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Abstract: Crop monitoring focuses on detecting and identifying numerous crops within a limited
region. A major challenge arises from the fact that the target crops are typically smaller in size
compared to the image resolution, as seen in the case of rice plants. For instance, a rice plant may
only span a few dozen pixels in an aerial image that comprises thousands to millions of pixels. This
size discrepancy hinders the performance of standard detection methods. To overcome this challenge,
our proposed solution includes a testing time grid cropping method to reduce the scale gap between
rice plants and aerial images, a multi-scale prediction method for improved detection using cropped
images based on varying scales, and a mean-NMS to prevent the potential exclusion of promising
detected objects during the NMS stage. Furthermore, we introduce an efficient object detector,
the Enhanced CSL-YOLO, to expedite the detection process. In a comparative analysis with two
advanced models based on the public test set of the AI CUP 2021, our method demonstrated superior
performance, achieving notable 4.6% and 2.2% increases in F1 score, showcasing impressive results.

Keywords: rice plant detection; lightweight one-stage detector; testing time augmentation

1. Introduction

In recent years, with the rapid advancements in deep learning, convolutional neural
networks (CNNs) have seen extensive applications across various domains. Tools based on
CNNs have been widely utilized in tasks such as license plate recognition, road detection,
and people counting. In addition to industrial applications, some studies have highlighted
the tremendous potential of CNNs in the agricultural sector. For instance, noteworthy
achievements have been made in fruit detection using Faster-RCNN, as demonstrated
by projects like the studies [1,2]. Another study [3] went further by integrating CNN
detection results with optical flow and employing ta Kalman filter for crop counting in
fields. Addressing the challenge of distinguishing between crops and weeds in mixed
scenarios, the study [4] utilized an ensemble of small CNNs. Furthermore, the study [5]
applied CNNs to classify various types of plants or crops. Despite these successes, the
application of CNN techniques in agriculture faces certain constraints. For instance, the
aerial images captured during the AI Cup 2021 reveal various specific challenges. The
high shooting altitude of aerial shots leads to small and densely packed target crops.
Moreover, differences in shooting seasons and lighting conditions introduce variations
in exposure levels, weed density, plant growth height, and other factors within the aerial
images. These fluctuations pose challenges in developing standardized CNN models for
crop monitoring or detection. Consequently, there is a pressing need for additional research
and refinement of CNN-based approaches to effectively address the intricate and dynamic
nature of agricultural environments.
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The small size of rice plants in aerial images also presents a significant challenge,
as conventional object detectors struggle to efficiently identify microscopic objects, due
to factors such as the receptive field and downsampling ratio. To address this issue, we
propose testing time grid cropping (TTGC) to reduce the substantial gap in scale between
rice plants and aerial images. Additionally, our proposed multi-scale prediction (MSP) si-
multaneously predicts bounding boxes at four different scales, to capture the characteristics
of rice plants of varying sizes. However, after applying MSP, many bounding boxes were
removed by non-maximum suppression (NMS), resulting in significant information loss.
To mitigate this, the proposed Mean-NMS calculates the weighted average center point of
the bounding boxes. Finally, the proposed multi score-filter (MSF) adapts post-processing
hyperparameters, such as confidence threshold and IoU threshold, for outputs at different
scales. During testing, these proposed augmentations enhanced the detector’s performance
in capturing small crops. Figure 1 provides two visual demo images generated by the
proposed method from the AI CUP 2021 test dataset.

3000 x 2000 2304 x 1728

Figure 1. These two figures present the results obtained by the proposed method on the AI CUP
2021 dataset, which comprises an abundance of rice plants. In the left figure, densely packed green
vegetation constitutes individual rice plants and weeds. Due to variations in both the time and
location of the captures, the rice in the right figure appears more blurred, being smaller and with
increased overexposure, particularly in the central region of the figure. The green dots represent
the final predicted coordinates of the rice plant’s positions, and regardless of the image type, the
proposed method in this paper exhibited excellent performance.

In our experiments, we employed two baseline methods based on segmentation
that directly utilize the coordinates of rice plants, namely U-Net [6] and CSRNet [7].
These methods achieved F1 scores of 82.0% and 89.6%, respectively, on the AI Cup 2021
dataset. The proposed Enhanced CSL-YOLO, incorporating semi-supervised bounding
boxes, outperformed U-Net with an F1 score of 86.2%. Moreover, when integrating a series
of proposed testing time augmentations, the performance rose to an impressive 94.2%. The
contributions of this work are summarized as follows:

¢ Weenlarged the scale of CSL-YOLO and incorporated random affine operations during
training, empowering Enhanced CSL-YOLO to effectively adapt to dynamic changes
in agricultural landscapes.

