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In this paper, we explore a generalised solution of the Cauchy problems for the g-heat and g-wave equations which are generated
by Jackson’s and the g-Sturm-Liouville operators with respect to t and x, respectively. For this, we use a new method, where a
crucial tool is used to represent functions in the Fourier series expansions in a Hilbert space on quantum calculus. We show
that these solutions can be represented by explicit formulas generated by the g-Mittag-Lefler function. Moreover, we prove the

unique existence and stability of the weak solutions.

1. Introduction

In the last decade, the theory of quantum groups and ¢
-deformed algebras have been the subject of intense investi-
gation. Many physical applications have been investigated
on the basis of the g-deformation of the Heisenberg algebra
(see [1, 2]). For instance, the g-deformed Schrédinger equa-
tions have been proposed in [3, 4], and applications to the
study of g-deformed version of the hydrogen atom and of
the quantum harmonic oscillator have been presented (see
[5]). Fractional calculus and the g-deformed Lie algebras are
closely related. A new class of fractional g-deformed Lie
algebras is proposed, which for the first time allows a smooth
transition between the different Lie algebras (see [6]).

The origin of the g-difference calculus can be traced back to
the works by Jackson (see [7, 8]) and Carmichael (see [9]) from
the beginning of the twentieth century, while basic definitions

and properties can be found, e.g., in the monographs [10, 11]
and the PhD thesis [12]. Recently, the fractional g-difference
calculus has been proposed by Al-salam (see [13]) and Agarwal
(see [14]). We can also mention papers [15, 16], where the
authors investigated the explicit solutions to linear fractional
g-differential equations with the g-fractional derivative, and
in [17], the g-analogue nonhomogeneous wave equations
were studied.

A motivation behind this work is to state some new results
about the g-heat and g-wave equations associated to the
g-Sturm-Liouville operator (see (10)). We attempt to extend
the heat representation theory studied in some cases (see
[18-20], etc.). We define a generalised solution of the Cauchy
problem for these equations generated by the g-Mittag-Leffler
function and the g-associated functions of a biorthogonal
system (see (13)). We investigate the well-posedness of the
Cauchy problem for the g-heat and g-wave equations for
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operators with a discrete nonnegative spectrum acting on
Ls [0,1]. In particular, we prove both unique existence and
stability of the corresponding the generalised solution.

The paper is organized as follows: the main results are
presented and proved in Section 3 and Section 4. In order
to not disturb these presentations, we include in Section 2
some necessary Preliminaries.

2. Preliminaries

In this section, we recall some notations and basic facts in
g-calculus. We will always assume that 0 < g < 1. The g-real
number [a], is defined by

The g-shifted factorial is defined by

) 1 n=0,
(a)Q)n_ { (l_a)(l_aq) (l—aq”—l), n € N.

Moreover, their natural expansions to the reals are

bla;
PR CLIT )

o) = B9
(q“b/a;q)oo( e

(a=b) (agsq)., ¢

f[ l—aq
(1)

The Jackson’s g-difference operator D, f (x) is (see, [8, 12]
Section 2.1])

_ f(x) _f(qx) ] (2)

The g-derivative D, of a product of the functions f and g
as defined by

Dy(f9)(x) =£(ax)Dy(9) (x) + Dy(f) ()9 (x)-  (3)

As given in [10], two g-analogues of the exponential func-
tions are defined by

1
g =————E =(-(1-9)x;9), (4)
O (T Tr N A
Moreover, we have that
D¢ =¢', DE* = E;%, ¢'E;* =1. (5)

Due to the various types of g-differences introduced in
quantum calculus, trigonometric functions have various
g-analogues (see, [21] Section 2 [10], Section 10 and [12],
Section 2.12). The following definition of cosine and sine will
be useful in this investigation (see [20]):
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k k+1) 2k+1

2k+1

>

(6)

where the g-analogue of the binomial coefficients [n] ! is
defined by

qu smzq :;;)

ifn=0,

X [n]q, if n e N.

