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ABSTRACT

The flat two-dimensional relative proper intrinsic metric spacetime (∅ρ′,∅cs∅t′) underlying the
flat four-dimensional relative proper metric spacetime (IE′3, cst

′), which emerges at the first
stage of evolution of metric spacetime and intrinsic metric spacetime in long-range metric force
fields, isolated in the first three parts of this paper, endures for no moment before transforming
into a curved two-dimensional relative proper intrinsic metric spacetime with pseudo-orthogonal
curvilinear intrinsic dimensions, ∅ρ′ and ∅cs∅t′, on the vertical intrinsic metric spacetime
hyperplane, on the larger spacetime and intrinsic spacetime of combined positive (or our) universe
and the negative universe. It therefore possesses intrinsic Lorentzian metric tensor at every point.
It projects an underlying flat relativistic intrinsic metric spacetime (∅ρ,∅cs∅t), which is made
manifested outwardly in a flat four-dimensional relativistic metric spacetime (IE3, cst), at the second
(and final) stage of evolution of metric spacetime and intrinsic metric spacetime in long-range metric
force fields. The conclusion that the four-dimensional metric spacetime is everywhere flat in every
long-range metric force field is reached.
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The curved ‘two-dimensional’ absolute intrinsic metric spacetime (∅ρ̂,∅ĉs∅t̂ ) with absolute
intrinsic sub-Riemannian metric tensor ∅ĝik, which evolves at the first stage is brought forward
to the second stage. The basic aspects of the theory of relativity on the flat relativistic metric
spacetime, intrinsic theory of relativity on the underlying flat relativistic intrinsic metric spacetime
and absolute intrinsic metric theory on the curved absolute intrinsic metric spacetime, associated
with the presence of a metric force field in spacetime and intrinsic metric force field in intrinsic
spacetime, are developed in terms of certain derived geometrical parameters, referred to as
relative proper static flow speed, relative proper intrinsic static flow speed and absolute intrinsic
static flow speed respectively. Particularization to the gravitational field will be a straight forward
process, while using the results of this paper as template.

Keywords: Long-range metric force fields; second stage of evolution of spacetime and intrinsic
spacetime; curved proper intrinsic metric spacetime; projective flat relativistic intrinsic
metric spacetime; outward manifestation flat relativistic metric spacetime; static flow-
speed.

1 INTRODUCTION

This fourth and last part of this paper is devoted to
the second stage of evolution of metric spacetime
and intrinsic metric spacetime in long-range
metric force fields, having concluded the first
stage in the preceding parts one, two and
three [1–3]. The absolute intrinsic Riemannian
spacetime geometry developed in the first three
parts, which supports absolute intrinsic theory
and absolute theory of metric force fields and
the extension to the geometry of relative intrinsic
metric spacetime and relative metric spacetime,
which supports the theory of intrinsic relativity
and theory of relativity in relative intrinsic metric
force fields and relative metric force fields, in
this fourth part, are progressive developments
by the author. No related work in physics or
mathematics exists in the open literature, as
far as can be found. This thereby limits the
references in this paper to the previous papers
by the author, upon which this fourth part of this
paper is based essentially.

The flat four-dimensional relative proper
metric spacetime, denoted by (IE′3, cst

′) for
convenience, in the second and third parts of
this paper and this fourth part, where IE′3 is
the flat three-dimensional relative proper metric
space, contains the rest masses (m0, ε

′/c2s) of
particles and bodies, with the assumed absence
of strong (or relativistic) gravitational field. With
this assumption, the flat (IE′3, cst

′) supports the

special theory of relativity (SR), which involves
the motions of the rest masses (m0, ε

′/c2s) of
particles and become the special-relativistic
masses (γm0, γε

′/c2s) relative to observers.

The introduction of a strong (or relativistic)
gravitational field into the flat four-dimensional
relative proper metric spacetime (IE′3, cst

′),
will transform it into a curved four-dimensional
metric spacetime (IM3, cst) (usually denoted by
(x0, x1, x2, x3)), with Riemannian metric tensor
gµν , in the context of the general theory of
relativity (GR), as known. It is to be recalled
however that, although the curvature of four-
dimensional spacetime in a metric force field is
a well thought-out prescription, see pages 111 –
149 of [4], which has not been falsified until now,
it nevertheless remains an unproven fundamental
postulate of the general theory of relativity.

As for the isolation of the first stage of evolution
of spacetime and intrinsic spacetime and the
associated geometry in long-range metric force
fields in [1–3], on the other hand, only the ‘two-
dimensional’ absolute intrinsic metric spacetime
(∅ρ̂,∅ĉs∅t̂), isolated in those articles and
illustrated in Fig. 11 of [3], reproduced as Fig. 1 of
this article, is curved with absolute intrinsic sub-
Riemannian metric tensor ∅ĝik, while the four-
dimensional relative proper metric spacetime
(IE′3, cst

′) is flat in long-range metric force fields
at the first stage of evolution spacetime and
intrinsic spacetime, as Fig. 1 shows.
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Fig. 1. The flat four-dimensional relative proper and flat ‘two-dimensional’ absolute proper
metric spacetimes and hierarchy of two-dimensional intrinsic metric spacetimes that evolve

at the first stage of evolution of metric spacetimes and hierarchy intrinsic spacetimes in
long-range metric force fields in our universe; (Fig. 11 of [3])

The developments in [1–3] that leads to the
geometry of Fig. 11 of [3], reproduced as Fig. 1
of this article, is preceded by the isolation of co-
existing four symmetrical universes in separate
spactimes with event horizon separations,
referred to as four-world picture in [5–8]. The
four universes constitute four-world background
for the special theory of relativity (SR) on flat
relative proper spacetime in each universe, as
developed in those articles.

By starting with the flat four-dimensional relative
proper metric spacetimes, (IE′3, cst

′) of our
universe in Fig. 1 and (−IE′3∗,−cst′∗) of the
negative universe (not shown in Fig. 1), as the
spacetimes of the special theory of relativity, with
the inherent assumption of the absence of strong
(or relativistic) gravitational field in the respective
universes in [5], the flat relative proper intrinsic
metric spacetime (∅ρ′,∅cs∅t′) that underlies
(IE′3, cst

′) in our universe and (−∅ρ′∗,−∅cs∅t′∗)
that underlies (−IE′3∗,−cst′∗) in the negative
universe, were introduced as ansatz in section 4
of that article.

A new set of affine spacetime/intrinsic affine
spacetime diagrams involving the rotations of
straight line primed intrinsic affine spacetime
coordinates, denoted by, ∅x̃ ′ and ∅c∅t̃ ′, (of the

particle’s primed intrinsic affine frame), relative
to their projective straight line unprimed intrinsic
affine coordinates, ∅x̃ and ∅c∅t̃ (of the particle’s
unprimed intrinsic affine frame), in the positive
(or our) universe, and the simultaneous rotations
of the extended straight line primed intrinsic
affine coordinates, −∅x̃ ′∗ and −∅c∅t̃ ′∗, of
the symmetry-partner particle’s primed intrinsic
affine frame relative to the extended straight
line unprimed intrinsic affine coordinates, −∅x̃∗
and −∅c∅t̃ ∗, of the symmetry-partner particle’s
unprimed intrinsic affine frame in the negative
universe, shown as Figs. 8a and 8b and their
inverses as Figs. 9a and 9b of [5], were derived.

Intrinsic Lorentz transformation (∅LT) and its
inverse in terms of extended straight line primed
intrinsic affine coordinates, ∅x̃ ′ and ∅c∅t̃ ′, of
the particle’s primed intrinsic affine frame and
extended straight line unprimed intrinsic affine
coordinates, ∅x̃ and ∅c∅t̃, of the particle’s
unprimed intrinsic affine frame, were derived
from the new set of diagrams (Figs. 8a, 8b, 9a
and 9b of [5]), and intrinsic Lorentz invariance
(∅LI) was validated from these, in the context
of the two-dimensional intrinsic special theory
of relativity (∅SR), which involves intrinsic affine
spacetime coordinates embedded in the flat two-
dimensional proper intrinsic metric spacetime
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(∅ρ′,∅c∅t′), with the inherent assumption of the
absence of strong gravitational field in [5].

Lorentz transformation (LT) and its inverse
in terms of extended straight line primed
affine spacetime coordinates, x̃ ′, ỹ ′, z̃ ′ and
ct̃ ′, of the particle’s primed affine frame and
extended straight line unprimed affine spacetime
coordinates, x̃, ỹ, z̃ and ct̃ of the particle’s
unprimed affine frame in the context of SR, were
then written directly from the intrinsic Lorentz
transformation (∅LT) and its inverse in the
context of ∅SR; SR involving four-dimensional
affine spacetime coordinates embedded on
the flat four-dimensional relative proper metric
spacetime (IE′3, cst

′), being mere outward
manifestation of ∅SR involving two-dimensional
intrinsic affine spacetime coordinates embedded
in the flat two-dimensional relative proper intrinsic
metric spacetime (∅ρ′,∅cs∅t′), with the inherent
assumption of the absence of strong gravitational
field.

Eventually the origin of the flat two-dimensional
relative proper intrinsic metric spacetime
(∅ρ′,∅cs∅t′) underlying the flat 4-dimensional
relative proper metric spacetime (IE′3, cst

′) in
our universe (and indeed in every one of the
other three universes of the four-world picture
isolated in [5–8]), was derived formally in section
1 of [8], thereby demystifying the (non-observable
or hidden) intrinsic metric dimensions, ∅ρ′ and
∅cs∅t′, and validating their actual presence in
nature.

The special theory of relativity (SR) cannot
alter the extended flat 4-dimensional relative
proper metric spacetime (IE′3, cst

′) on which it
operates, with the assumed absence of strong
(ot relativistic) gravitational field. The intrinsic
special theory of relativity (∅SR) can likewise not
alter the extended flat two-dimensional proper
intrinsic metric spacetime (∅ρ′,∅cs∅t′) on
which it operates, with the assumed absence of
relativistic gravitational field. These, as explained
under the Summary and Conclusion section of
[8], is due to the fact that the spacetime/intrinsic
spacetime coordinates (or spacetime/intrinsic
spacetime geometry) associated with SR/∅SR
are affine space-time/intrinsic affine spacetime
coordinates (or affine spacetime/intrinsic affine
spacetime geometry) with no metric quality.