¢  Confronted with high-resolution aerial images and rice plants exhibiting a substantial
size disparity, we introduced a tailored grid cropping method, namely testing time
grid cropping (TTGC), which significantly elevated the performance of the detector
during the testing phase.

* Beyond TTGC, we integrated additional data augmentation techniques, including
multi-scale prediction (MSP), mean-NMS, and multi score-filter (MSF), during the
testing phase. These enhancements further bolstered the capability of enhanced
CSL-YOLO to detect densely packed small rice plants.
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2. Related Work
2.1. Machine Learning in Agricultural Applications

In the existing literature, there are various approaches for the application of machine
learning to the field of agriculture. For instance, methods based on random forests and
Markov random fields have been employed for plant classification in studies such as [8-10].
In recent years, a shift towards deep learning methodologies has become evident, as exem-
plified by [1], who pioneered the use of convolutional neural networks (CNN) for plant
segmentation, achieving remarkable results. Building upon this, the study in [11] utilized
semantic segmentation for plant counting, while the work in [3] proposed an end-to-end
model to streamline the counting process. In the pursuit of efficiency, the study in [4] intro-
duced a lightweight CNN architecture to expedite weed recognition tasks, and the study
in [5] extended CNN applications to a broader spectrum of plant identification. Using NIR
image along with a CNN, the authors of [12] achieved more accurate identification of target
crops and weeds. Furthermore, the study in [2] employed the faster R-CNN framework [13]
in a detection-based approach, demonstrating impressive results in precisely localizing
fruits. These advancements highlight the evolution in agricultural applications, showcasing
a discernible shift from conventional machine learning approaches towards more sophisti-
cated deep learning techniques. In this paper, we focus on recognizing rice plants in aerial
images, employing the advanced lightweight CSL-YOLO [14] for plant detection.

2.2. Two-Stage Object Detection

The traditional object detector in deep learning consists of two stages. The first stage
involves generating regions of interest (ROIs), and the second stage is inputting these
ROIs into a CNN model to extract and classify high-semantic features. This two-stage
approach typically yields higher accuracy. However, due to the time-consuming nature of
ROI generation and the difficulty in accelerating this process, the overall model runtime is
considerably slower than the one-stage method. A RCNN [15] utilizes the selective search
algorithm to replace the grid-based method for collecting ROIs, significantly enhancing
the speed of the first stage. The faster-RCNN [16] introduces the ROI pooling mechanism,
building upon RCNNSs. This mechanism eliminates the need for individually passing ROIs
generated in the first stage through the CNN backbone. Instead, corresponding features
are cropped based on ROIs from a fixed feature map, leading to a substantial increase in
the speed of the second stage. The faster-RCNN [13] employs an additional CNN model,
referred to as region proposal network (RPN), to replace the selective search algorithm
for ROI extraction. This architecture ensures that both stages are composed of CNN
models, facilitating GPU parallelization acceleration. Consequently, faster-RCNN can be
considered the first high frames per second (FPS) model implemented on advanced GPUs.
Various subsequent models have emerged from faster-RCNN, including mask-RCNN [17],
which introduced a prediction branch for instance segmentation, and ThunderNet [18],
a lightweight two-stage model. In summary, two-stage models typically represent more
complex systems, with slower speeds but higher accuracy.

