
Research Article
On the Heat and Wave Equations with the Sturm-Liouville
Operator in Quantum Calculus

Serikbol Shaimardan ,1 Lars-Erik Persson,2,3 and Nariman Tokmagambetov 4

1L. N. Gumilyov Eurasian National University, Astana, Kazakhstan
2Department of Mathematics and Computer Science, Karlstad University, Karlstad, Sweden
3Department of Computer Science and Computational Engineering, Campus Narvik, The Arctic University of Norway,
Narvik, Norway
4Karagandy University of the Name of Academician E.A. Buketov, Karaganda, Kazakhstan

Correspondence should be addressed to Nariman Tokmagambetov; nariman.tokmagambetov@gmail.com

Received 2 October 2022; Revised 29 November 2022; Accepted 12 December 2022; Published 19 January 2023

Academic Editor: Douglas R. Anderson

Copyright © 2023 Serikbol Shaimardan et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In this paper, we explore a generalised solution of the Cauchy problems for the q-heat and q-wave equations which are generated
by Jackson’s and the q-Sturm-Liouville operators with respect to t and x, respectively. For this, we use a new method, where a
crucial tool is used to represent functions in the Fourier series expansions in a Hilbert space on quantum calculus. We show
that these solutions can be represented by explicit formulas generated by the q-Mittag-Leffler function. Moreover, we prove the
unique existence and stability of the weak solutions.

1. Introduction

In the last decade, the theory of quantum groups and q
-deformed algebras have been the subject of intense investi-
gation. Many physical applications have been investigated
on the basis of the q-deformation of the Heisenberg algebra
(see [1, 2]). For instance, the q-deformed Schrödinger equa-
tions have been proposed in [3, 4], and applications to the
study of q-deformed version of the hydrogen atom and of
the quantum harmonic oscillator have been presented (see
[5]). Fractional calculus and the q-deformed Lie algebras are
closely related. A new class of fractional q-deformed Lie
algebras is proposed, which for the first time allows a smooth
transition between the different Lie algebras (see [6]).

The origin of the q-difference calculus can be traced back to
the works by Jackson (see [7, 8]) and Carmichael (see [9]) from
the beginning of the twentieth century, while basic definitions

and properties can be found, e.g., in the monographs [10, 11]
and the PhD thesis [12]. Recently, the fractional q-difference
calculus has been proposed by Al-salam (see [13]) and Agarwal
(see [14]). We can also mention papers [15, 16], where the
authors investigated the explicit solutions to linear fractional
q-differential equations with the q-fractional derivative, and
in [17], the q-analogue nonhomogeneous wave equations
were studied.

A motivation behind this work is to state some new results
about the q-heat and q-wave equations associated to the
q-Sturm-Liouville operator (see (10)). We attempt to extend
the heat representation theory studied in some cases (see
[18–20], etc.). We define a generalised solution of the Cauchy
problem for these equations generated by the q-Mittag-Leffler
function and the q-associated functions of a biorthogonal
system (see (13)). We investigate the well-posedness of the
Cauchy problem for the q-heat and q-wave equations for
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operators with a discrete nonnegative spectrum acting on
L2q½0, 1�. In particular, we prove both unique existence and
stability of the corresponding the generalised solution.

The paper is organized as follows: the main results are
presented and proved in Section 3 and Section 4. In order
to not disturb these presentations, we include in Section 2
some necessary Preliminaries.

2. Preliminaries

In this section, we recall some notations and basic facts in
q-calculus. We will always assume that 0 < q < 1. The q-real
number ½α�q is defined by

α½ �q =
1 − qα

1 − q
:

The q-shifted factorial is defined by

a ; qð Þn =
1, n = 0,
1 − að Þ 1 − aqð Þ⋯ 1 − aqn−1

À Á
, n ∈ℕ:

(

Moreover, their natural expansions to the reals are

a − bð Þαq = aα
b/a ; qð Þ∞
qαb/a ; qð Þ∞

, a ; qð Þα =
a ; qð Þ∞
aqα ; qð Þ∞

, a ; qð Þ∞ =
Y∞
i=0

1 − aqi
À Á

:

ð1Þ

The Jackson’s q-difference operator Dqf ðxÞ is (see, [8, 12]
Section 2.1])