It is by introducing the source of a long-range
relativistic metric force-field (such as the source
of a relativistic gravitational field), at a point
on the flat 3-dimensional relative proper metric
space IE′3 and, consequently, the source of a
long-range relativistic intrinsic metric force-field
(such as the source of a relativistic intrinsic
gravitational field), at the same point in the
straight line relative proper intrinsic metric space
∅ρ′ in Fig. 11 of [3], reproduced as Fig. 1 of
this article, that the extended flat relative proper
metric spacetime (IE′, cst

′) and its underlying
flat relative proper intrinsic metric spacetime
(∅ρ′,∅cs∅t′) can be made to transform into
four-dimensional relativistic metric spacetime
(Σ, cst), which is underlay by two-dimensional
relativistic intrinsic metric spacetime (∅ρ,∅cs∅t)
in all finite neighborhood of the source of the
long-range metric force field. The geometry
associated with this at the second stage of
evolution of spacetime/intrinsic spacetime in
long range relativistic metric force-fields shall be
developed in the rest of this article.

2 GEOMETRICAL BACK-
GROUND IN THE FOUR-
WORLD PICTURE FOR A
NEW FLAT SPACETIME
THEORY OF RELATIVITY
ASSOCIATED WITH THE
PRESENCE OF A LONG-
RANGE METRIC FORCE
FIELD

There are the theory of relativity and theory of
intrinsic relativity, which are associated with the
presence of a long-range relativistic metric force
field in the four-dimensional metric spacetime
and its underlying long-range relativistic intrinsic
metric force field in the two-dimensional relative
intrinsic metric spacetime. These will convert
the extended flat four-dimensional relative proper
metric spacetime (IE′3, cst

′) and its underlying
flat two-dimensional relative proper intrinsic
metric spacetime (∅ρ′,∅cs∅t′) to extended
four-dimensional relativistic metric spacetime
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(IE3, cst) and its underlying extended two-
dimensional relativistic intrinsic metric spacetime
(∅ρ,∅cs∅t), within the long-range relative metric
force field, at the second stage of evolution
of metric spacetimes and hierarchy of intrinsic
metric spacetimes in long-range relativistic metric
force fields, as shall be developed in the rest of
this article.

Now the non-uniform absolute proper intrinsic
static flow speed ∅V ′mab projected along the
projective straight absolute proper intrinsic metric
spacetime ‘dimensions’, ∅ρ′ab and ∅csab∅t′ab,
along the horizontal and vertical, by the non-
uniform absolute intrinsic static flow speed ∅V̂m
of the curved absolute intrinsic metric spacetime
dimensions, ∅ρ̂ and ∅ĉs∅t̂, in Fig. 1, constitute
identical non-uniform absolute proper intrinsic
static flow speed ∅V ′mab along the straight
line relative proper intrinsic metric spacetime
‘dimensions’, ∅ρ′ and ∅csab∅t′ab, in which ∅ρ′ab
and ∅csab∅t′ab are embedded respectively in that
figure. However non-uniform absolute proper
intrinsic static flow speed ∅V ′mab, cannot cause
the curvature of the relative proper intrinsic metric
spacetime dimensions, ∅ρ ′ and ∅cs∅t′. This is
so, because absolute proper intrinsic static flow
speed, being an absolute intrinsic parameter,
cannot produce any effect whatever on the
relative proper intrinsic metric dimensions, ∅ρ′
and ∅cs∅t′.

It is by also establishing non-uniform relative
proper intrinsic static flow speed ∅V ′m along the
straight line relative proper intrinsic metric space
∅ρ′ and straight line relative proper intrinsic
metric time dimension ∅cs∅t′ in Fig. 1 that ∅ρ′
and ∅cs∅t′ can be made to evolve into curved
∅ρ′ and curved ∅cs∅t′ within a long-range
relativistic metric force-field, at the second stage
of evolution of metric spacetime and intrinsic
metric spacetime, as shall be developed in this
section. Else, the geometry of Fig. 1 will persist
and evolution of metric spacetime/intrinsic metric
spacetime will terminate at the first stage within a
long-range metric force-field (with the geometry
of Fig. 1).

It is by introducing the source of a long-range
relativistic metric force-field (such as a source of
relativistic gravitational field), at a point on the
relative proper metric Euclidean 3-space IE′3

and, consequently a source of a long-range

relativistic intrinsic metric force-field (such as
a source of a relativistic intrinsic gravitational
field), at the same point in the straight line
relative proper intrinsic metric space ∅ρ′ in
Fig. 1 that, non-uniform relative proper intrinsic
static flow speed ∅V ′m is established along
the straight line relative proper intrinsic metric
spacetime dimensions, ∅ρ′ and ∅cs∅t′, and
non-uniform relative proper static flow-speed
V ′m is established in IE′3 and along cst

′. This
will cause the extended straight line ∅ρ′ and
∅cs∅t′ to become curved. projecting straight line
relativistic intrinsic metric spacetime dimensions,
∅ρ and ∅cs∅t, which are made manifested in flat
three-dimensional relativistic metric space IE3

and straight line relativistic metric time dimension
cst respectively.

Thus the extended flat relative proper metric
spacetime (IE′3, cst

′) and its underlying flat
relative proper intrinsic metric spacetime
(∅ρ′,∅cs∅t′), with the assumption of the
absence of a long-range relativistic metric
force field, will naturally transform into flat
four-dimensional relativistic metric spacetime
(IE3, cst), which is underlay by two-dimensional
flat relativistic intrinsic metric spacetime
(∅ρ,∅cs∅t) in all finite neighborhood of the
source of a long-range relativistic metric force
field. The geometry associated with this at the
second stage of evolution of spacetime/intrinsic
spacetime in a long range relativistic metric force-
field shall be developed in the rest of this article.

2.1 The Global Curved
Relative Proper Intrinsic
Metric Spacetime Projects
Underlying Flat Relativistic
Intrinsic Metric Spacetime
that is Made Manifested
Outwardly in Flat Relativistic
Metric Spacetime in a
Metric Force Field

As follows from the preceding two paragraphs, let
us introduce non-uniform relative proper intrinsic
static flow speed ∅V ′m along the straight line
relative proper intrinsic metric space ∅ρ′ and
the straight line relative proper intrinsic metric
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time dimension ∅cs∅t′ in Fig. 1 that evolves at
the first stage of evolution of metric spacetime
and intrinsic metric spacetimes, such that ∅V ′m
has its largest magnitude at a point (S, S0) in
(∅ρ′,∅cs∅t′) and decreases continuously until
it vanishes virtually at point O in (∅ρ′,∅cs∅t′),
which is far removed from point (S, S0). These
will be made manifested outwardly in non-uniform
relative proper static flow speed V ′m in the relative
proper metric Euclidean 3-space IE′3 and along
the relative proper metric time dimension cst

′,
such that V ′m has its largest magnitude at the
corresponding point (S, S0) in (IE′3, cst

′) and
decreases in magnitude continuously until it
vanishes virtually at point O in (IE′3, cst

′), which
is far removed from point (S, S0) in that figure.

The foregoing is quite apart from the non-
uniform absolute proper intrinsic static flow
speed ∅V ′mab constituted along the straight line
relative proper intrinsic metric space ∅ρ′ and the
straight line relative proper intrinsic metric time
dimension ∅cs∅t′ by the non-uniform ∅V ′mab
projected along the projective absolute proper
intrinsic metric dimensions, ∅ρ′ab and ∅csab∅t′ab,
embedded in ∅ρ′ and ∅cs∅t′ respectively, and
the outward manifestations of these namely, the
non-uniform absolute proper static flow speed
V ′mab in IE′3 and along cst′ in Fig. 1.

However the presence of non-uniform absolute
proper intrinsic static flow speed ∅V ′mab along
the relative proper intrinsic metric space ∅ρ′ and
relative proper intrinsic metric time dimension
∅cs∅t′, cannot cause the curvatures of ∅cs∅t′
and ∅ρ′, or produce any other effect on them.
The presence of absolute proper static flow
speed V ′mab in the relative proper metric space
IE′3 and relative proper metric time dimension
cst
′ can likewise produce no detectable effect on

IE′3 and cst′, as mentioned earlier.

Let us recall the evolution of Fig. 11 of [3],
reproduced as Fig. 1 of this article, from Fig. 6
of [3], reproduced as Fig. 2 of this article. The
introduction of non-uniform absolute intrinsic
static flow speed ∅V̂m along the initial straight
line absolute intrinsic metric space ∅ρ̂ and along
the initial straight line absolute intrinsic metric
time ‘dimension’ ∅ĉs∅t̂ in Fig. 2, causes the
straight line ∅ρ̂ to evolve into curved absolute
intrinsic metric space ∅ρ̂, where ∅ρ̂ will have
largest curvature at the point (S, S0) where ∅V̂m

is largest and virtually zero curvature at point O,
which is far removed from point (S, S0) where
∅V̂m vanishes virtually.

On the other hand, the absolute intrinsic metric
time ‘dimension’ ∅ĉs∅t̂ and absolute metric time
dimension ĉst̂ along the vertical are invariant
(or remain unaffected) in the context of the
absolute intrinsic metric phenomenon that
causes the curvature of the absolute intrinsic
metric spacetime ‘dimensions’, with respect to ‘3-
observers’ in the absolute space ÎE3 in Fig. 2.
Graphically, this implies that the straight line
absolute intrinsic metric time ‘dimension’ ∅ĉs∅t̂
along the vertical in that figure will remain not
curved from its vertical position, thereby yielding
the half-geometry of Fig. 1 of [3], reproduced as
Fig. 3 of this article, which is valid with respect
to 3-observers in the relative proper Euclidean
3-space IE′3 in that figure.

The initial straight line absolute intrinsic metric
time ‘dimension’ ∅ĉs∅t̂ in Fig. 2 remains not
curved from the vertical, while the initial straight
line absolute intrinsic metric space ∅ρ̂ in that
figure becomes curved absolute intrinsic metric
space ∅ρ̂ in Fig. 3, because the absolute metric
time ‘dimension’ ĉst̂ and the absolute intrinsic
metric time ‘dimension’ ∅ĉs∅t̂ are invariant
(or unaffected), that is, do not evolve into
the absolute proper metric time dimensions
csabt

′
ab and absolute proper intrinsic metric

time dimension ∅csab∅t′ab, with respect to 3-
observers in the relative proper Euclidean 3-
space IE′3 along the horizontal in that figure,
in the contexts of absolute physics and absolute
intrinsic physics associated with the presence of
absolute metric force field and absolute intrinsic
metric force field.

Since there is a perfect symmetry of state
between the positive (or our) universe and the
positive time-universe, the half-geometry of
Fig. 2 of [3], reproduced as Fig. 4 of this article,
will evolve with respect to 3-observers in the
relative proper Euclidean 3-space IE0′3, within
the symmetry-partner region of spacetime in the
positive time-universe, simultaneously with the
half-geometry of Fig. 1 of [3], reproduced as
Fig. 3 of this article, in our universe.