2.3. One-Stage Object Detection

A one-stage object detector removes the stage of generating ROIs and employs a single
convolutional neural network (CNN) model to extract features from the input image, yield-
ing multiple object predictions. YOLO [19-22] utilizes a fully CNN backbone, DarkNet,
to output a feature map and directly predicts bounding box positions and classifications
through a fully connected layer. While this intuitive method achieves high speeds, this
comes at the cost of sacrificed accuracy. YOLO inspired SSD [23], which introduced multi-
scale prediction and incorporated the anchor mechanism used by region proposal network
(RPN), in addition to employing different label assignment methods. These methods enable
SSD to maintain a high speed like YOLO, while significantly enhancing accuracy. Follow-
ing in the footsteps of SSD, YOLOv2 [20] introduced anchors to YOLO and employed
additional techniques to achieve improved accuracy compared to SSD. RetinaNet [24], an
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extended version based on SSD, identified an issue with one-stage models having too many
negative samples due to the absence of an ROI generation stage. This abundance of nega-
tive samples hindered loss convergence to the optimal state, prompting the introduction
of focal loss. Designed to address this problem, focal loss was coupled with the novel
addition of a feature pyramid network (FPN) [25] to SSD [23] for accuracy enhancement.
YOLOv3 [21] further integrated a FPN and other techniques to achieve results approaching
those of RetinaNet [24]. Subsequently, YOLOv4 [22] added many tricks on top of YOLOV3,
to improve accuracy. Additionally, CSL-YOLO [14] emerged as a lightweight and advanced
YOLO model. It introduced a lightweight convolution method named CSL-Module as a
fundamental component, along with a lightweight backbone and FPN. Specific techniques
tailored to CSL-YOLO's specialized structure were proposed, ultimately improving accu-
racy. Comparative results on MS-COCO [26] indicated that CSL-YOLO is an advanced
lightweight model in the YOLO series, especially compared to the similarly advanced
Tiny-YOLOv4. CSL-YOLO achieved a higher detection accuracy, with a smaller footprint
and faster processing speed.

CSL-YOLO integrated a myriad of concepts. Their CSL-M incorporates the divide-
and-conquer principles from GhostNet [27] and CSPNet [28]. It splits the feature map
along the channel axis, with one portion undergoing computationally intensive operations
and the other undergoing more cost-effective operations. The bidirectional feature fusion
approach in CSL-FPN matches the popular methodologies found in [29-31]. Furthermore,
according to references [32,33], global features play a crucial role in the effectiveness of
CNNs. CSL-FPN addresses this by employing fusion blocks stacked R times, enhancing
the model’s ability to capture global features.

3. Proposed Approaches

This chapter presents our proposed methods, encompassing the preprocessing of the
training data, which involved systematically processing the original aerial photographs of rice
fields. We also delve into the details of the enhanced CSL-YOLO, a robust and lightweight
detector meticulously crafted for precise and efficient detection of rice plants. Additionally, we
introduce various testing time augmentations strategically designed to address the challenges
posed by the small size of rice plants in aerial images. The efficacy of these methods was
substantiated through dedicated experiments detailed in a subsequent chapter.

3.1. Training Data Preprocessing

The aerial images from the AI CUP 2021 come in two resolutions: 3000 x 2000 and
2304 x 1728. Each image contains hundreds of rice plants, with experts marking the x
and y coordinates of the roots. This entails two challenges. First, the input images are too
large, leading to floating point operations (FLOPs), with the parameters required for the
model being prohibitively large for most computers. To address this issue, we propose
random cropping, dividing the original images into smaller sub-images to keep the model’s
resource demands within an acceptable range during the inference of a single image. The
second challenge is using an object detection model to determine the bounding box of rice
plants. However, the original label set only includes center point coordinates without the
width and height of rice plants, and relying on manual labeling for the bounding boxes of
hundreds of small-sized rice plants in a single image is impractical and may compromise
quality. To overcome this issue, we introduce the semi-supervised labeling binding box, a
method to rapidly label bounding boxes for all rice plants in a semi-supervised manner
based on marked x and y coordinates, facilitating the training of the detector.

3.1.1. Random Cropping

To address the computational challenges posed by the excessively high resolution in
the original images, an intuitive approach would be to directly resize the images to a more
manageable resolution. However, considering the diminutive size of a single rice plant in
the aerial image, a simple reduction in image size would cause the rice plant’s features to
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nearly disappear, making them difficult to detect. To tackle this issue, we crop the aerial
images into several sub-images, instead of resizing them. During the training stage, we
randomly select the starting (x, y) coordinates in the image and crop a region ranging from
256 to 768, creating a sub-image of the original. After repeated random cropping, a set of
sub-images is formed, which are then resized to the model’s input size (e.g., 224 x 224,
416 x 416, ...) following data augmentation during training. Simultaneously, the (x, y)
coordinates of the rice plant roots in these sub-images are synchronously updated to new
coordinates. Consequently, each sub-image and contained rice plant becomes independent
training data, eventually fed into the CSL-YOLO for training. However, random cropping
cannot be used during the testing stage, as this may lead to disregarding certain areas
containing rice plants.Fixed grids are employed instead of random cropping, to ensure the
accurate representation of each rice plant in the sub-images. This method will be further
elaborated in the subsequent sections.