The g-integral (or Jackson’s integral) is defined by (see [8])

[L e == $ "™, @)

0 m=0

and a more general form is given by

[ o= s [y

a 0 0

for0<a<b.
The g-version of integration by parts reads

b b
j F()D,g(x)d,x = [fa’ - J 9(@)D,f()dx  (8)

a

and if f =1, then we get that

b
| Dsg)d,5=a6) - ata). ©)
a

The q -Sturm-Liouville Problem. Let Lé [0, 1] be the space
of all real-valued functions defined on [0, 1] such that

Phigon = ([ 1707 ) .

The space L; [0,1] is a separable Hilbert space with the
inner product:

1

()= J F($)g(x)d,x f. g € 12[0,1].

0

Now, we shortly describe the study introduced by
Annaby and Mansour in of a basic g-Sturm-Liouville eigen-
value problem in a Hilbert space (see [21], Chapter 3). In
particular, they investigated the basic g-Sturm-Liouville
equation:

—%Dq_quy(x) +v(x)y(x) =Ay(x), (0<x <151 €C),

where v(-) is defined on [0, 1] and continuous at zero. Let
CZ’O [0, 1] denotes the space of all functions y(-) such that y
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and D,y are continuous at zero. If v=0, then we get the
operator Z in the following form:

o ED 2 Doy (%) = Ay(x), (10)

for 0<x<1 and A € R. The operator & is self adjoint on
Cfl,o [0,1]n ij[O, 1] (see [21], Theorem 3.4.). A fundamental

set of solutions of (10) are cos (v/A;¢?) and sin (vA; g?)/
V/A. Moreover, the eigenvalues {A,}7>, are the zeros of
A5 q%), where

sin (
M= (1-q) g 7 k=0,1,---, (11)
and Y2 ¢, <00, 0<p; <1, and
Ao=(1-9)2q< A k=1,2,3,-. (12)
Additionally, the corresponding set of eigenfunctions

{sin (\/A;9%)// A}, is an orthogonal basis in L2(0,1).
Thus, we can identify f € L; [0, 1] with its Fourier series:

Mg

f(x)= 2 (> ) di(x),

A
L

where

sin <\//\7kx;q2>
RV

The Sobolev Space Associated with <. The next step is to
recall the essential elements of the Fourier analysis presented
in [22-24], as well as its applications to the spectral properties
of Z. The space C[0,1]:=(_ Dom(Z™) is called the
space of test functions for &, where

bi(x) = (13)

Dom(L™) = {f € I2[0, 1]: Z'f € Dom(ZL), j=0,1,2,:+,m - 1}.

For g € C2[0,1], we introduce the Fréchet topology of
C20, 1] by the family of norms:

91l o —max|‘3gHL2[01

i<m

The space of #-distributions 2,0, 1] = L(C2[0, 1], R) is
the space of all linear continuous functionals on C%[0, 1].

Thus, for s€ R, we can also define the Sobolev spaces
W, o associated to Z in the following form:

Wig={f ey 1 2% e2fo. 1},
with the norm || f]| W, = H35/2f||L5[0,1].

For m € N, we introduce the space C;'([0, 1] ; Wi,
defined by the norms

#[0.1])

m

Z max ,0< T < 00,
=0 0<t<T

[0 ()

||”||c;”([o,T];w;g[o,1]) = we 0]

where the g-partial differential operator D, u(t,x) with
respect to ¢ has the following form:

u(t, x) — u(qt, x) .

D u(t,x) = =qt

Notation: the symbol M<K means that there exists y > 0
such that M < yK, where y is a constant.
3. The g-Heat Equation
We start with a study of the following Cauchy problem:
D, u(t,x) + Zu(t, x) =f(t,x),x €[0,1],£ >0, (14)
with the initial condition

u(0,x) = ¢(x), x € [0, 1]. (15)

We say a generalised solution of the problem (14)-(15) is
a function u(t,x) such that they satisfy equation (14) and
condition (15).