The union of Figs. 1 and 2 of [3], which are Figs. 3
and 4 of this article, then gives the full geometry
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of Fig. 3 of [3], which is equivalent to the full
geometry of Fig. 4 or Fig. 11 of that article,
reproduced as Fig. 1 of this article, containing
the spacetime/intrinsic spacetime dimensions
of our universe solely. This and the foregoing
paragraphs are mere repetitions of what have
been discussed in the process of developing the
geometry of Fig. 4 (or Fig. 11) of [3], reproduced
as Fig. 1 of this article, repeated here to serve as
a reminder.

In the contexts of the theory of relativity and
intrinsic theory of relativity associated with the
presence of a long-range relative proper metric
force-field in the relative proper metric spacetime
(IE′3, cst

′) and a long-range relative proper
intrinsic metric force-field in the relative proper
intrinsic metric spacetime (∅ρ′,∅cs∅t′), with
the associated non-uniform relative proper static
flow-speed V ′m in the relative proper metric
Euclidean 3-space IE′3 and along the relative

c ts
c ts

c ts

‘3-observers’

Fig. 2. Flat ‘four-dimensional’ absolute metric spacetime and its underlying flat
‘two-dimensional’ absolute intrinsic metric spacetime with assumed absence of a long-range
metric force field (or absence of absolute intrinsic Riemannian spacetime geometry); (Fig. 6

of [3])

ab

ab
ab

cs t cst

Fig. 3. A curved ‘one-dimensional’ absolute intrinsic metric space ∅ρ̂, curving toward the
absolute time/absolute intrinsic time ‘dimensions’ along the vertical, projects a straight line
one-dimensional isotropic absolute proper intrinsic metric space ∅ρ′ab along the horizontal,
which is made manifested in straight line absolute proper metric space ρ′ab and, a straight
line relative proper intrinsic metric space ∅ρ′ appears, which is made manifested in flat

three-dimensional relative metric space IE′3 (as a hyper-surface) along the horizontal, with
respect to 3-observers in IE′3 in our (or positive) universe; (Fig. 1 of [3])
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proper metric time dimension cst
′ and non-

uniform relative proper intrinsic static flow speed
∅V ′m along the relative proper intrinsic metric
space ∅ρ′ and relative proper intrinsic metric
time dimension ∅cs∅t′, on the other hand, the
relative proper time dimension cst

′, the relative
proper Euclidean 3-space IE′3, as well as the
relative proper intrinsic metric space ∅ρ′ and
relative proper intrinsic metric time dimension
∅cs∅t′, are all relative simultaneously (or are
‘co-relative’), with respect to 3-observers in the
relative proper Euclidean 3-space IE′3 and 1-
observers in the relative proper time dimension
cst
′.

An implication of the preceding paragraph is that
all the four relative proper metric coordinates,
x′0, x′1, x′2 and x′3; x′0 = cst

′, of the flat
relative proper metric spacetime (IE′3, cst

′)
will simultaneously transform into relativistic
metric coordinates, x0, x1, x2 and x3; x0 =
cst, of relativistic metric spacetime (IE3, cst),
with respect to 3-observers in the relativistic
metric Euclidean 3-space IE3 and 1-observers
in the relativistic metric time dimension cst.
The relative proper intrinsic coordinates, ∅x′
and ∅cs∅t′, of the relative proper intrinsic

metric spacetime (∅ρ′,∅cs∅t′), will likewise
simultaneously transform into relativistic intrinsic
metric coordinates, ∅x and ∅cs∅t, of the two-
dimensional relativistic intrinsic metric spacetime
(∅ρ,∅cs∅t), with respect to 3-observers in the
relativistic metric Euclidean 3-space IE3 and 1-
observers in the newly formed relativistic metric
time dimension cst, in the contexts of the theory
of relativity and intrinsic theory of relativity
associated with the presence of a long-range
relative proper metric force field in relative proper
metric spacetime and long-range relative
proper intrinsic metric force-field in relative proper
intrinsic metric spacetime.

As mentioned in section 4 of [5], affine spacetime
coordinates and intrinsic affine spacetime
coordinates that appear in SR/∅SR shall have
over-head tilde label as, x̃, ỹ, z̃, cdt̃,∅x̃ and
∅cd∅t̃, while the metric spacetime coordinates
and intrinsic metric spacetime coordinates that
appear in the theory of relativity and intrinsic
theory of relativity associated with the presence
of metric force field in metric spacetime and
intrinsic metric force field in intrinsic metric
spacetime, shall have no over-head tilde label,
appearing as, x0, x1, x2, x3, ∅x and ∅cs∅t.

cs t

cst

abab

P

d

ab
d

Fig. 4. A curved ‘one-dimensional’ absolute intrinsic metric space ∅ρ̂0, curving toward the
absolute time/absolute intrinsic time ‘dimensions’ along the horizontal, projects a straight

line one-dimensional isotropic absolute proper intrinsic metric space ∅ρ0′ab along the
vertical, which is made manifested in straight line absolute proper metric space ρ0′ab and, a

straight line relative proper intrinsic metric space ∅ρ0′ appears, which is made manifested in
flat three-dimensional relative metric space IE0′3 (as a hyper-surface) along the vertical, with

respect to 3-observers in IE0′3 in the positive time-universe; (Fig. 2 of [3])
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An implication of the penultimate paragraph
is that the introduction of non-uniform relative
proper intrinsic static flow speeds ∅V ′m identically
along the straight line relative proper intrinsic
metric space ∅ρ′ and along the straight line
relative proper intrinsic metric time dimension
∅cs∅t′ in Fig. 1 of this article, will cause
both ∅ρ′ and ∅cs∅t′ to be identically curved
anticlockwise simultaneously relative to the
horizontal and vertical respectively, such that
the curved ∅ρ′ lying in the first quadrant
and the curved ∅cs∅t′ lying in the second
quadrant on the larger spacetime hyperplane
of combined positive and negative universes,
constitute pseudo-orthogonal curvilinear intrinsic
metric dimensions, with respect to 3-observers in
the relativistic metric Euclidean 3-space IE3 in our
(or positive) universe. It is to be remembered, as
mentioned earlier that, the projective non-uniform
absolute proper intrinsic static flow speed ∅V ′mab
along ∅ρ′ and ∅cs∅t′ in Fig. 1 at the first stage of
evolution of spacetime and intrinsic spacetime in
a long-range metric force field cannot cause the
curvature of ∅ρ′ and ∅cs∅t′.

In symmetry, the relative proper intrinsic metric
space −∅ρ′∗ and the relative proper intrinsic
metric time dimension −∅cs∅t′∗ of the negative
universe are identically curved anticlockwise
simultaneously relative to the horizontal and
vertical respectively, such that the curved −∅ρ′∗
lying in the third quadrant and the curved
−∅cs∅t′∗ lying in the fourth quadrant, constitute
pseudo-orthogonal curvilinear intrinsic metric
dimensions with respect to 3-observers* in the
relativistic metric Euclidean 3-space −IE∗3 in the
negative universe. These curvatures of relative
proper intrinsic metric spacetime dimensions and
those of the preceding paragraph will take place
simultaneously within symmetry-partner long-
range relativistic metric force fields and their
underlying long-range relativistic intrinsic metric
force fields in the positive (or our) universe and
the negative universe, at the second stage of
evolution of spacetime and intrinsic spacetime
within symmetry-partner long-range relativistic
metric force fields in the positive and negative
universes.

A consequence of the foregoing is that the
geometry of Fig. 5 will evolve with respect to
3-observers in the relativistic metric Euclidean

3-spaces, IE3 and −IE3∗, of the positive
and negative universes, as indicated, at the
second stage of evolution of spacetime/intrinsic
spacetime within symmetry-partner long-range
relativistic metric force fields in the positive and
negative universes. The non-uniform relative
proper intrinsic static flow speed ∅V ′m introduced
along the straight line relative proper intrinsic
metric space ∅ρ′ and straight line relative proper
intrinsic metric time dimension ∅cs∅t′ in Fig. 1,
have largest magnitude at a point (S , S0) on
(∅ρ′,∅cs∅t′), due to the sources of relative
proper intrinsic metric force field located at that
point (not shown) in Fig. 5, and decrease in
magnitude continuously until it vanishes virtually
at point O in (∅ρ′,∅cs∅t′), which is far removed
from the point (S , S0) in that figure.

Fig. 5 has evolved from Fig. 1 upon introducing
non-uniform relative proper intrinsic static flow
speed along the straight line relative proper
intrinsic metric space ∅ρ′ and straight line
relative proper intrinsic metric time dimension
∅cs∅t′ in our universe in that figure, and
their counterparts, −∅ρ′∗ and −∅cs∅t′∗, in the
negative universe (not shown in Fig. 1). Hence
the curved ‘two-dimensional’ absolute intrinsic
metric spacetime (∅ρ̂,∅ĉs∅t̂) in our universe in
that figure and the corresponding curved ‘two-
dimensional’ absolute intrinsic metric spacetime
(−∅ρ̂∗,−∅ĉs∅t̂∗) in the negative universe (not
shown in that figure), have remained in Fig. 5.

A relative proper static flow speed V ′m is
relativistic for, V ′m/cm > 0 relative to all
observers, since V ′m is the same relative to all
observers. A relativistic metric force field is
one within which V ′m/cm > 0. Thus relativistic
as being used to qualify metric force fields and
metric spacetime within a relativistic metric force
field, does not connote the presence of the
special theory of relativity (SR), in the context of
which “relativistic” has usually appeared.

It is to be noted that the straight line absolute
proper intrinsic metric spacetime ‘dimensions’,
∅csab∅t′ab and ∅ρ′ab, which are embedded in
the straight line relative proper intrinsic metric
spacetime dimensions, ∅ρ′ and ∅cs∅t′, in
Fig. 5, are curved along with ∅ρ′ and ∅cs∅t′
in that figure. They project ‘absolute relativistic’
intrinsic metric spacetime ‘dimensions’, ∅ρab and
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∅csab∅tab, (absolute proper intrinsic dimensions
without prime label) (not shown in Fig. 5), which
are imperceptibly embedded in the projective
straight line relativistic intrinsic metric spacetime

dimensions, ∅ρ and ∅cs∅t, in the first quadrant
(or in our universe) in Fig. 5. The invariance,
∅ρab = ∅ρ′ab and ∅csab∅tab = ∅csab∅t′ab,
obtain, as shall be shown elsewhere.

3-obser-
vers

3-obser-
vers
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Fig. 5. The global metric spacetime/intrinsic metric spacetime diagram with respect to
3-observers in the relativistic metric Euclidean 3-spaces of our universe and the negative
universe, at the second stage of evolution of spacetimes and intrinsic spacetimes within

symmetry-partner long-range relativistic metric force fields in the two universes.