3.1.2. Semi-Supervised Labeling Bounding Box

The original AI CUP 2021 dataset included annotations for the root coordinates of
each rice plant in aerial images. However, annotating the bounding boxes of the rice
plants is essential to train an object detection model. Given the immense number of rice
plants in the aerial images, manually labeling all instances would be a time-consuming
task, demanding significant human resources. Previous studies [34-36] have introduced
semi-supervised training methods based on neighborhood relationships between features,
showcasing remarkable achievements. Inspired by this, we propose a simple and intuitive
semi-supervised annotation method. In this approach, we initially manually label a few
bounding boxes for randomly chosen rice plants in an aerial image. Subsequently, we
utilize the maximum and minimum height and width values from these manually labeled
bounding boxes as upper and lower bounds. Random values within these bounds are then
assigned to the remaining unlabeled rice plants. Figure 2 shows the visual demo, and the
entire method can be succinctly expressed through the following formula:

D = {dy,dy,...,dn}, (1)

The set D encompasses the (x, y) coordinates labeled in the AI CUP 2021 dataset, while the
variable d refers to all the data within D, amounting to a total of  entries.

M = {mg,my,...,m},k<n, )

First, we randomly select k samples from the dataset D and use manual labeling to create
the set M. The value of k is intentionally kept small, typically ranging between 10 and 20 in
practical scenarios.

bi = [d;c/ diy' rand( %in' M%ax) )r rand(Mhmin' Mﬁzux))]/ (3)

B ={bo,b1,...,bi,..., by}

Ultimately, we leverage the artificially labeled set M to create semi-supervised bounding
boxes. Specifically, we calculate the maximum and minimum widths based on the artifi-
cially labeled data. Subsequently, these two values serve as upper and lower bounds for
randomly generating the width and height of bounding boxes for D \ M. This process is
applied identically to both width and height. Consequently, for an original sample d;, its

corresponding bounding box b; is defined as [47, diy, rand(M¥%. M%), rand(Mﬁﬂ-n, Mt )]

i min’

The ultimate collection set, denoted as B, constitutes the dataset for training CSL-YOLO.
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Figure 2. These two figures illustrate how the proposed semi-supervised labeling bounding box

operates. In the left figure, several bounding boxes are manually selected and labeled. The right
figure depicts the bounding boxes generated randomly based on the original root coordinates and
the bounding boxes manually labeled a moment previously.

3.1.3. Random Affine Operations for Training

After subjecting the original images to random cropping and semi-supervised label-
ing of bounding boxes, they are transformed into a set of sub-images. These sub-images
constitute the training data for our object detection model. In order to enhance the robust-
ness of the detector, diverse affine operations are incorporated during the training stage.
Rotation, padding, flipping, mix-up, and other operations are randomly applied to each
sub-image. The entire process is executed online, and each iteration involves new random
affine operations. An affined image is depicted in Figure 3.

Figure 3. These two images are training samples that have undergone random affine operations. The
process begins with random cropping based on scale, followed by random rotation and padding with
random offsets. Finally, the images are combined using mixup [37], where two different images are
multiplied by their respective opacities, before synthesis.

3.2. Enhancing CSL-YOLO for Accurate Detection

We utilized random cropping to decrease the dimensions of the original images.
Furthermore, we adopt a semi-supervised methodology to generate bounding boxes based
on the root coordinates of the rice plants. As a result, our developed object detection
model is specialized for identifying rice plants. This model is an adaptation of CSL-YOLO,
which prioritizes lightweight design and has demonstrated remarkable performance on MS-
COCO in previous experiments. To better suit the requirements of rice plant detection, we
made specific modifications to different components of the model, which will be elaborated
on in the following sections. The overall architecture of the enhanced CSL-YOLO is shown
in Figure 4.
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Figure 4. This diagram presents the enhanced architecture of CSL-YOLO, an extension of the original
CSL-YOLO framework. CSL-YOLO originally comprised a CSL-Bone as the CNN backbone, CSL-
FPN as the neck for multi-scale fusion, and YOLO as the detection head. We upgraded the backbone
to the more robust EfficientNet-B1. In the original CSL-YOLO, the feature maps extracted from
the backbone underwent a conv-1x1 operation with 112 filters; we increased this to 128 filters.
Additionally, we augmented the number of fusion blocks in CSL-FPN from 3 to 4 (R = 4). Finally,
all feature maps are passed through the YOLO head to obtain the prediction bounding boxes.All
modifications are highlighted in red within the diagram.