Dqf xð Þ = f xð Þ − f qxð Þ
x 1 − qð Þ : ð2Þ

The q-derivative Dq of a product of the functions f and g
as defined by

Dq f gð Þ xð Þ = f qxð ÞDq gð Þ xð Þ +Dq fð Þ xð Þg xð Þ: ð3Þ

As given in [10], two q-analogues of the exponential func-
tions are defined by

exq =
1

1 − qð Þx ; qð Þ∞
, Ex

q = − 1 − qð Þx ; qð Þ∞: ð4Þ

Moreover, we have that

Dqe
x
q = exq,DqE

−x
q = E−qx

q , exqE−x
q = 1: ð5Þ

Due to the various types of q-differences introduced in
quantum calculus, trigonometric functions have various
q-analogues (see, [21] Section 2 [10], Section 10 and [12],
Section 2.12). The following definition of cosine and sine will
be useful in this investigation (see [20]):

cos z ; q2
À Á

= 〠
∞

k=0

−1ð Þkqk2z2k
2k½ �q!

, sin z ; q2
À Á

= 〠
∞

k=0

−1ð Þkqk k+1ð Þz2k+1

2k + 1½ �q!
,

ð6Þ

where the q-analogue of the binomial coefficients ½n�q! is
defined by

n½ �q! =
1, if n = 0,
1½ �q × 2½ �q ×⋯ × n½ �q, if n ∈N:

(

The q-integral (or Jackson’s integral) is defined by (see [8])

ðx
0
f tð Þdqt = 1 − qð Þx 〠

∞

m=0
qmf xqmð Þ, ð7Þ

and a more general form is given by

ðb
a
f xð Þdqx =

ðb
0
f xð Þdqx −

ða
0
f xð Þdqx,

for 0 < a < b.
The q-version of integration by parts reads

ðb
a
f xð ÞDqg xð Þdqx = f g½ �ba −

ðb
a
g qxð ÞDqf xð Þdqx, ð8Þ

and if f ≡ 1, then we get that

ðb
a
Dqg xð Þdqx = g bð Þ − g að Þ: ð9Þ

The q -Sturm-Liouville Problem. Let L2q½0, 1� be the space
of all real-valued functions defined on ½0, 1� such that

fk kL2q 0,1½ � ≔
ð1
0
f xð Þj j2dqx

� �1/2
<∞:

The space L2q½0, 1� is a separable Hilbert space with the
inner product:

f , gh i≔
ð1
0
f xð Þg xð Þdqx, f , g ∈ L2q 0, 1½ �:

Now, we shortly describe the study introduced by
Annaby and Mansour in of a basic q-Sturm-Liouville eigen-
value problem in a Hilbert space (see [21], Chapter 3). In
particular, they investigated the basic q-Sturm-Liouville
equation:

−
1
q
Dq−1Dqy xð Þ + v xð Þy xð Þ = λy xð Þ, 0 ≤ x ≤ 1 ; λ ∈ℂð Þ,

where vð·Þ is defined on ½0, 1� and continuous at zero. Let
C2
q,0½0, 1� denotes the space of all functions yð·Þ such that y
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and Dqy are continuous at zero. If v ≡ 0, then we get the
operator L in the following form:

L ≔
−
1
q
Dq−1Dqy xð Þ = λy xð Þ,

y 0ð Þ = y 1ð Þ = 0,

8><
>: ð10Þ

for 0 ≤ x ≤ 1 and λ ∈ℝ. The operator L is self adjoint on
C2
q,0½0, 1� ∩ L2q½0, 1� (see [21], Theorem 3.4.). A fundamental

set of solutions of (10) are cos ð ffiffiffi
λ

p
; q2Þ and sin ð ffiffiffi

λ
p

; q2Þ/ffiffiffi
λ

p
. Moreover, the eigenvalues fλkg∞k=1 are the zeros of

sin ð ffiffiffiffiffi
λk

p
; q2Þ, where

λk = 1 − qð Þ−2q−2k+2μ−1/2k , k = 0, 1,⋯, ð11Þ

and ∑∞
k=1μk <∞, 0 ≤ μk ≤ 1, and

λ0 ≔ 1 − qð Þ−2q ≤ λk, k = 1, 2, 3,⋯: ð12Þ

Additionally, the corresponding set of eigenfunctions
fsin ð ffiffiffiffiffi

λk
p

; q2Þ/ ffiffiffiffiffi
λk

p g∞k=1 is an orthogonal basis in L2qð0, 1Þ.
Thus, we can identify f ∈ L2q½0, 1� with its Fourier series:

f xð Þ≔ 〠
∞

k=1
f , ϕkh iϕk xð Þ,

where

ϕk xð Þ =
sin

ffiffiffiffiffi
λk

p
x ; q2

� �
ffiffiffiffiffi
λk

p : ð13Þ

The Sobolev Space Associated with L. The next step is to
recall the essential elements of the Fourier analysis presented
in [22–24], as well as its applications to the spectral properties
of L . The space C∞