The projective ∅ρab and ∅csab∅tab embedded in ∅ρ and ∅cs∅t are then made manifested outwardly
in ‘absolute relativistic’ metric spacetime ‘dimensions’, ρab and csabtab (not shown in Fig. 5), which are
imperceptibly embedded in the relativistic metric Euclidean 3-space IE3 and relativistic metric time
dimension cst respectively in our (or positive) universe in Fig. 5. All of these occur simultaneously
and in perfect symmetry in the negative universe in that figure.

All of the curved relative proper intrinsic metric spacetimes, (∅ρ′,∅cs∅t′) and (−∅ρ′∗,−∅cs∅t′∗),
the projective flat relativistic intrinsic metric spacetimes, (∅ρ,∅cs∅t) and (−∅ρ∗,−∅cs∅t∗), and
the flat four-dimensional relativistic metric spacetimes, (IE3, cst) and (−IE∗3,−cst∗), along with the
curved absolute proper intrinsic metric spacetimes, (∅ρ′ab,∅csab∅t′ab) and (−∅ρ′∗ab,−∅csab∅t′∗ab), the
projective flat ‘absolute relativistic’ intrinsic metric spacetimes, (∅ρab,∅csab∅tab) and
(−∅ρ∗ab,−∅csab∅t∗ab), and the flat ‘absolute relativistic’ metric spacetimes, (ρab, csabtab) and
(−ρ∗ab,−csabt∗ab), imperceptibly embedded in them, shall be found of important relevance in determining
the hierarchy of intrinsic theories and theories of a metric force field and intrinsic metric force field
later in this article and elsewhere.

However the main interest in this article is in the formulation of the intrinsic theory of relativity
and theory of relativity associated with the presence of a long-range metric force field in metric
spacetime and its underlying long-range intrinsic metric force field in intrinsic metric spacetime.
It is the curved relative proper intrinsic metric spacetimes (∅ρ′,∅cs∅t′) and (−∅ρ′∗,−∅cs∅t′∗),
their projective flat relativistic intrinsic metric spacetimes (∅ρ,∅cs∅t) and (−∅ρ∗,−∅cs∅t∗) and
the outward manifestations flat relativistic metric spacetimes (IE3, cst) and (−IE∗3,−cst∗) that are
relevant for doing this.
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Now the curved relative proper intrinsic metric
space ∅ρ′ in the first quadrant and the curved
relative proper intrinsic metric time dimension
∅cs∅t′ in the second quadrant in Fig. 5, evolve
simultaneously with respect to 3-observers in
the relativistic Euclidean 3-space IE3 in the first
quadrant (or in the positive universe), and the
curved relative proper intrinsic metric space
−∅ρ′∗ in the third quadrant and the curved
relative proper intrinsic metric time dimension
−∅cs∅t′∗ in the fourth quadrant, evolve
simultaneously with respect to 3-observers∗ in
the relativistic metric Euclidean 3-space −IE3∗ in
the third quadrant (or in the negative universe) in
that figure.

The curved relative proper intrinsic metric space
∅ρ′ in the first quadrant projects a straight line
relativistic intrinsic metric space ∅ρ along the
horizontal, which is made manifested outwardly
in the relativistic metric Euclidean 3-space
IE3 in which 3-observers are now located, as
indicated. The curved relative proper intrinsic
metric time dimension ∅cs∅t′ in the second
quadrant, likewise projects straight line relativistic
intrinsic metric time dimension ∅cs∅t along the
vertical, which is made manifested outwardly
in the relativistic metric time dimension cst, in
which 1-observers in the time dimension are now
located in our universe.

The curved relative proper intrinsic metric space
−∅ρ′∗ in the third quadrant projects relativistic
intrinsic metric space −∅ρ∗ along the horizontal,
which is made manifested outwardly in the
relativistic Euclidean 3-space −IE3∗ in which
3-observers∗ are now located in the negative
universe, as indicated, and the curved relative
proper intrinsic metric time dimension −∅cs∅t′∗
in the fourth quadrant projects relativistic intrinsic
metric time dimension −∅cs∅t∗ along the
vertical, which is made manifested outwardly in
the relativistic metric time dimension −cst∗ in
which 1-observers∗ in time dimension are now
located in the negative universe.

However 1-observers are not indicated to exist
in the relativistic time dimensions, cst and
−cst∗, in Fig. 5, because the geometry of
Fig. 5 is valid with respect to 3-observers in the
Euclidean 3-spaces, IE3 and −IE3∗, solely, as
indicated. Recall from section 4 of [7] that the
anti-clockwise sense of inclination (or rotation)

by positive angle of the curved relative proper
intrinsic metric spacetimes dimensions relative
to their projective flat relativistic intrinsic metric
spacetimes by varying positive intrinsic angles, is
valid with respect to 3-observers in the relativistic
metric Euclidean 3-spaces in Fig. 5. It is in
the complementary diagram to Fig. 5, to be
developed shortly, which is valid with respect
to 1-observers in the relativistic time dimensions
that 1-observers in cst and −cst∗, in which the 1-
observers will be indicated along cst and −cst∗.

Thus the flat four-dimensional relative proper
metric spacetime (IE′3, cst

′) and its underlying
flat two-dimensional relative proper intrinsic
metric spacetime (∅ρ′,∅cs∅t′), which appear
within a long-range metric force field at the
first stage of evolution of spacetime/intrinsic
spacetime in our universe in Fig. 11 of [3],
reproduced as Fig. 1 of this article, evolve into
flat four-dimensional relativistic metric spacetime
(IE3, cst) and its underlying flat two-dimensional
relativistic intrinsic metric spacetime (∅ρ,∅cs∅t)
in Fig. 5, at the second stage of evolution of
spacetime/intrinsic spacetime in the long-range
metric force-field.

The flat 4-dimensional relative proper metric
spacetime (−IE′3∗,−cst′∗) and its underlying
flat relative proper intrinsic metric spacetime
(−∅ρ′∗,−∅cs∅t′∗), which appear within the
symmetry-partner long-range metric force
field in the negative universe (not shown
in Fig. 1), at the first stage of evolution of
spacetime/intrinsic spacetime, likewise evolve
into flat four-dimensional relativistic metric
spacetime (−IE3∗,−cst∗) and its underlying
flat two-dimensional relativistic intrinsic metric
spacetime (−∅ρ∗,−∅c∅t∗) in Fig. 5, at the
second stage of evolution of spacetime/intrinsic
spacetime within the symmetry-partner long-
range metric force-field.

There are some other features of Fig. 5 that are
important for remark. First, the absolute intrinsic
metric space ∅ρ̂ and the relative proper intrinsic
metric space ∅ρ′, are shown to be identically
curved relative to the relativistic intrinsic metric
space ∅ρ along the horizontal. Indeed the curved
∅ρ′ should fall along the curved ∅ρ̂ in Fig. 5.
This means that the point P along the curved
∅ρ̂ in Fig. 1 is the same as point P along the
curved ∅ρ′ in Fig. 5. Consequently the absolute
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intrinsic angle ∅ψ̂m,P of inclination of the curved
∅ρ̂ to the horizontal at point P along ∅ρ̂ in Fig. 1
and the relative proper intrinsic angle ∅ψm,P of
inclination of the curved ∅ρ′ to the horizontal at
point P along the curved ∅ρ′ in Fig. 5, are equal
in magnitude. It then follows that the absolute
intrinsic static flow speed ∅V̂mP at point P along
the curved ∅ρ̂ in Fig. 1 and the relative proper
intrinsic static flow speed ∅V ′m,P , at point P along
∅ρ′ in Fig. 5 are equal in magnitude. That is,

sin |∅ψ̂m,P | = sin |∅ψm,P | (1a)

or

|∅V̂m,P
∅ĉm

| = |
∅V ′m,P
∅cm

| (1b)

In order for relations (1a) and (1b) to hold,
it must be that the source of absolute intrinsic
metric force field located at the point S along
the curved absolute intrinsic metric space ∅ρ̂ in
Fig. 1, which establishes non-uniform absolute
intrinsic static flow speed ∅V̂mP between points
S and O along the curved ∅ρ̂ in that figure, is
‘projected’ as a source of absolute proper intrinsic
metric force field of identical magnitude, into
the corresponding point S along the projective
absolute proper intrinsic metric space ∅ρ′ab .

A source of relative proper intrinsic metric
force field of identical magnitude then appears
automatically at the corresponding point S along
the straight line relative proper intrinsic metric
space ∅ρ′, which appears along the horizontal
automatically along with the projection of ∅ρ′ab
along the horizontal in Fig. 1. The source of
relative proper intrinsic metric force field that
appears automatically thereby establishes non-
uniform relative proper intrinsic static flow speed
∅V ′m (of identical magnitudes as the projective
non-uniform absolute proper intrinsic static flow
speed ∅V ′m,ab) along the straight line ∅ρ′ in
Fig. 1 and, consequently, along the curved ∅ρ′
in Fig. 5.

The point P0 along the curved relative proper
intrinsic metric time dimension ∅cs∅t′ in the
second quadrant is the symmetry-partner to
point P along the curved relative proper intrinsic
metric space ∅ρ′ in the first quadrant in Fig. 2.
Consequently the relative intrinsic angle ∅ψP 0 of
inclination of the curved ∅cs∅t′ to the vertical at
point P 0 along the curved ∅cs∅t′ and the relative
intrinsic angle ∅ψP of inclination of the curved

∅ρ′ to the horizontal at point P along the curved
∅ρ′, are equal in magnitude. It then follows
that the non-uniform relative proper intrinsic static
flow speeds, ∅V ′m,P 0 and ∅V ′m,P , are equal in
magnitude. That is,

sin∅ψm,P 0 = sin∅ψm,P (2a)

or
∅V ′m,P 0

∅cm
=

∅V ′m,P
∅cm

(2b)

Finally, the relative proper intrinsic static flow
speed ∅V ′m,P of point P along the curved
relative proper intrinsic metric space ∅ρ′ is
shown to be invariantly projected as relative
proper intrinsic static flow speed ∅V ′m,P into the
relativistic intrinsic metric space ∅ρ along the
horizontal, and this is made manifested in relative
proper static flow speed V ′m,P in the relativistic
metric Euclidean 3-space IE3 in Fig. 5. The
relative proper intrinsic static flow speed ∅V ′m,P 0

of point P0 along the curved relative proper
intrinsic metric time dimension ∅cs∅t′ is likewise
shown to be invariantly projected as relative
proper intrinsic static flow speed ∅V ′m,P 0 into the
relativistic intrinsic metric time dimension ∅cs∅t,
which is made manifested in relative proper static
flow speed V ′m,P 0 along the relativistic metric
time dimension cst along the vertical in Fig. 5.