3.2.1. Bigger Backbone

The original CSL-YOLO employed CSL-Bone as the backbone. CSL-Bone is an ex-
tremely lightweight backbone, compared to the VGG or ResNet, but it exhibited limitations
in capturing image features effectively in experiments [14] on CIFAR-10. In light of this,
we conducted a reassessment of the detection accuracy and FLOPs. Considering that
speed is not the primary concern in our research, we decided to substitute CSL-Bone with
another lightweight backbone, EfficientNet-B1 [38], which offers slightly higher FLOPs but
boasts superior accuracy. This choice was made to ensure that the model possesses a more
substantial capability to capture the distinctive characteristics of the image.

3.2.2. Bigger FPN

CSL-FPN is an extension component introduced in CSL-YOLO that employs a unique
cross-layer fusion technique, which achieves more efficient scale feature fusion with fewer
convolutional layers. This method relies on two crucial parameters: Filters and R. Filters
determine the final number of channels in the output layer for each scale in CSL-FPN.
The default is set at 112, and we increased this to 128 through increasing minor FLOPs
to bolster the feature expression capability of CSL-FPN. The parameter R is also used by
CSL-YOLO [14] to signify the total number of fusion blocks in CSL-FPN. Their experiments
on MS-COCO revealed that increasing R results in a slower speed but improved detection
accuracy. Thus, they set R to 3, for a trade-off between FLOPs and mAP. In pursuit of more
robust performance, we slightly elevated R to 4, to stack four fusion blocks in CSL-FPN;
whereby, the detection performance was concurrently heightened with a small increase
in FLOPs.

3.2.3. Fully Soft-NMS

The original CSL-YOLO incorporated a variant of the non-maximum suppression
(NMS) technique to address overlapping prediction bounding boxes, combining elements
from Soft-NMS [39] and traditional NMS. A threshold value, denoted as t, is introduced.
In cases where two bounding boxes exhibit overlap, if the intersection over union (IoU)
surpasses the threshold, the box with the lower confidence score is directly eliminated—a
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scenario analogous to standard NMS. Conversely, if the IoU is less than or equal to the
threshold, the confidence score of the lower-scoring box is further attenuated, akin to
Soft-NMS. Given the utilization of the multi-scale prediction strategy during the testing
time augmentation (TTA) phase, which implements our proposed Mean-NMS, we aimed
to minimize the bounding box loss at this stage. This approach ensures the preservation of
more boundaries during TTA. Consequently, we set the threshold ¢ to 1, making this hybrid
NMS equivalent to Soft-NMS.

3.3. Testing Time Augmentation (TTA)

In addition to enhancing CSL-YOLO to improve its ability to detect rice plants, a series
of data augmentations during the testing time were essential, and we call them testing
time augmentations (TTA). First, we introduced testing time grid cropping (TTGC), to
address the issue of random cropping, which can lead to missing rice plants on the margins.
Subsequently, multi-scale prediction (MSP) was incorporated to enhance the detector’s
adaptability for four small to large scales of input images. Furthermore, we proposed a
weighted non-maximum suppression method called Mean-NMS to tackle the zero-sum
problem associated with traditional NMS. Finally, the proposed multi score-filter (MSF) can
fine-tune multiple sets of post-processing parameters for different input scales to maximize
the performance of Enhanced CSL-YOLO. The proposed inference procedure consists of
Enhanced CSL-YOLO, and the testing time augmentations (TTA) are shown in Figure 5.
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Figure 5. The depicted flowchart illustrates the step-by-step operation of the proposed methods,
moving from left to right. Upon inputting an original aerial image, the initial step involves the
application of multi-scale prediction (MSP) to perform testing time grid cropping (TTGC) at four
distinct scales. Subsequently, all sub-images are resized to 416 x 416 and utilized as input for
Enhanced CSL-YOLO to make predictions. Following prediction, the multi score-filter (MSF) is
employed to allocate independent hyperparameters for each input size, facilitating the selection
of promising bounding boxes. The final step involves using Mean-NMS to yield the predicted
coordinates of rice roots in the original aerial image.