L ½0, 1�≔T∞
m=1DomðLmÞ is called the

space of test functions for L , where

Dom Lmð Þ≔ f ∈ L2q 0, 1½ �: L j f ∈Dom Lð Þ, j = 0, 1, 2,⋯,m − 1
n o

:

For g ∈ C∞
L ½0, 1�, we introduce the Fréchet topology of

C∞
L ½0, 1� by the family of norms:

gk kCm
L

0,1½ � ≔max
i≤m

L ig


 



L2q 0,1½ �:

The space ofL-distributionsDL
′½0, 1�≔ LðC∞

L ½0, 1�,ℝÞ is
the space of all linear continuous functionals on C∞

L ½0, 1�.

Thus, for s ∈ℝ, we can also define the Sobolev spaces
Ws

q,L associated to L in the following form:

Ws
q,L ≔ f ∈D′

L 0, 1½ �: L s/2 f ∈ L2q 0, 1½ �
n o

,

with the norm k f kWs
q,L

≔ kL s/2 f kL2q½0,1�.
Form ∈ℕ0, we introduce the space C

m
q ð½0, 1� ;Ws

q,L ½0, 1�Þ
defined by the norms

uk kCm
q 0,T½ �;Ws

q,L 0,1½ �ð Þ ≔ 〠
m

n=0
max
0≤t≤T

Dn
q,tu t,:ð Þ




 



Ws

q,L 0,1½ �
, 0 < T <∞,

where the q-partial differential operator Dq,tuðt, xÞ with
respect to t has the following form:

Dq,tu t, xð Þ = u t, xð Þ − u qt, xð Þ
1 − qð Þt :

Notation: the symbol M≾K means that there exists γ > 0
such that M ≤ γK, where γ is a constant.

3. The q-Heat Equation

We start with a study of the following Cauchy problem:

Dq,tu t, xð Þ +Lu t, xð Þ = f t, xð Þ, x ∈ 0, 1½ �, t > 0, ð14Þ

with the initial condition

u 0, xð Þ = φ xð Þ, x ∈ 0, 1½ �: ð15Þ

We say a generalised solution of the problem (14)-(15) is
a function uðt, xÞ such that they satisfy equation (14) and
condition (15).

Theorem 1. We assume that 0 < T <∞. Let φ ∈W2
q,L ½0, 1�

and f ∈ Cð½0, T� ;W2
q,L ½0, 1�Þ. Then, there exists the general-

ised solution of u to problem (14)-(15), and

u ∈ C1
q 0, T½ � ; L2q 0, 1½ �
� �

∩ C 0, T½ � ;W2
q,L 0, 1½ �

� �
: ð16Þ

Moreover, this solution can be written in the following
explicit form

u t, xð Þ = 〠
k∈ℕ

e−λktq φk + e−λktq

ðt
0
Eλkqs
q f k s, ·ð Þdqs

� �
ϕk xð Þ: ð17Þ

Proof. Existence. Since the system of eigenfunctions
fϕkg∞k=1 is a basis in L2q½0, 1� (see (11)), we seek for a function
uðt, xÞ in the form

u t, xð Þ = 〠
k∈ℕ

uk tð Þϕk xð Þ, ð18Þ

3Abstract and Applied Analysis



for each fixed 0 < t < T <∞. The coefficients will then be
given by the Fourier coefficients formula ukðtÞ = huðt, ·Þϕki.

We can similarly expand the source function,

f t, xð Þ = 〠
k∈ℕ

f k tð Þϕk xð Þ, f k tð Þ = f t, ·ð Þ, ϕkh i: ð19Þ

From (11) and (18), we have that

Lϕk xð Þ = λkϕk xð Þ, k ∈ℕ:

Hence,

Lu t, xð Þ = 〠
k∈ℕ0

uk tð Þλkϕk xð Þ, ð20Þ

and

Dq,tu t, xð Þ = 〠
k∈ℕ

Dquk tð Þϕk xð Þ: ð21Þ

Substituting (20) and (21) into the equation (14), we
find that

〠
k∈ℕ

Dquk tð Þ + λkuk tð ÞÂ Ã
ϕk xð Þ = 〠

k∈ℕ
f k tð Þϕk xð Þ: ð22Þ

But then, due to the completeness,

Dquk tð Þ + λkuk tð Þ = f k tð Þ, k ∈ℕ, ð23Þ

which are ODEs for the coefficients ukðtÞ of the series (18).