Theorem 1. We assume that 0< T < 0co. Let ¢ € W [0, 1]
and f € C([0, T]; W;,g [0, 1]). Then, there exists the general-
ised solution of u to problem (14)-(15), and

ueCé([O,T};L;[O,I])nC([O,T];Wé’y[O,ID. (16)

Moreover, this solution can be written in the following
explicit form

u(t,x>=z[ g, e jEWms,-)d s}bk() (17)

keN

Proof. Existence. Since the system of eigenfunctions
{1} e, is a basis in L0, 1] (see (1)), we seek for a function
u(t, x) in the form

x)= ) u(1) (%), (18)

keN



for each fixed 0<t<T <oo. The coefficients will then be
given by the Fourier coefficients formula u(t) = (u(t,-)¢,.).
We can similarly expand the source function,

x) = ka(t)¢k(x

keN

»fe)=(f(t).¢)- (19)

From (11) and (18), we have that

L (%) = Mg (%), k € N.
Hence,
Fu(tx)= Y w()hdy (), (20)
keN,
and
Dy u(t,x)= Y Dyu(t)¢y(x). (21)
keN

Substituting (20) and (21) into the equation (14), we
find that

Z [Due(t) + Mg (t) ka () (x (22)

keN keN

But then, due to the completeness,
D, (t) + A () = f. (1), ke N, (23)
which are ODEs for the coefficients u,(t) of the series (18).
Using the integrating factor E;\kqt and (2) and (3), we can

rewrite the ODE as
Ef,(t) = P9 Dyuy () + Ep4 L (t)
) %)

= EM'Duy(1) + D, [Eqkt] w(t)  (24)

=D, [E’q\k’uk(t)} .

Form (3), (5), and (24), we get that

Jth [Eytun(t)]dys = J;Egkqf FL(Of (5)ds,

0

so that

t
Egktuk(t) =u,(0) + LE’q\kqtfk(s)dqs,

which, in its turn, implies that

u(0) I (" s
u(t) = + ECX¥f (s)d,s
Egkt E:Z\kz 0 1 q
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and we conclude that

t
u(t) = e;lktuk(o) +e )‘ktLEQ"qsfk(s)dqs
But the initial conditions (16) and (22) imply that
u(0) = ¢y Thus,
w(t)=e "o +e JEMS ((5)d,s. (25)

Therefore, the solution u(t,x) can be written in the
series form as

(e = ¥ e Mgr e | BV (5 ] 00,

keN

so, also (17) is proved.
Convergence. From (1), (4), and (5), we have that

1 1
= < <L,EF<E,
T CI-qia)y, I+(I-qx Tt T

for x €0, I]. Hence, using for 0<t<T < oo, (5), (23), and
(25), we get that

5
()] < &

tEgkqs
0+ | S Va9l <1 (060
k
0 €eg

+j (5 )1y < | (9 60)

! (26)
+ T max| (f(s,), ¢)| < max {1, T}
[l 91+ max| (), 91|21 (@ 64|
+ max | (f(s, ), i)l
and
|D,u(t) ! < Akluk(t)Hlfk( )I < |<Ak<p,¢k>|
+ {8 Gl + A [ (8 )s b < (s 61|
+ (14 A)[(Af i(8), 1) [R[(ZL s 81) |
+£§£§|<gfk( ) b
(27)
Hence,
u(t, )] = [(ean(£), 8] = | 80|
+ max|(4f (s, -), o) = (L ¢y (28)
+ max|[(Zf(s, ), ¢y)]-

Since ¢ € W;,y, fecC(o1]; Wé’y), and, hence, by using
the Plancherel identity and (27) and (28), we can conclude
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that

(3.13)
et Moo = 2 O 2 Y )+ max ¥ (/s 40
T keN

keN keN

2 2
= H‘PHWfby[o,l] + ”f”c([o,T];w;y[o,]]) < 00,

and

(27)
1Pt ) [0, = 2 1Pg8)[* % X 1L 8017
keN keN

+ mﬂk§|<3f(s, ) Sl

0<s<T

2 2
= ||‘P||w;yy[o,1} + ||f||c([o,T];wfI,z[o,1])

< 00,
and

(28)
2 2 2
[ Zu(t, ')“L;[o,l] 2 ||‘P||Wfﬂ,[0,1] + ||f||c([0,T];wjy3,[o,1]) <00,

which mean that ue Cy([0, T]; LZ[0, 1]) n C([0, T]; W7 o,
[0, 1]).