3.3.1. Testing Time Grid Crop (TTGC)

During the training stage, we employ a random selection process for the initial (x,
y) coordinates and scale, ranging from 224 to 762, to crop original images into smaller
sub-images. In the testing stage, to mitigate the risk of missing rice plants caused by
random cropping, we utilize a fixed grid method. However, fixed grid cropping may
overlook marginal plants, necessitating the careful trimming of margins to address this
concern. The cropping process is segmented into main grids and supplementary grids,
as illustrated in Figure 6. The supplementary grids serve to complement the edges of the
main grids, ensuring that no rice plant is inadvertently cut off at the margins. In practical
implementations, we specify the grid sizes to be cut. If the image’s height and width are
not divisible, a black border is added to the edges until the image’s scale becomes divisible.
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main grids supplementary grids supplementary grids

Figure 6. This diagram illustrates how TTGC crops the image. The orange squares represent the main
grids, while the remaining blue and green squares indicate the supplementary grids used to fill in the
boundaries of the main grids.

3.3.2. Multi-Scale Prediction (MSP)

The AI CUP 2021 dataset includes images of two different resolutions. Moreover,
the aerial images vary in distance, angle, and sunlight, leading to slight differences in the
relative proportions of the rice plants in each image. To enhance the detector’s adaptability
to diverse scales of rice plant, the proposed multi-scale prediction (MSP) utilized TTGC to
divide the original aerial images, specifying four width and height dimensions, ranging
from 320, 368, 384, and 416. Subsequently, the divided images are resized to the detector’s
input scale (416 x 416) for prediction. Figure 5 shows the details of MSP, MSP enables the
detector to capture features at different scales during the prediction, thereby boosting its
performance in detecting rice plants.

3.3.3. Mean-NMS for Root Coordinate

Due to the generation of numerous overlapping bounding boxes by TTGC and MSP, it
becomes essential to apply an additional algorithm for post-processing, similar to NMS,
to filter out redundant bounding boxes. However, the bounding box with the highest
score of those generated by TTGC and MSP may not always represent the optimal choice.
Therefore, using NMS to retain only the highest score can significantly diminish the impact
of TTGC and MSP. Instead of employing NMS, Soft-NMS can be utilized to penalize the
scores of overlapping bounding boxes. Nonetheless, this approach may lead to an excess of
final redundant bounding boxes. To address this challenge, we propose a novel approach
namely Mean-NMS, which involves a voting NMS with weights. Mean-NMS establishes a
threshold value ¢ in a manner similar to NMS. If the intersection over union (IoU) of two
overlapping bounding boxes exceeds ¢, these boxes are grouped together. The scores of
the members within each group are then employed as weights to calculate the weighted
center points of the cluster. These center points represent the root coordinates of the final
predicted rice plants, as illustrated in the accompanying Figure 7. The entire process of
Mean-NMS is outlined as follows:

B = {bj,b},...,b,}, 4)

The set B’ denotes the predicted bounding boxes, where each b; represents a bounding box
predicted by the detector in an image. The range from by to b, encompasses numerous

bounding boxes that exhibit significant overlap with each other.
gi = {IoU(bi,bj) > t|Vb' € B'},0 < t <1, )
G={%0,81,---, 8} k<n,

The symbol G signifies a collection of bounding box groups clustered based on IoU (inter-
section over union), with each g; representing a group composed of bounding boxes where
the IoU exceeds a specified threshold .
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D' ={

=0 \&ij X 8ij
size(g;)|Vgi € G

}- (6)

D’ refers to the set of central coordinates representing the final predictions of the detector
for rice plants. Each d! signifies a final predicted (x, y) coordinate of a rice plant. The
computation involves taking the weighted average of bounding box centers g; ; within each
gi. In this process, the center of each bounding box is multiplied by its confidence score.
Each d! is obtained through this calculation, contributing to the formation of the set D’.

>

image with overlapping boxes weighted mean center coordinate

Figure 7. This flowchart illustrates the computation process of the proposed Mean-NMS. The left
figure displays two sets (green and red) of overlapping bounding boxes. While traditional NMS
retains only the bounding box with the highest confidence, Mean-NMS adopts a weighted average
approach to calculate the root coordinates for the AT CUP 2021 evaluation criterion.