Using the integrating factor Eλkqt
q and (2) and (3), we can

rewrite the ODE as

Eλkqt
q f k tð Þ = Eλkqt

q Dquk tð Þ + Eλkqt
q λkuk tð Þ

= Eλkqt
q Dquk tð Þ +Dq Eλkt

q

h i
uk tð Þ

=Dq Eλkt
q uk tð Þ

h i
:

ð24Þ

Form (3), (5), and (24), we get that

ðt
0
Dq Eλkt

q uk tð Þ
h i

dqs =
ðt
0
Eλkqs
q f k tð Þf k sð Þdqs,

so that

Eλkt
q uk tð Þ = uk 0ð Þ +

ðt
0
Eλkqt
q f k sð Þdqs,

which, in its turn, implies that

uk tð Þ = uk 0ð Þ
Eλkt
q

+ 1

Eλkt
q

ðt
0
Eλkqs
q f k sð Þdqs,

and we conclude that

uk tð Þ = e−λktq uk 0ð Þ + e−λktq

ðt
0
Eλkqs
q f k sð Þdqs:

But the initial conditions (16) and (22) imply that
ukð0Þ = φk. Thus,

uk tð Þ = e−λktq φk + e−λktq

ðt
0
Eλkqs
q f k s, ·ð Þdqs: ð25Þ

Therefore, the solution uðt, xÞ can be written in the
series form as

u t, xð Þ = 〠
k∈ℕ

e−λktq φk + e−λktq

ðt
0
Eλkqs
q f k s, ·ð Þdqs

� �
ϕk xð Þ,

so, also (17) is proved.
Convergence. From (1), (4), and (5), we have that

e−xq = 1
− 1 − qð Þx ; qð Þ∞

≤
1

1 + 1 − qð Þx ≤ 1, Eqx
q ≤ Ex

q,

for x ∈ ½0, 1�. Hence, using for 0 < t < T <∞, (5), (23), and
(25), we get that

uk tð Þj j ≤
25ð Þ

e−λktq φkj j +
ðt
0

Eλkqs
q

eλktq

f k sð Þj jdqs ≤ φ, ϕkh ij j

+
ðt
0

f s, ·ð Þ, ϕkh ij jdqs ≤ φ, ϕkh ij j
+ T max

0≤s≤T
f s, ·ð Þ, ϕkh ij j ≤max 1, Tf g

Á φ, ϕkh ij j + max
0≤s≤T

f s, ·ð Þ, ϕkh ij j
h i

≾ φ, ϕkh ij j
+ max

0≤s≤T
f s, ·ð Þ, ϕkh ij j,

ð26Þ

and

Dquk tð Þ�� �� ≤
23ð Þ

λk uk tð Þj j + f k tð Þj j ≾
26ð Þ

λkφ, ϕkh ij j
+ λk f k t, ·ð Þ, ϕkh ij j + λ−1k λk f k t, ·ð Þ, ϕkh ij j ≤ λkφ, ϕkh ij j
+ 1 + λ0ð Þ λk f k t, ·ð Þ, ϕkh ij j≾ Lφ, ϕkh ij j
+ max

0≤t≤T
L f k t, ·ð Þ, ϕkh ij j:

ð27Þ

Hence,

Lu t, ·ð Þj j = λkuk tð Þ, ϕkh ij j ≾
26ð Þ

λkφ, ϕkh ij j
+ max

0≤s≤T
λk f s, ·ð Þ, ϕkh ij j = Lφ, ϕkh ij j

+ max
0≤s≤T

L f s, ·ð Þ, ϕkh ij j:
ð28Þ

Since φ ∈W2
q,L , f ∈ Cð½0, 1� ;W2

q,LÞ, and, hence, by using
the Plancherel identity and (27) and (28), we can conclude
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that

u t, ·ð Þk k2L2q 0,1½ � = 〠
k∈ℕ

uk tð Þj j2 ≾
3:13ð Þ

〠
k∈ℕ

φ, ϕkh ij j2 + max
0≤s≤T

〠
k∈ℕ

f s, ·ð Þ, ϕkh ij j2

= φk k2W2
q,L 0,1½ � + fk k2C 0,T½ �;W2

q,L 0,1½ �ð Þ <∞,

and

Dqu t, ·ð Þ

 

