which find other relations between

dynamical and thermodynamical system properties [62–64] could provide alternatives to the

one proposed in this article [65].

We emphasize that the presented framework can be applied to any set of time-series data.

Therefore, the methods could not only be applied to brain data, but also can be used broadly to

investigate broken reversibility and equilibrium in other complex living systems [2]. One

interesting future step would be to develop a deterministic dynamical system, able to generate

time series with adjustable degrees of irreversibility, and whose irreversibility is provable, not
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based on observational noise, and not detected by any of the tests here reviewed [65]. As a clas-

sification method for the behavioral states, we employed a data-driven approach based on the

time-varying nature of cortical LFP spectral properties. Similar data-driven approaches in

mice have achieved a state classification accuracy of over 90% [66]. Other criteria could be

used in order to disentangle the different states with different levels of accuracy.

In conclusion, we demonstrated how metrics related to thermodynamics such as signal

reversibility, which have been treated as a signature of non-equilibrium processes, reflect brain

dynamics distinguishable between different behavioral states. Furthermore, we found similar

results (coherent trends following the same pattern) captured by statistical models and infor-

mation theory metrics. Furthermore, we expanded the approach of irreversibility by inspecting

the dynamic hierarchy of the system across different brain subsystems and the frequency

range with the highest influence. All the presented results strengthened the application of the

irreversibility metric as a biomarker for different brain states and disorders.

Supporting information

S1 Fig. Description of relative recording time, transition between states and predominant fre-

quencies: (A) The percentage of the recording time indicates the SWS as the behavioral state

with the highest percentage while (B) the transition probability matrix indicates the transition

from AA/REM to QA as the one that occurred the most amount of times. (C) The power spec-

trum displayed the predominant frequencies for each of the behavioral states.

(TIF)
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