3.3.4. Multi Score-Filter (MSF)

In the CSL-YOLO framework, as in the other YOLO-like frameworks, a set of filters
is employed to sift out frames with inadequate dimensions; those either too small or
surpassing the image boundaries. CSL-YOLO also discards predicted bounding boxes with
confidence levels below a specified threshold after the non-maximum suppression (NMS)
step, addressing overlaps. As multi-scale prediction (MSP) is used to generate outputs
at different scales for a single image, it becomes apparent that a uniform score threshold
across all scales is not optimal. To address this, we propose the multi score-filter method,
which customizes the confidence and other value thresholds based on the output scale.
Figure 5 shows this concept.

4. Experiments

In the previous sections, we introduced the proposed methods, which include the
data preprocessing, the enhanced CSL-YOLO, and various augmentations during the
testing time. In this chapter, we divide the experiment into two parts. In the first part, we
conducted ablation studies for the proposed methods, to show that these changes were
effective. In the second part, we compared the proposed model with other advanced
models, to demonstrate that our proposed model is better. The dataset used in this paper
was provided by the AI Cup 2021 competition titled “Automatic Marking and Application
of Plant Positions in Full-Color Image of Rice Drones”. The training set comprises 44 aerial
images, the public test set includes 47 aerial images, and the private test set consists of
50 aerial images. Each image was expertly annotated with the root positions of rice plants.
The metric for the dataset assessed whether the proposed methods could accurately predict
the coordinates of rice roots in the test data; the correct prediction (x, y) had to fall within a
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20-pixel range of the ground truth. The official ground truth for the public/private test sets
was not provided, as some results can only be uploaded to the official server during the
competition to obtain the F1 score.

4.1. Ablation Studies

As previously mentioned, our capacity for conducting extensive experiments was
limited due to the competition’s constraints on result uploads (allowing only five uploads
per day). To conduct a more detailed ablation analysis, we divided the existing 44 training
data into 34 sub-training data and 10 validation data. In the ensuing ablation experi-
ments, the enhanced CSL-YOLO was trained on the sub-training data and assessed on the
validation data.

4.1.1. Enhanced CSL-YOLO

We conducted an ablation study on the validation set to further assess the effective-
ness of enhanced CSL-YOLO for detecting rice plants by increasing the model’s size at
the expense of FLOPs. This study aimed to observe the detector’s performance both
before and after implementing the enhancement modifications. The enhancement of CSL-
YOLO involved three key elements. First, we replaced the backbone from CSL-Bone with
EfficientNet-B1l. Second, we elevated the filters of the feature maps extracted from the back-
bone from 112 to 128. Third, we increased the hyperparameter R, representing the number
of fusion blocks in FPN, from 3 to 4. Ablation experiments were individually performed for
each of these components. As illustrated in Table 1, the results showed a 0.3% increase in F1
after replacing the backbone, followed by an additional 0.2% improvement upon increasing
the filters. Raising R to 4 resulted in a further increase of 0.5%. Furthermore, we observed
that the detector’s performance plateaus when R was set to 5. Even with a more robust
backbone like EfficientNet-B3 and an increased filter size of 144, the performance declined.
This result showed that the performance gains achievable through enlarging the model had
reached saturation. Therefore, based on this insight, we proposed a series of testing time
augmentations. The outcomes of the ablation experiments highlighted the effectiveness
of the modifications implemented in the proposed Enhanced CSL-YOLO. Although also
increasing the FLODPs, it is essential to note that speed is not the primary goal of this paper.

Table 1. This table illustrates the changes in FLOPs and F1 score of the various components in
Enhanced CSL-YOLO before and after replacement. These components include the backbone, the
number of filters, and the number of fusion blocks—R.

Backbone Filters R MFLOPs F1(%)

CSL-Bone 112 3 1441 79.3
EfficientNet-B1 112 3 2112 79.6
EfficientNet-B1 128 3 2250 79.8
EfficientNet-B1 128 4 2434 80.3
EfficientNet-B1 128 5 2618 80.3
EfficientNet-B3 144 5 3986 80.1

4.1.2. Testing Time Augmentation (TTA)

We employed various data augmentation techniques for testing time, and the proposed
TTA consisted of TTGC, MSP, Mean-NMS, and MSF. To assess their effectiveness, we
conducted ablation experiments to evaluate the impact of each proposed augmentation
method during testing. The experimental results are presented in Table 2. First and
foremost, TTGC demonstrated the most significant performance improvement, with the F1
score showing a notable increase of 10.3%. This is attributed to the substantial scale gap
between the original aerial images and rice plants mentioned earlier, and TTGC effectively
addressed this issue in a grid cropping. Furthermore, MSP captured multi-scale rice
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features, resulting in an additional 0.8% F1 gain. When combined with Mean-NMS and
MSE, an additional 0.6% F1 gain was achieved. Collectively, the proposed TTA methods
contributed to a remarkable 12.7% F1 improvement, enabling Enhanced CSL-YOLO to
exhibit impressive performance in rice detection.