2
L2q 0,1½ � = 〠

k∈ℕ
Dquk t, ·ð Þ�� ��2 ≾

27ð Þ
〠
k∈ℕ

Lφ, ϕkh ij j2

+ max
0≤s≤T

〠
k∈ℕ

L f s, ·ð Þ, ϕkh ij j2

= φk k2W2
q,L 0,1½ � + fk k2C 0,T½ �;W2

q,L 0,1½ �ð Þ
<∞,

and

Lu t, ·ð Þk k2L2q 0,1½ � ≾
28ð Þ

φk k2W2
q,L 0,1½ � + fk k2C 0,T½ �;W2

q,L 0,1½ �ð Þ <∞,

which mean that u ∈ C1
qð½0, T� ; L2q½0, 1�Þ ∩ Cð½0, T� ;W2

q,L
½0, 1�Þ.

Uniqueness. It only remains to prove the uniqueness of
the solution. We assume the opposite; namely, that there exist
functions uðt, xÞ and vðt, xÞ, which are two different solutions
of problem (14)-(15). Let 0 < t < T <∞. Then, we have that

Dq,tu t, xð Þ +Lu t, xð Þ = f t, xð Þ, 0 < x < 1,
u 0, xð Þ = φ xð Þ, 0 ≤ x ≤ 1,

(

Dq,tv t, xð Þ +Lv t, xð Þ = f t, xð Þ, 0 < x < 1,
v 0, xð Þ = φ xð Þ, 0 ≤ x ≤ 1:

(

We define Wðt, xÞ = uðt, xÞ − vðt, xÞ. Then, the function
Wðt, xÞ is a solution of the following problem

Dq,tw t, xð Þ +Lw t, xð Þ = 0, 0 < x < 1,
w 0, xð Þ = 0, 0 ≤ x ≤ 1:

(

From (18), it follows that Wðt, xÞ ≡ 0, that is, uðx, tÞ ≡
vðx, tÞ, and this contradiction to our assumption proves the
uniqueness of the solution. The proof is complete.

4. The q-Wave Equation

In this section, we will seek for a generalised function uðt, xÞ,
which satisfies the following q-wave equation

D2
q,tu t, xð Þ +Lu t, xð Þ = f t, xð Þ, 0 < x < 1, ð29Þ

for 0 < t < T <∞ with the initial conditions

u 0, xð Þ = ψ xð Þ,Dq,tu 0, xð Þ = η xð Þ, 0 < x ≤ 1: ð30Þ

Theorem 2.We assume that 0 < T <∞. Let ψ, η ∈W2
q,L ½0, 1�

and f ∈ C1
qð½0, T� ;W2

q,L ½0, 1�Þ. Then, there exists the general-
ised solution of problem (29)-(30):

u ∈ C2
q 0, 1½ � ; L2q 0, T½ �
� �

∩ C 0, T½ � ;W2
q,L 0, 1½ �

� �
:

Moreover, this solution can be written in the following
explicit form:

u t, xð Þ = 〠
k∈ℕ0

ψke2,1 −λkt
2 ; q

À Á
+ tηke2,2 λkt

2 ; q
À Á�

−
1
λk

f k 0ð Þe2,1 −λkt
2 ; q

À Á
−

1
λk

ðt
0
e2,1

Á λk t − q3s
À Á2

q
; q

� �
Dq,s f k sð Þdqs

�
ϕk,

ð31Þ

where the q-Mittag-Leffler function eα,βðλkðt − q2sÞαq ; qÞ is
given by (see [25] and [26], Section 7):

eα,β λk t − qsð Þαq ; q
� �

= 〠
∞

m=0

λmk t − qsð Þmα
q

Γq mα + βð Þ , ð32Þ

for α, β ∈ℝ and 0 < s ≤ t <∞, where the gamma function
ΓqðxÞ is defined by

Γq xð Þ =
q, qð Þ∞q
qx, qð Þ∞q

1 − qð Þ1−x, Γq n + 1ð Þ = n½ �q!, n ∈ℕ: ð33Þ

Proof. Existence. By repeating the arguments in the proof
of Theorem 1., we have the Cauchy type problem:

D2
quk tð Þ + λkuk tð Þ = f k tð Þ, k ∈ℕ0, ð34Þ

with the initial conditions

uk 0ð Þ = ψk,Dquk 0ð Þ = ηk, k ∈ℕ0, ð35Þ

where f kðtÞ = h f ðt, ·Þϕki, ψk = hψð·Þϕki and ηk = hηð·Þϕki.
Then, the solution to this Cauchy type in problem

(29)-(30) is given (see [25], Example 6)

uk tð Þ = ψke2,1 −λkt
2 ; q

À Á
+ tηke2,2 −λkt

2 ; q
À Á

+
ðt
0
t − qsð Þe2,2 −λk t − q2s

À Á2
q
; q

� �
f k sð Þdqs:

ð36Þ
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By using (2) and we find that

Dq,s e2,1 −λk t − q2s
À Á2

q
; q

� �h i
= −〠

k∈ℕ

−λkð Þm
Γq 2m + 1ð Þ 2m½ �q t − q3s

À Á2m−1
q

= λk t − qsð Þ〠
k∈ℕ

−λkð Þm−1

Γq 2mð Þ t − q2s
À Á2m−2

q

= λk t − qsð Þe2,2 λk t − q2s
À Á2

q
; q

� �
:

ð37Þ

By applying (8) and using (36) and (37), we get that

uk tð Þ = ψke2,1 −λkt
2 ; q

À Á
+ tηke2,2 −λkt

2 ; q
À Á

+ 1
λk

ðt
0
Dq,s e2,1 −λk t − q2s

À Á2
q
; q

� �h i
f k sð Þdqs

= ψke2,1 −λkt
2 ; q

À Á
+ tηke2,2 −λkt

2 ; q
À Á

+ 1
λk

f k tð Þe2,1 −λk t − q2
À Á2

q
; q

� �
−

1
λk

f k 0ð Þe2,1 −λkt
2 ; q

À Á
−

1
λk

ðt
0
e2,1 −λk t − q3s

À Á2
q
; q

� �
Dq,s f k sð Þdqs:

ð38Þ

Since e2,1ð−λkt2ðq2 ; qÞ2Þ ≡ 0 (see [21], Theorem 7.12]),
by using (18) and (38), it follows that solution exists and
can be written as

u t, xð Þ = 〠
k∈ℕ

ψke2,1 −λkt
2 ; q

À Á
+ tηke2,2 λkt

2 ; q
À Á�

−
1
λk

f k 0ð Þe2,1 −λkt
2 ; q

À Á
−

1
λk

ðt
0
e2,1

Á −λk t − q3s
À Á2

q
; q

� �
Dq,s f k sð Þdqs

�
ϕk,

i.e., on the explicit form (34).
Convergence. Firstly, using the results in [27], Lemma 6

and in [17], Lemma 1 for the q-trigonometric functions in
(6), we see that e2,2ð−λkt2 ; qÞ and e2,1ð−λkt2 ; qÞ are also
bounded with t > 0. Then, forms (4), (12), and (32) follow
that

e2,2 −λkt
2 ; q

À Á�� �� = 〠
∞

m=0

−λkð Þmt2m
2m + 1½ �q!

�����
�����

≤ 〠
∞

m=0

λmk T
2m

2m + 1½ �q!

=
sin

ffiffiffiffiffi
λk

p
T ; q2

� �
2T

ffiffiffiffiffi
λk

p
≤

C1,q

2T
ffiffiffiffiffi
λk

p ,

ð39Þ

and

e2,1 −λkt
2 ; q

À Á�� �� = 〠
∞

m=0

−1ð Þm T
ffiffiffiffiffi
λk

p� �2m

2m½ �q!

�������
�������

≤ cos
ffiffiffiffiffi
λk

p
T ; q2

� �
≤ C2,q,

ð40Þ

where C1,q, C2,q are any constant which only depends on q.
Next, by using (38), (39), and (40), we obtain that

uk tð Þj j ≾
40ð Þ

ψ, ϕkh ij j + η, ϕkh ij j + f 0, ·ð Þ, ϕkh ij j
λk

+ 1
λk

ðt
0

Dqf s, ·ð Þ, ϕk

 ��� ��dqs ≤ ψ, ϕkh ij j + η, ϕkh ij j

+ f 0, ·ð Þ, ϕkh ij j
λk

+ T
λk

max
0≤s≤T

Dqf s, ·ð Þ, ϕk

 ��� �� ≤ Cλ0

Á ψ, ϕkh ij j + η, ϕkh ij j + 〠
1

m=0
max
0≤t≤T

Dm
q f t, ·ð Þ, ϕk

D E��� ���
" #

,

ð41Þ

where Cλ0
≔max f1, ð1/λ0Þ, ðT/λ0Þg.