On the other hand, one expects that the non-
uniform relative proper intrinsic static flow speed
∅V ′m along the curved relative proper intrinsic
metric space ∅ρ′ should be projected as non-
uniform relativistic intrinsic static flow speed ∅Vm
(without prime label) into the projective relativistic
intrinsic metric space ∅ρ along the horizontal
and that the non-uniform relative proper intrinsic
static flow speed ∅V ′m along the curved relative
proper intrinsic metric time dimension ∅cs∅t′
should be projected as non-uniform relativistic
intrinsic static flow speed ∅Vm into the projective
relativistic intrinsic metric time dimension ∅cs∅t
along the vertical in Fig. 5.

The fact that the non-uniform relative proper
intrinsic static flow speed ∅V ′m along the
curved ∅ρ′ and ∅V ′m along the curved ∅cs∅t′
are invariantly projected as relative proper
intrinsic static flow speed ∅V ′m into ∅ρ along
the horizontal and ∅cs∅t along the vertical
respectively in Fig. 5, is a graphical interpretation
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of the invariance of intrinsic static flow speed
in the context of the intrinsic theory of relativity
associated with the presence of a long-range
relativistic intrinsic metric force field in intrinsic
metric space. This invariance is stated as

∅Vm = ∅V ′m , (3a)

hence,
Vm = V ′m , (3b)

where Eqs. (3a) and (3b) have been written at an
arbitrary pair of symmetry-partner points along
the curved ∅ρ′ and ∅cs∅t′.

The invariance of relative proper intrinsic static
flow speed and relative proper static flow speed
(3a) and (3b), in the context of the theory
of relativity and theory of intrinsic relativity
associated with the presence of a relative
proper metric force field in relative proper metric
spacetime and relative proper intrinsic metric
force field in relative proper intrinsic metric
spacetime, which involve relative proper static
flow speed and relative proper intrinsic static
flow speed respectively, established in spacetime
and intrinsic spacetime by the source of a long-
range relative proper metric force field, at the
second stage of evolution of spacetimes and
intrinsic spacetimes within the metric force field,
shall be given formal proof elsewhere, upon
particularizing to the gravitational field.

The corresponding invariance of absolute
intrinsic static flow speed and absolute static flow
speed,

∅V ′mab = ∅V̂m and V ′mab = V̂m ,

deduced and presented as Eqs. (83a) and
(83b) of [3], in the context of absolute intrinsic
metric theory of physics and absolute metric
theory of physics, involving absolute intrinsic
static flow speeds and absolute static flow speed
respectively, established in absolute spacetime
and absolute intrinsic spacetime by the source
of a long-range absolute metric force-field, at
the first stage of evolution of spacetime/intrinsic
spacetime within the metric force field, shall
likewise be given formal proofs elsewhere upon
particularizing to the gravitational field.

Now the perfect symmetry of state among the
four universes namely, positive (or our) universe,
negative universe, positive time-universe and
negative time-universe, isolated in [5–8], implies
that, as the geometry of Fig. 5 evolves
with respect to 3-observers in the relativistic
Euclidean 3-spaces, IE3 and −IE3∗, in our
universe and the negative universe, at the
second stage of evolution of spacetime/intrinsic
spacetime, within symmetry-partner long-range
metric force fields in our universe and the
negative universe, the geometry of Fig. 3 evolves
simultaneously with respect to 3-observers in
the relativistic Euclidean 3-spaces IE03 and
−IE03∗ in the positive time-universe and the
negative time-universe, at the second stage of
evolution of spacetime/intrinsic spacetime within
the symmetry-partner long-range metric force
fields in the positive time-universe and the
negative time-universe.

Fig. 6 in the positive time-universe and the
negative time-universe co-exists with Fig. 5 in
the positive (or our) universe and the negative
universe. It should serve as a complementary
diagram to Fig. 5 toward formulating the theory
of relativity associated with the presence of
symmetry-partner relative proper metric force
fields in the relative proper spacetimes in our
universe and the negative universe. However
Fig. 6 in its present form cannot serve as a
complementary diagram to Fig. 5. This is so,
because the spacetime and intrinsic spacetime
dimensions of the positive time-universe and
the negative time-universe in Fig. 6 are elusive
to observers in our universe and the negative
universe and cannot appear in physics in our
universe and the negative universe.

In order to make Fig. 6 a valid complementary
diagram to Fig. 5, the spacetime and intrinsic
spacetime dimensions of the positive time-
universe and the negative time-universe in it must
be transformed to those of our universe and
the negative universe, as developed in [8] (see
system (15) of that article). This means that the
following transformations of spacetime/intrinsic
spacetime dimensions must be performed on
Fig. 6, thereby transforming Fig. 6 to Fig. 7.
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Fig. 6. The symmetrical global metric spacetime/intrinsic metric spacetime diagram in the
positive time-universe and the negative time-universe, which evolve simultaneously with

Fig. 5 in our universe and the negative universe, at the second stage of evolution of
spacetimes/intrinsic spacetimes within symmetry-partner long-range metric force fields in

the positive time-universe and the negative time-universe, with respect to 3-observers0 in the
relativistic metric Euclidean 3-spaces in those universes
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Fig. 7. The global metric spacetime/intrinsic metric spacetime diagram obtained by
transforming the spacetimes and intrinsic spacetimes of the positive time-universe and the

negative time-universe in Fig. 6 to the spacetimes and intrinsic spacetimes of the positive (or
our) universe and the negative universe; the complementary diagram to Fig. 5, which is valid
with respect to 1-observers in the relativistic metric time dimensions in our universe and the

negative universe
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3-observers in the metric Euclidean 3-spaces of our universe and the negative universe;
(Fig. 8a of [5])
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relativity and intrinsic special theory of relativity with respect to symmetry-partner

1-observers in the metric time dimensions of our universe and the negative universe; the
complementary diagram to Fig. 8a; (Fig. 8b of [5])

49



Joseph; PSIJ, 26(5): 35-72, 2022; Article no.PSIJ.83303

ρ

ρ

m0

m0

m0

g

g

g

m0
g-

m
0-

m0-

~

--

v-

v-

v-
v-

v-

v-

v-

v-

v-

v-

v-

v-

c t
~

c t
~

-ct
~

- c t
~

c t
~

c t
~ct

~

x~

~
~ ~ ~(x, y, z)

x~

- x~

- x~

- ψØ

- ψØ

- ψØ

- ψØ

c t
~sin

0Peter

0Peter

(a)

ψØ( )

sin ψØ( )

h

h

:
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Fig. 9b. The inverse diagram of Fig. 8b of this article with respect to symmetry-partner
3-observers in the metric Euclidean 3-spaces of our universe and the negative universe; the

complementary diagram to Fig. 9a; (Fig. 8b of [5])

IE03 → cst; −IE03∗ → −cst∗; cst0 → IE3; −cst0∗ → −IE3∗ ;

∅ρ0 → ∅cs∅t; −∅ρ0∗ → −∅cs∅t∗; ∅cs∅t0 → ∅ρ ;−∅cs∅t0∗ → −∅ρ∗;

∅ρ0′ → ∅cs∅t′; −∅ρ0′∗ → −∅cs∅t ′∗ ; ; ∅cs∅t0′ → ∅ρ′ ;−∅cs∅t0′∗ → −∅ρ′∗ ; (4)

∅ρ̂0 → ∅ĉs∅t̂ −∅ρ̂0∗ → −∅ĉs∅t̂ ∗; ∅ĉs∅t̂ 0 → ∅ρ̂ ;−∅ĉs∅t̂ 0∗ → −∅ρ̂∗ .

Implementation of system (4) on Fig. 6 yields Fig. 7. The 3-observers0 in the relativistic Euclidean
3-spaces, IE03 and −IE03∗, of the positive time-universe and negative time-universe in Fig. 6, become
1-observers in the time dimensions, cst and −cst∗, of our universe and negative universe in Fig. 7,
due to the transformations (or contractions) of IE03 and −IE03∗ to cst and −cst∗ in system (4).

50



Joseph; PSIJ, 26(5): 35-72, 2022; Article no.PSIJ.83303

Fig. 7 obtained by performing the transformations
of system (4) on Fig. 6, is valid with respect to
1-observers in the metric time dimensions, cst
and −cst∗, as indicated. Recall from section 2
of [8] that the clockwise inclination (or rotation)
of the curved relative proper intrinsic metric
spacetimes, ∅ρ′ and ∅cs∅t′, relative to their
projective relativistic intrinsic metric spacetimes,
∅ρ and ∅cs∅t, by varying positive intrinsic angle
in Fig. 7, is valid with respect to 1-observers in
the time dimensions.

Fig. 7 contains the metric spacetime and intrinsic
metric spacetime dimensions of our universe and
the negative universe solely. It is hence a valid
complementary diagram to Fig. 5 for the purpose
of formulating the theory of relativity and intrinsic
theory of relativity associated with the presence
of symmetry-partner relative proper metric force
fields in the relative proper metric spacetimes and
the underlying symmetry-partner relative proper
intrinsic metric force fields in the relative proper
intrinsic metric spacetimes in our universe and
the negative universe.

The geometry of Fig. 5 and its complementary
geometry of Fig. 7 in our universe and negative
universe, in the context of the theory of relativity
and intrinsic theory of relativity associated with
non-uniform relative proper static flow speed and
non-uniform relative proper intrinsic static flow
speed, established in spacetimes and intrinsic
spacetimes by symmetry-partner relative proper
metric force fields and relative proper intrinsic
metric force fields in our universe and the
negative universe, correspond to the geometry
of Fig. 8a of of [5] and its complementary
geometry of Fig. 8b of that article. These are
the theory of relativity and intrinsic theory of
relativity (SR/∅SR), associated with uniform
relative dynamical speeds and uniform relative
intrinsic dynamical speeds of the motions of
symmetry-partner particles relative to symmetry-
partner ‘stationary’ observers in our universe
and the negative universe. Figures 8a and 8b
of [5] are reproduced as Fig. 8a and Fig. 8b
respectively of this article, on pages 49 at the
end of this article.

Just as Fig. 8a and Fig. 8b of [5] of SR/∅SR,
reproduced as Fig. 8b and Fig. 8b of this article
on page 49 at the end of this article, have
Fig. 9a and Fig. 9b of [5] as their inverses, there

are inverses to Fig. 5 and Fig. 7 of this article
for the theory of relativity and intrinsic theory
of relativity associated with the presence of
symmetry-partner long-range metric force fields
in our universe and negative universe. Figures
9a and 9b of [5], are reproduced as Fig. 9a and
Fig. 9b of this article on page 50 at the end of this
article. The derivations of the inverses to Fig. 5
and Fig. 7 of this article are done below.