Uniqueness. It only remains to prove the uniqueness of
the solution. We assume the opposite; namely, that there exist

functions u(t, x) and v(t, x), which are two different solutions
of problem (14)-(15). Let 0 < t < T < 0o. Then, we have that

Dq’tu(t,x)+$u(t,x) =f(tx), 0<x<I,
{u(O,x):go(x), 0<x<1,
Dgv(t,x) + Zv(t,x) =f(t,x), 0<x<I,
{V(O,x)=(p(x), 0<x<1.

We define W(t,x)=u(t,x)—v(t,x). Then, the function
W (t,x) is a solution of the following problem

Dq)tw(t, X)+Zw(t,x)=0, 0<x<I,
0<x<I.

w(0,x) =0,
From (18), it follows that W(t,x) =0, that is, u(x,t) =

v(x, t), and this contradiction to our assumption proves the
uniqueness of the solution. The proof is complete.

4. The g-Wave Equation

In this section, we will seek for a generalised function u(t, x),
which satisfies the following g-wave equation

Déytu(t, xX)+ Zu(t,x)=f(t,x),0<x <1, (29)

for 0 <t < T < 0o with the initial conditions

1u(0, x) :w(x),Dq’tu(O,x) =75(x),0<x<1. (30)
Theorem 2. We assume that 0 < T < co. Let y, 1] € W;’g[o, 1]
and f € C([0, T]; W} [0, 1]). Then, there exists the general-
ised solution of problem (29)-(30):

ue c;([o, 1]; L2[0, T]) n c([o, T]; W20, 1])‘

Moreover, this solution can be written in the following
explicit form:

u(t,x) = Z (‘/’keu (—Aktz;‘Z) + t”kez,z(/\ktZ;Q)
keN,
t

1 1
- /kak(o)ez,z (_Aktz ; Q) _/TkJ €1

0

(31)
. ( At~ ,fs); : q) Dq)sfk(s)dqs> b

where the q-Mittag-Leffler function ea)ﬁ(/\k(t—qzs)g;q) is
given by (see [25] and [26], Section 7):

AL (t—qs))"

Fq(moc +pB)’ (32)

€up (Ak(t —4s)y s q) =

m=0

for a, BeR and 0<s<t<oo, where the gamma function
I',(x) is defined by

(9);

(4% 9),

Iy(x)= (I—q)l_",l"q(n+1):[n}q!,n€]N. (33)

Proof. Existence. By repeating the arguments in the proof
of Theorem 1., we have the Cauchy type problem:

Dju(t) + M (1) = f(1), k € Ny, (34)
with the initial conditions
u(0) = ¥y Dyuage(0) = 1y, k € Ny, (35)

where fi.(t) = (f(t,-)¢y), Wi = (Y () ) and 1y = (n(-)dy,)-
Then, the solution to this Cauchy type in problem
(29)-(30) is given (see [25], Example 6)

ue(t) = yyes, (—/\ktz 5q) + ey, (_Aktz )

+ﬂwwm44w—ﬁ&@h@@.@®



By using (2) and we find that

D,, [621 (—/\k (t - qu)Z ; q)}

_ o s 2m—1
keznle ry( 2m +(1}L )m]l( q ) )
=N (t—gs Tk — s
k(t q )kg\] Fq(zm) (t g )q