Therefore, by using (7), (8), (30), (34), (33), and (41), we
have that

Dquk tð Þ�� �� = −Dquk 0ð Þ +
ðt
0
D2
quk sð Þdqs

����
���� ≤

30ð Þ 34ð Þ
η, ϕkh ij j

+
ðt
0

f s, ·ð Þ, ϕkh ij jdqs

+ λk

ðt
0
uk sð Þj jdqs ≾

41ð Þ 1
λk

λkη, ϕkh ij j

+ T
λk

max
0≤s≤T

λk f s, ·ð Þ, ϕkh ij j + TCλ0

Á λkψ, ϕkh ij j + λkη, ϕkh ij j + 〠
1

m=0
max
0≤t≤T

λkD
m
q f t, ·ð Þ, ϕk

D E��� ���
" #

≾ Lψ, ϕkh ij j + Lη, ϕkh ij j + 〠
1

m=0
max
0≤t≤T

LDm
q f t, ·ð Þ, ϕk

D E��� ���,
ð42Þ

and

D2
auk tð Þ�� �� ≾

34ð Þ
λk uk tð Þj j + f k tð Þj j ≾

41ð Þ
λkψ, ϕkh ij j + λkη, ϕkh ij j

+ 〠
1

m=0
max
0≤t≤T

λkD
m
q f t, ·ð Þ, ϕk

D E��� ��� = Lψ, ϕkh ij j + Lη, ϕkh ij j

+ 〠
1

m=0
max
0≤t≤T

LDm
q f t, ·ð Þ, ϕk

D E��� ���:
ð43Þ
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Thus,

u tð Þk k2L2q 0,1½ � = 〠
k∈ℕ

uk tð Þj j2 ≾
41ð Þ

〠
k∈ℕ

ψ, ϕkh ij j2 + 〠
k∈ℕ

η, ϕkh ij j2

+ 〠
1

m=0
max
0≤t≤T

〠
k∈ℕ

Dm
q f t, ·ð Þ, ϕk

D E��� ���2
= ηk k2W2

q,L 0,1½ � + ψk k2W2
q,L 0,1½ �

+ fk k2C1
q 0,T½ �;W2

q,L 0,1½ �ð Þ <∞,

Dqu tð Þ

 

2
L2q 0,1½ � = 〠

k∈ℕ
Dquk tð Þ�� ��2≾〠

k∈ℕ
Lψ, ϕkh ij j2

+ 〠
k∈ℕ

Lη, ϕkh ij j2

+ 〠
1

m=0
max
0≤t≤T

〠
k∈ℕ

LDm
q f t, ·ð Þ, ϕk

D E�����
�����
2

≤ ηk k2W2
q,L 0,1½ � + ψk k2W2

q,L 0,1½ �

+ fk k2C1
q 0,T½ �;W2

q,L 0,1½ �ð Þ <∞,

and

D2
qu tð Þ




 


2
L2q 0,1½ �

= 〠
k∈ℕ

D2
quk tð Þ

��� ���2≾ ηk k2W2
q,L 0,1½ �

+ ψk k2W2
q,L 0,1½ � + fk k2C1

q 0,T½ �;W2
q,L 0,1½ �ð Þ <∞,

and

Lu tð Þk k2H =〠
k∈I

Lu tð Þ, ϕkh iH
�� ��2

=〠
k∈I

λk uk tð Þj j½ �2≾ ηk k2W2
q,L 0,1½ �

+ ψk k2W2
q,L 0,1½ �

+ fk k2C1
q 0,T½ �;W2

q,L 0,1½ �ð Þ,

which is means that u ∈ C2
qð½0, 1� ; L2q½0, T�Þ ∩ Cqð½0, T� ;

W2
q,L ½0, 1�Þ.
Uniqueness. This part can be proved completely similar as

the proof of Theorem 1.. So we omit the details.
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