Now the extended curved relative proper intrinsic
metric space ∅ρ′ and the extended curved
relative proper intrinsic metric time dimension
∅cs∅t′ possess varying positive relative proper
intrinsic static flow speed ∅V ′m along their
lengths, relative to all 3-observers in the
relativistic metric Euclidean 3-space IE3 in Fig. 5.
Consequently ∅ρ′ is curved anticlockwise at
varying positive relative intrinsic angles ∅ψ
relative to the straight line ∅ρ along the horizontal
and ∅cs∅t′ is identically curved anticlockwise
(into the second quadrant) at varying positive
relative intrinsic angle ∅ψ relative to the straight
line ∅cs∅t along the vertical in Fig. 5.

In obtaining the inverse of Fig. 5, one could,
at first thought, consider the projective extended
relativistic intrinsic metric space ∅ρ and extended
projective straight line relativistic intrinsic metric
time dimension ∅cs∅t to possess varying
negative relative proper intrinsic static flow
speed −∅V ′m along their lengths, relative to
the curved relative proper intrinsic metric space
∅ρ′ and curved relative proper intrinsic metric
time dimension ∅cs∅t′ respectively. One could
then further consider the relativistic intrinsic
metric space ∅ρ to be curved into the first
quadrant at varying negative intrinsic angle −∅ψ
relative to straight line relative proper intrinsic
metric space ∅ρ′ along the horizontal and the
relativistic intrinsic metric time dimension ∅cs∅t
to be curved into the second quadrant at varying
negative intrinsic angle −∅ψ relative to straight
line relative proper intrinsic metric time dimension
∅cs∅t′ along the vertical. The straight line
∅ρ′ along the horizontal and the straight line
∅cs∅t′ along the vertical so formed, will then be
made manifested outwardly in three-dimensional
relative proper Euclidean space IE′3 as hyper-
surface along the horizontal and straight line
relative proper metric time dimension cst

′ along
the vertical.
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The inverse of Fig. 5 derived as explained
in the preceding paragraph is invalid for two
major reasons. First, it brings back the
flat four-dimensional relative proper metric
spacetime (IE′3, cst

′) and its underlying flat
two-dimensional relative proper intrinsic metric
spacetime (∅ρ′,∅cs∅t′) at the second stage
of evolution of metric spacetimes and intrinsic
metric spacetimes in a long range metric force
field, which cannot be, since the flat relative
proper metric spacetime (IE′3, cst

′) and its
underlying flat relative proper intrinsic metric
spacetime (∅ρ′,∅cs∅t′), have evolved into
flat relativistic metric spacetime (IE3, cst) and
its underlying flat relativistic intrinsic metric
spacetime (∅ρ,∅cs∅t) permanently at the
second stage.

Secondly, projective negative non-uniform
relative proper intrinsic static flow speed −∅V ′m
along the length of the relativistic intrinsic metric
spacetime dimensions, ∅ρ and ∅cs∅t, cannot
give rise to curvature of ∅ρ and ∅cs∅t. Rather
it is non-uniform negative relativistic intrinsic
static flow speed (without prime label) −∅Vm
along the lengths of the relativistic intrinsic
metric dimensions, ∅ρ and ∅cs∅t, that can
give rise to their curvature relative to straight
line ∅ρ′ and ∅cs∅t′. In other words, contrary
to the inverse of Fig. 5 described in the
penultimate paragraph, the relativistic intrinsic
metric spacetime (∅ρ,∅cs∅t) cannot be curved
relative to flat relative proper intrinsic metric
spacetime (∅ρ′,∅cs∅t′) by virtue of non-uniform
negative relative proper intrinsic static flow speed
−∅V ′m along the lengths of ∅ρ and ∅cs∅t.

The curvature of the relative proper intrinsic
metric spacetime (∅ρ′,∅cs∅t′) relative to
its projective flat relativistic intrinsic metric
spacetime (∅ρ,∅cs∅t) underlying a flat
relativistic metric spacetime (IE3, cst) in Fig. 5,
must be retained in the inverse of Fig. 5. However
the straight line relativistic intrinsic metric space
∅ρ with varying positive relative proper intrinsic
static flow speeds ∅V ′m along its length along
the horizontal in Fig. 5, must be considered to
possess varying negative relative proper intrinsic
static flow speed −∅V ′m along its length along
the horizontal and to be inclined clockwise by
varying negative intrinsic angle −∅ψ relative to
the curved ∅ρ′ in the inverse diagram, where the

curved ∅ρ′ also possesses non-uniform relative
proper intrinsic static flow speed −∅V ′m along its
length.

The straight line relativistic intrinsic metric time
dimension ∅cs∅t with varying positive relative
proper intrinsic static flow ∅V ′m speed along its
length along the vertical in Fig. 5, must likewise
be considered to possess varying negative
relative proper intrinsic static flow speed −∅V ′m
along its length along the vertical and to be
inclined clockwise by varying negative relative
intrinsic angle −∅ψ relative to the curved ∅cs∅t′
in the inverse diagram, where the curved ∅cs∅t′
also possesses non-uniform relative proper
intrinsic static flow speed −∅V ′m along its length.

The valid inverse of Fig. 5 that follows from the
preceding paragraph is depicted in Fig. 10. It is
to be observed that the straight line relativistic
intrinsic metric space ∅ρ along the horizontal is
rotated clockwise by negative relative intrinsic
angle −∅ψm,P relative to the tangent to the
curved relative proper intrinsic metric space
∅ρ′ at the point P along the curved ∅ρ′ and
the straight line relativistic intrinsic metric time
dimension ∅cs∅t along the vertical is rotated
clockwise by equal negative relative intrinsic
angle −∅ψP 0 relative to the tangent to the
curved relative proper intrinsic time dimension
∅cs∅t′, at the symmetry-partner point P0 along
the curved ∅cs∅t′ in Fig. 10. The negative
relative proper intrinsic static flow speed −∅V ′m
and negative relative intrinsic angle −∅ψ vary
along the curved ∅ρ′ and curved ∅cs∅t′ in
Fig. 10.

Now the clockwise sense of inclination of the
relativistic intrinsic metric time dimension ∅cs∅t
along the vertical relative to the curved relative
proper intrinsic metric time dimension ∅cs∅t′ in
the second quadrant, by varying negative relative
intrinsic angles −∅ψ along the curved ∅cs∅t′,
due to varying negative relative proper intrinsic
static flow speed −∅V ′m along ∅cs∅t, is valid
with respect to 1-observers in the relativistic time
dimensions, cst and − cst∗ of the positive and
negative universes as indicated. The clockwise
sense of inclination of the straight line relativistic
intrinsic metric space ∅ρ along the horizontal
relative to the curved relative proper intrinsic
metric space ∅ρ′ in the first quadrant, by varying
negative intrinsic angles, −∅ψ along the curved
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∅ρ′, due to varying negative relative proper
intrinsic static flow speed −∅V ′m along ∅ρ′
in Fig. 10, is likewise valid with respect to 1-

observers in the relativistic time dimensions, cst
and− cst∗, of the positive and negative universes
as indicated.
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Fig. 10. The inverse of the global metric spacetime/intrinsic metric spacetime diagram of
Fig. 5; is valid with respect to 1-observers in the relativistic time dimensions cs and −cst∗ in

the positive and negative universes
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Fig. 11. The inverse of the global metric spacetime/intrinsic metric spacetime diagram of
Fig. 7; is valid with respect to 3-observers in the relativistic metric Euclidean 3-spaces IE3

and −IE∗3 of the positive and negative universes.
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Fig. 10 is valid with respect to 1-observers in
the relativistic time dimensions, cst and − cst∗,
because the clockwise rotations (or inclinations)
of the curved relative proper intrinsic metric
dimensions, ∅cs∅t′ and ∅ρ′, relative to their
projective straight line relativistic intrinsic metric
dimensions, ∅ρ and ∅cs∅t, respectively, by
varying positive intrinsic angle ∅ψ in Fig. 7, are
equivalent to clockwise rotations (or inclinations)
of the straight line relativistic intrinsic metric
dimensions, ∅ρ and ∅cs∅t, relative to the curved
relative proper intrinsic metric dimensions, ∅ρ′
and ∅cs∅t′, respectively, by varying negative
intrinsic angle −∅ψ in Fig. 10. Consequently,
Fig. 10, like Fig. 7, is valid with respect to 1-
observers in the relativistic time dimensions cst
and −cst∗.

The inverse of Fig. 7, which can be derived
from that figure by following the derivation
of Fig. 10 from Fig. 5 is depicted in Fig. 11.
Again the curvature of the relative proper
intrinsic metric spacetime (∅ρ′,∅cs∅t′) relative
to its projective flat relativistic intrinsic metric
spacetime (∅ρ,∅cs∅t) underlying the flat
relativistic metric spacetime (IE3, cst) in Fig. 7,
is retained in its inverse diagram of Fig. 11.
However the straight line relativistic intrinsic
metric space ∅ρ with varying positive relative
proper intrinsic static flow speed ∅V ′m along its
length in Fig. 7, is now considered to possess
varying negative relative proper intrinsic static
flow speed −∅V ′m along its length along the
horizontal relative to the curved relative proper
intrinsic metric space ∅ρ′ and to be inclined anti-
clock-wise by varying negative intrinsic angle
−∅ψ relative to the curved ∅ρ′ in Fig. 11.
The straight line relativistic intrinsic metric time
dimension ∅cs∅t with varying positive relative
proper intrinsic static flow speed ∅V ′m along its
length along the vertical in Fig. 7, is likewise
considered to be inclined anti-clockwise by
varying negative intrinsic angle −∅ψ, relative
to the curved ∅cs∅t′ in the inverse diagram of
Fig. 11.

Fig. 11 as the inverse global diagram of
Fig. 7, is valid with respect to 3-observers in the
relativistic Euclidean 3-spaces, IE3 and −IE∗3.
This is so, because the anti-clockwise rotations
(or inclinations) of the curved relative proper
intrinsic metric dimensions, ∅cs∅t′ and ∅ρ′,

relative to their projective straight line relativistic
intrinsic metric dimensions, ∅cs∅t and ∅ρ,
respectively, by varying positive intrinsic angle
∅ψ in Fig. 10, are equivalent to anti-clockwise
rotations (or inclinations) of the straight line
relativistic intrinsic metric dimensions, ∅cs∅t and
∅ρ, relative to curved relative proper intrinsic
metric dimensions, ∅cs∅t′ and ∅ρ′, respectively,
by varying negative relative intrinsic angle −∅ψ
in Fig. 11. Consequently, Fig. 11, like Fig. 5, is
valid with respect to 3-observers in IE3 and −IE∗3

as indicated.