Table 2. This table shows the contribution of each testing time augmentation (TTA) technique to
the F1 score. The experiment was conducted on the validation dataset split from the AT CUP 2021
training set.

TTGC MSP Mean-NMS MSF F1(%)

- - - - 79.3
- - - 80.3
- - 90.6
- 914
80.2
92.4
- 90.6
92.8
v 93.0

SSENENE NN
SSENEEEN
NN

4.2. Compared to Other Methods

The results presented in Table 1 clearly demonstrate that minor modifications to the
original CSL-YOLO improved the detection performance for rice plants. Our proposed
testing time augmentation (ITTA) methods addressed specific challenges and contributed to
notable performance enhancements, including TTGC, MSP, Mean-NMS, and MSF. TTGC
overcame issues related to small rice proportions and potential losses due to fixed grid
cropping, while MSP handled varied lighting and scale challenges in different scenes.
Mean-NMS improved the bounding box selection, and MSF enhanced the detector perfor-
mance across various input sizes with multiple post-processing hyperparameter sets. To
further evaluate our Enhanced CSL-YOLO + TTA, we compared it with other state-of-the-
art models using the AI CUP 2021 public test set. U-Net(LOWBB) [6] and CSRNet [7] were
chosen as baseline models, relying solely on x and y coordinates as inputs with heat maps,
requiring extensive upsampling and resulting in a slower execution. We expanded the com-
parison by enhancing U-Net(LOWBB) with backbone variations from EfficientNet-BO to
EfficientNet-B7 [38] and creating an ensemble of CSRNet. The detailed comparison results
in Table 3 indicate our method outperformed the others by 4.6% and 2.2%, respectively,
highlighting the significant superiority of our proposed approach. The introduced improve-
ments in detecting central rice plant coordinates, including a more efficient detector and a
range of TTA methods, contributed significantly to our method’s enhanced performance
compared to the baseline approaches.

Table 3. This table compares the proposed Enhanced CSL-YOLO+TTA and two baseline models on
the AT CUP 2021 test set.

F1(%)
U-Net 82.0
U-Net w/ EfficientNet-B1 83.0
U-Net w/ EfficientNet-B3 85.0
U-Net w/ EfficientNet-B7 88.2
CSRNet 89.6
Ensembled CSRNet 92.0
Enhanced CSL-YOLO 86.2

Enhanced CSL-YOLO w/ TTA 94.2
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5. Conclusions

In this paper, we first discussed the detection problem of the original aerial images
of the AI Cup 2021, which are excessively high resolution. Then, we introduced a series
of preprocessing steps, wherein the original aerial images are cropped into multiple sub-
images at random positions and scales, and then the proposed semi-supervised labeling
method generates bounding boxes of sub-images. Finally, we employ several random
affine operations to augment the sub-images, such as rotation, flip, and mixup, to enhance
the robustness of the detector in dynamic agricultural environments. In addition, we
prioritized performance over speed by expanding the backbone and FPN to improve the
original CSL-YOLO; in other words, we make a trade-off by sacrificing a little speed to
enhance the detection. This trade-off significantly improved the performance of CSL-YOLO
in our ablation study. To further boost the proposed “Enhanced CSL-YOLO'’s performance,
we incorporated the TTA methods, including TTGC, MSP, Mena-NMS, and MSF”. Finally,
the proposed “Enhanced CSL-YOLO w/ TTA” outperformed two other advanced methods
(UNet, CSRNet) that rely on large-scale upsampling for segmentation in terms of F1. In
summary, we presented a detection model for detecting the center coordinates of rice
plants, and impressive results were achieved on the Al CUP 2021 dataset when adding the
proposed TTA methods. The Figure 8 provides additional visualizations of the detected
root coordinate results.

Figure 8. These images showcase rice plants identified through our proposed methodology in a
dynamic environment. Each green dot signifies the root coordinates of individual rice plants.
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