2
= A (t—gs)e,, (Ak(t - qzs)q ; q).
By applying (8) and using (36) and (37), we get that
ue(t) = yyen (“et’ 3 q) + tesn (Mt 5 q)
1 2
+ A_kJODq,s |:62,I (_/\k(t —-q S)q ; q):|fk(s)dqs
= yiesr (At 5 q) + tres, (<A 5 q)
1 2
+ A—kfk(t)em <_Ak (t- qz)q ; ‘1) (38)

1
_)kak( )‘321( /\k "1)
1

t
2
% J &0 (Me(t =) 19) Dyufi(5)dys

Since e,;(~Mt?(4°5q),) =0 (see [21], Theorem 7.12]),
by using (18) and (38), it follows that solution exists and
can be written as

u(t,x) = Z (‘I/kez,1 (—Aktz;Q) + t’?kez,z(/\ktz;‘J)

kelN
1 t
;‘1 _*J €1
%),

: (_ M=)} q) D, f (s)dqs> o

fk( )621(

i.e, on the explicit form (34).

Convergence. Firstly, using the results in [27], Lemma 6
and in [17], Lemma 1 for the g-trigonometric functions in
(6), we see that e,,(~\t?3q) and ey, (At q) are also
bounded with t > 0. Then, forms (4), (12), and (32) follow
that

00 ) th
|622( /\kt2 q n;o—zm+1]
[ AmTZm
2m+1
sin (\/_;T;q )
v/

Ciq

< 2T\/X;’

QM

(39)
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and

|ez1 Ak ; OZO: - <T\/_>

m=0 q' (40)

< cos (\/—X;T ; qz) <Cyy

where C, ;, C, , are any constant which only depends on q.

Next, by using (38), (39), and (40), we obtain that

|(F(0:): )|

(40)
lu ()] 2 [(ws $) | + 11 i) | + 3
k

5 [ 1269 90 dys < v + 00

i W(AW X L max|(D,f(s. ). 90)] <,
[<w,¢k>|+|<n,¢k>|+ZW< e m}],

(41)

where C) ==max {1, (1/A,), (T/A,)}.
Therefore, by using (7), (8), (30), (34), (33), and (41), we
have that

t (30)(34)
|D,u(t)| = ‘—unk(o) + JOD;uk(s)dqs <

1.9
#1060 0014
e (9l S 3 )

+ 1 max |(Af (s,

k 0<s<T

) @)+ TC),

1

[KAIJ/’ |+ [ 61| Z

a9

1

(L 9l + (L1 )| + Z max|(ZD}f(8,). 9,
(42)
and
(39) (41)
D2 (1)] = Al (8)] + [ Fo(8)] = 1Ay B + [ )|
1
+ X maxl (L2300, 00) = (2090 + (200
1
+ 3 max|(LDLf (), 9)
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Thus,

, (41)
()1 Zz10,) = Zluk Y gl Y i o0l

keN keN
D 2
3, s 2 |(o100..60)
= ||’7|‘w;8[0,1] + HV/“w;y[o,J]

2
+ ||f||c;([o,T];wf,,y[0J]) <00

DD, = 2. IPgu(t)'2 Y 1Ly 65
1 keN keN

+ Z (£ ¢k>|2
0<t<T

keN
X max| 3 (LDLf(0), )

; 2
2 2
s H’7||W§J,[0,1] + ||‘//||w§,y[o,1]

+ max

2
*IA1le: (orw2 0.7y <0

and
| D = ¥ [D2us (o) <l
2o 5 Wez[01]
2
+ ||‘//||Wfby,[0,1] + ||f||c}1([0,T];Wflyy[o,1]) <00,
and

| L)z = Y [(Lu(t), d) ]

kel

= O =l 0

+1W 0

2
+ ||f||C(11([O,T];WfIYi,[O,1])’

S 2 72 .
which is means that ue C;([0,1]; L7[0, T]) N C,([0, T];

W2 [0, 1]).

Uniqueness. This part can be proved completely similar as

the proof of Theorem 1.. So we omit the details.
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