Figs. 8a and 8b and their inverses, Figs. 9a
and 9b, of [5], reproduced as Figs. 8a and
8b and Figs. 9a and 9b of this article, on
pages 49 and 50 at the end of this article,
involve inclined extended straight line pseudo-
orthogonal primed (or proper) intrinsic affine
spacetime coordinates, ∅x̃ ′ and ∅cs∅t̃ ′, relative
to their projective extended pseudo-orthogonal
unprimed (or relativistic) straight line intrinsic
affine coordinates, ∅x̃ and ∅cs∅t̃. They involve
constant relative positive intrinsic dynamical
speed and positive dynamical speed, ∅v and
v (in Figs. 8a and 8b on page 49) and constant
relative negative intrinsic dynamical speed and
negative dynamical speed, −∅v and −v (in
Figs. 9a and 9b on pages 50), in the context of
the intrinsic special theory of relativity and special
theory of relativity (∅SR/SR), as developed in [5].

On the other hand, Figs. 5 and 7 and their
inverses, Figs. 10 and 11, of this article, involve
extended inclined curved pseudo-orthogonal
curvilinear relative proper intrinsic metric
spacetime dimensions, ∅ρ′ and ∅cs∅t′, which
are curved relative to their projective extended
straight line pseudo-orthogonal relativistic
intrinsic metric spacetime dimensions, ∅ρ and
∅cs∅t. They involve non-uniform positive relative
proper intrinsic static flow speed ∅V ′m along the
curved and straight line intrinsic metric spacetime
dimensions (in Figs. 5 and 7), and non-uniform
negative relative proper intrinsic static flow speed
−∅V ′m along the curved and straight line intrinsic
metric dimensions (in Figs. 10 and 11), in the
context of the intrinsic theory of relativity and
theory of relativity associated with the presence
of symmery-partner long-range relative proper
metric force fields in metric spacetimes and
symmetry-partner long-range relative proper
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intrinsic metric force fields in the underlying
intrinsic metric spacetimes in our universe and
the negative universe.

From the point of view of the absolute intrinsic
metric theory on the curved ‘two-dimensional’
absolute intrinsic metric spacetime (∅ρ̂,∅ĉs∅t̂),
involving non-uniform absolute intrinsic static
flow speed ∅V̂m along the curved ∅ρ̂ and
∅ĉs∅t̂, developed in the preceding three parts
of this paper [1–3], at the first stage of evolution
of spacetime and intrinsic spacetime within
a long-range metric force field, on the other
hand, there is only one diagram namely, the
curved absolute intrinsic spacetime (∅ρ̂,∅ĉs∅t̂)
relative to its projective flat absolute proper
intrinsic metric spacetime (∅ρ′ab,∅csab∅t′ab) and
the relative proper intrinsic metric spacetime
(∅ρ′,∅cs∅t′), which appears automatically
alongside the projection of (∅ρ′ab,∅csab∅t′ab)
along the horizontal, as well as the outward
manifestation of (∅ρ′,∅cs∅t′) namely, the
flat four-dimensional relative proper metric
spacetime (IE3, cst) in Fig. 1.

Inverse diagrams and inverse coordinate
transformations exist in relativity only and not in
the context of the absolute intrinsic metric theory.
Consequently the curved (∅ρ̂,∅ĉs∅t̂) in the first
quadrant and the curved (−∅ρ̂∗,−∅ĉs∅t̂∗) in the
third quadrant in Figs. 5 and 7 are retained in the
inverse diagrams of Fig. 10 and Fig. 11.

2.2 Deriving Intrinsic Local
Lorentz Transformation and
Local Lorentz Transformation
and Their Inverses Within
Long-range Metric Force
Fields in Terms of Intrinsic
Static Flow Speed and Static
Flow Speed

Let us consider an elementary interval d∅ρ′
of the curved relative proper intrinsic metric
space ∅ρ′ about point P along the curved ∅ρ′
in the first quadrant in Fig. 5. The interval d∅ρ′
possesses positive relative proper intrinsic static
flow speed ∅V ′m,P and is inclined anticlockwise
to the horizontal at intrinsic angle ∅ψP . It projects
relativistic intrinsic metric space interval d∅ρ
along the horizontal that also possesses relative

proper intrinsic static speed ∅V ′m,P , with respect
to all 3-observers in the relativistic Euclidean 3-
space IE3 in Fig. 5.

The corresponding elementary interval ∅csd∅t′
of the curved relative proper intrinsic metric time
dimension ∅cs∅t′ about the symmetry-partner
point P0 along the curved ∅cs∅t′ in the second
quadrant in Fig. 5, possesses intrinsic static flow
speed ∅V ′m,P0 and is inclined anticlockwise at
intrinsic angle ∅ψP0 to the vertical. It projects
interval ∅cd∅t of relativistic intrinsic metric time
dimension along the vertical that also possesses
proper intrinsic static flow speed ∅V ′m,P0 , with
respect to all 3-observers in IE3 in that figure.

The elementary interval −d∅ρ′∗ of the curved
relative proper intrinsic metric space−∅ρ′∗ about
the symmetry-partner point P∗ along −∅ρ′∗, in
the third quadrant in Fig. 5, possesses positive
relative proper intrinsic static flow speed ∅V ′m,P
and is inclined anticlockwise at intrinsic angle
∅ψP to the horizontal. It projects relativistic
intrinsic metric space interval −d∅ρ∗ along the
horizontal that also possesses relative proper
intrinsic static flow speed ∅V ′m,P , with respect
to all 3-observers* in the relativistic Euclidean 3-
space −IE3∗ in that figure. The corresponding
elementary interval −∅csd∅t′∗ of the curved
relative proper intrinsic metric time dimension
−∅cs∅t′∗, about the symmetry-partner point P0∗

along −∅cs∅t′∗ in the fourth quadrant in Fig. 5,
possesses positive relative intrinsic static flow
speed ∅V ′m,P 0 and it is inclined anticlockwise at
intrinsic angle ∅ψP 0 to the vertical. It projects
interval −∅csd∅t∗ of relativistic intrinsic metric
time dimension along the vertical that also
possesses positive relative intrinsic static flow
speed ∅V ′m,P 0 , with respect to all 3-observers*
in −IE3∗ in Fig. 5.

The elementary intervals of curved relative
proper intrinsic metric spaces and curved
relative proper intrinsic metric time dimensions,
d∅ρ′, −d∅ρ′∗, ∅csd∅t′ and−∅csd∅t′∗, shall be
considered to be indefinitely short so that they are
short straight line segments within which relative
proper intrinsic static flow speed has a constant
value. Then since the points, P0 and P0∗, along
the curved ∅cs∅t′ and −∅cs∅t′∗ and points, P
and P*, along the curved ∅ρ′ and −∅ρ′∗ are
symmetry-partner points in Fig. 5, the intrinsic
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angle ∅ψP 0 of inclinations of intervals, ∅csd∅t′
and −∅csd∅t′∗, to the vertical and the intrinsic
angle ∅ψm,P of inclinations of intervals, d∅ρ′
and −d∅ρ′∗, to the horizontal are equal, that is,
∅ψP 0 = ∅ψm,P in Fig. 5.

By making use of the information in the
preceding two paragraphs and drawing
the inclined elementary intervals, d∅ρ′,
∅csd∅t′, −d∅ρ′∗ and −∅csd∅t′∗, relative to
their projections, d∅ρ, ∅csd∅t, −d∅ρ∗ and
−∅csd∅t∗, respectively, at the symmetry-partner
points, P along the curved ∅ρ′, P0 along the
curved ∅cs∅t′, P∗ along the curved −∅ρ′∗ and
P0∗ along the curved−∅cs∅t′∗ in Fig. 5, we have
Fig. 12. The local geometry of Fig. 12, derived
from the global geometry of Fig. 5, is valid with
respect to all 3-observers in the relativistic metric
Euclidean 3-spaces, IE3 and −IE3∗, as is the
case with Fig. 5.

Fig. 12 has been drawn at the symmetry-
partner points P, P0, P* and P0* along the
curved relative proper intrinsic metric dimensions
∅ρ′, ∅cs∅t′, −∅ρ′∗ and −∅cs∅t′∗ respectively
in Fig. 5, as mentioned above. Hence the
appearance of intrinsic angle of inclination
∅ψm,P (where ∅ψm,P = ∅ψP0 ) in Fig. 7. The
inclined elementary intervals of proper intrinsic
metric spacetime d∅ρ′, ∅csd∅t′, −d∅ρ′∗ and
−∅csd∅t′∗, possess equal positive relative
proper intrinsic static flow speed ∅V ′m,P and
invariantly project same into their projective
relativistic components d∅ρ, ∅csd∅t, −d∅ρ∗
and −∅csd∅t∗. It is to be noted that the line
segments AB ′, AC ′, A*B ′*, and A*C ′* are
mere connecting lines and not intrinsic metric
coordinates. The line segments AB, AC, A*B*
and A*C* are likewise mere connecting lines.

The component d∅ρ of interval of relativistic
intrinsic metric space projected along the
horizontal is made manifested outwardly in
an elementary volume dIE3 of the relativistic
Euclidean 3-space IE3 in Fig. 12. Likewise the
component ∅csd∅t of the relativistic intrinsic
metric time dimension projected along the
vertical is made manifested outwardly in an
elementary interval csdt of the relativistic metric
time dimension cst along the vertical.

In addition, the inclined negative elementary
relative proper intrinsic metric time dimension

−∅csd∅t′∗ from the negative universe in
the fourth quadrant, projects component
−∅csd∅t′ sin∅ψm,P along the horizontal in
the first quadrant, which is made manifested
outwardly in −csdt′ sinψm,P along the horizontal
in Fig. 12. The dummy star label has
been removed from the projective component
−∅csd∅t′∗ sin∅ψm,P of the inclined −∅csd∅t′∗,
because this projective component is now an
intrinsic dimension in the positive universe.
The star label on the spacetime and intrinsic
spacetime and parameters and intrinsic
parameters of the negative universe have been
consistently used to differentiated from those of
our universe in all previous articles, starting from
since [5].

Derivation of partial intrinsic local Lorentz
transformation from Fig. 12 follows the same
procedure used to derive partial intrinsic Lorentz
transformation from Fig. 8a of [5] in the context
of intrinsic special theory of relativity (∅SR). The
procedure is applied hereunder.

Now d∅ρ being the projective component along
the horizontal of the inclined d∅ρ′, then d∅ρ =
d∅ρ′ cos∅ψm,P . Hence we must express the
rotated d∅ρ′ in terms of its projection d∅ρ along
the horizontal with respect to all 3-observers in
IE3 and write

d∅ρ′ = d∅ρ sec∅ψm,P .

This is all the intrinsic metric spacetime interval
transformation that should have been possible
along the horizontal in the first quadrant,
with respect to 3-observers in the relativistic
Euclidean 3-space IE3 in Fig. 12, except
that the inclined interval of negative relative
proper intrinsic metric time dimension−∅csd∅t′∗
in the fourth quadrant also projects interval
−∅csd∅t′ sin∅ψm,P (with the star label removed
for the reason given above) along the horizontal,
which must be added to the right-hand side of the
last displayed equation to have

d∅ρ′ = d∅ρ sec∅ψm,P −∅csd∅t′ sin∅ψm,P .

But the inclined interval ∅csd∅t′ is related to its
projection ∅csd∅t along the vertical in the same
Fig. 12 as, ∅csd∅t = ∅csd∅t′ cos∅ψm,P , hence
∅csd∅t′ = ∅csd∅t sec∅ψm,P . Using this in the
last displayed equation gives

d∅ρ′ = d∅ρ sec∅ψm,P − ∅csd∅t tan∅ψm,P ;

(with respect to 3− observers in IE3) .
(5)
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Equation (5) is the partial transformation of
elementary intrinsic metric spacetime coordinate
intervals in terms of the intrinsic angle ∅ψm,P ,
which can be derived along the horizontal in the
first quadrant, with respect to 3-observers in IE3

in Fig. 12.

The complementary diagram to Fig. 12 that
can be drawn at the symmetry-partner points,
P, P0, P* and P0*, along the curved relative
proper intrinsic metric spacetimes dimensions,
∅ρ′,∅cs∅t′,−∅ρ′∗ and −∅cs∅t′∗, in Fig. 7;
Fig. 7 being the complementary diagram to Fig. 5,
is depicted in Fig. 13. The local geometry of
Fig. 13 derived from the global geometry of
Fig. 7 is valid with respect to 1-observers in the
relativistic metric time dimensions, cst and −cst∗,
as is the case with Fig. 7.

Now ∅csd∅t being the projective component
along the vertical of the inclined ∅csd∅t′ in
the first quadrant in Fig. 13, then ∅csd∅t =

∅csd∅t′ cos∅ψm,P . We must express the
rotated ∅csd∅t′ in terms of its projection φcsdφt
along the vertical with respect to 1-observers in
cst and write,

∅csd∅t′ = ∅csd∅t sec∅ψm,P .

This is all the transformation of intrinsic metric
spacetime intervals that should have been
possible along the vertical in the first quadrant,
with respect to 1-observers in the relativistic
time dimension cst in Fig. 13, except that the
inclined negative relative proper intrinsic metric
space interval −d∅ρ′∗ in the second quadrant
also projects component −d∅ρ′ sin∅ψm,P (its
star label has been removed because it is an
intrinsic coordinate of our univere) along the
vertical, which must be added to the right-hand
side of the last displayed equation to have

∅csd∅t′ = ∅csd∅t sec∅ψm,P−d∅ρ′ sin∅ψm,P .
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Fig. 12. The local metric spacetime/intrinsic metric spacetime diagram drawn at
symmetry-partner points in spacetimes/intrinsic spacetimes in the positive (or our) universe

and the negative universe obtained from the global diagram of Fig. 5, for deriving partial
transformation of elementary intrinsic metric spacetime coordinate intervals in terms of

intrinsic static flow speed, with respect to 3-observers in the relativistic Euclidean 3-spaces
in the positive and negative universes

But the inclined interval d∅ρ′ is related to its projection d∅ρ as, d∅ρ = d∅ρ′ cos∅ψm,P , hence,
d∅ρ′ = d∅ρ × sec∅ψm,P , along the horizontal in the same Fig. 13. Using this in the last displayed
equation gives

∅csd∅t′ = ∅csd∅t sec∅ψm,P − d∅ρ tan∅ψm,P ;

(with respect to 1− observers in cst) .
(6)
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Equation (6) is the partial transformation of elementary intrinsic metric spacetime coordinate intervals
in terms of the intrinsic angle ∅ψm,P , which can be derived along the vertical in the first quadrant,
with respect to 1-observers in cst in Fig. 13.

Collecting Eqs. (5) and (6) gives the full transformation of elementary intrinsic metric spacetime
coordinate intervals from the local geometry of Fig. 12 and its complementary geometry of Fig. 13 as

∅csd∅t′ = ∅csd∅t sec∅ψm,P − d∅ρ tan∅ψm,P
(w.r.t 1− observers in cst) ;

d∅ρ′ = d∅ρ sec∅ψm,P − ∅csd∅t tan∅ψm,P ; (7)

(w.r.t 3− observers in IE3) .

There is an inverse of system (7), which must be derived from the inverses to Figs. 12 and 13.
Now in obtaining the inverse of the local diagrams of Figs. 12 and 13, the inclined position of
the primed intrinsic local metric frame (d∅ρ′,∅csd∅t′) and the non-inclined position (or flatness)
of the unprimed (or relativistic) intrinsic local metric frame (d∅ρ,∅csd∅t) in Figs. 12 and 13 must
be retained. However the flat (or non-inclined) relativistic (or unprimed) local intrinsic metric frame
(d∅ρ,∅csd∅t) must now be considered to possess negative relative proper intrinsic static flow speed
−∅V ′m,P and to be inclined at negative intrinsic angle −∅ψm,P relative to the inclined relative proper
(or primed) local intrinsic metric frame (d∅ρ′,∅csd∅t′). The negative relative proper intrinsic static
flow speed of the unprimed local intrinsic metric frame (d∅ρ,∅csd∅t) is still invariantly projected into
the inclined primed local intrinsic metric frame (d∅ρ′,∅csd∅t′). The resulting inverse diagram to
Fig. 12 is depicted in Fig. 14.
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Fig. 13. The complementary diagram to Fig. 12 drawn at symmetry-partner points in
spacetimes/intrinsic spacetimes in the positive and negative universes, from the global

diagram of Fig. 7, for deriving partial transformation of elementary intrinsic metric spacetime
coordinate intervals in terms of intrinsic static flow speed with respect to 1-observers in the

relativistic metric time dimensions in the positive and negative universes
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Fig. 14. The inverse of the local diagram of Fig. 12 drawn from the global diagram of Fig. 10,
for deriving partial inverse transformations of elementary intrinsic metric coordinate intervals

in terms of relative proper intrinsic static flow speed with respect to 1-observers in the
relativistic time dimensions cst and − cst∗ in the positive and negative universes

The clockwise rotation of the relative proper
(or primed) intrinsic local metric frame
(d∅ρ′,∅csd∅t′) relative to its projective
relativistic (or unprimed) intrinsic local metric
frame (d∅ρ,∅csd∅t), by a positive intrinsic angle
∅ψm,P in Fig. 13, is equivalent to the clockwise
rotation of the relativistic (or unprimed) intrinsic
local metric frame (d∅ρ,∅csd∅t) relative to
the relative proper (or primed) intrinsic local
metric frame (d∅ρ′,∅csd∅t′), by negative
intrinsic angle −∅ψm,P in Fig. 14. Consequently
Fig. 13 and Fig. 14 are both valid with respect
to 1-observers in the relativistic metric time
dimensions, cst and − cst∗, in our universe and
the negative universe.

Fig. 14 as the inverse of Fig. 12 in a long-
range metric force field and an intrinsic long-
range metric force field, corresponds to Fig. 9a
as the inverse of Fig. 8a [5], reproduced as
Figs. 8a and 9a on pages 49 and 50 of this
article in the context of SR/∅SR. Consequently
the procedure applied in deriving partial inverse
intrinsic affine coordinate transformation from
Fig. 9(a) of this article in [5] shall be applied
in deriving partial inverse transformation of
elementary intrinsic metric spacetime coordinate
intervals from Fig. 14 here.

Now the interval of inclined relative proper
intrinsic metric space d∅ρ′ in the first quadrant
in Fig. 14 is the projection of the non-inclined
interval of relativistic intrinsic metric space d∅ρ
in the first quadrant in that figure. That is,
d∅ρ′ = d∅ρ cos(−∅ψm,P ) = d∅ρ cos(∅ψm,P ).
The non-inclined d∅ρ must be expressed in
terms of its projective ∅ρρ′ with respect to 1-
observers in cst in the inverse diagram of Fig. 14
as

d∅ρ = d∅ρ′ sec∅ψm,P .

This is all the elementary intrinsic metric
spacetime coordinate interval transformation that
should have been possible along the inclined
path AB′, with respect to 1-observers in the
relativistic time dimension cst in the first quadrant
in Fig. 14, except that the interval ∅csd∅t of
relativistic intrinsic metric time dimension along
the vertical projects a component, ∅csd∅t cos∅η
along the inclined path AB′, where ∅η+∅ψm,P =
∅π/2, or ∅η = ∅π/2 − ∅ψm,P . Hence,
∅csd∅t cos∅η = ∅csd∅t sin∅ψm,P . This
component must be added to the right-hand side
of the last displayed equation to have

d∅ρ = d∅ρ′ sec∅ψm,P + ∅csd∅t sin∅ψm,P ;

(w.r.t. 1− observers in cst) . However,
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∅csd∅t′ = ∅csd∅t cos(−∅ψm,P ) =
∅csd∅t cos∅ψm,P , hence, ∅csd∅t =
∅csd∅t′ sec∅ψm,P , along the vertical in the
first quadrant in Fig. 14. Using this in the last
displayed equation gives

d∅ρ = d∅ρ′ sec∅ψm,P + ∅csd∅t′ tan∅ψm,P ;

(w.r.t. 1− observers in cst) . (8)

This is the partial inverse transformation of
elementary intrinsic metric spacetime coordinate
intervals that can be derived along the inclined
path AB′ with respect to 1-observers in the
relativistic time dimension cst in the first quadrant
(or in our universe) in Fig. 14.

Finally the inverse of the local geometry of
Fig. 13, which can be derived from the global
geometry of Fig. 11 is depicted in Fig. 15. Figure
10 is valid with respect to 3-observers in the
relativistic Euclidean 3-spaces, IE3 and −IE3 ∗.
This is so because anti-clockwise rotation of the
relative proper (or primed) intrinsic local metric
frame (d∅ρ′,∅csd∅t′) relative to its projective
relativistic (or unprimed) intrinsic local metric
frame (d∅ρ,∅csd∅t), by a positive intrinsic angle
∅ψm,P in Fig. 12, is equivalent to the anti-
clockwise rotation of the relativistic (or unprimed)
intrinsic local metric frame (d∅ρ,∅csd∅t) relative
to the inclined relative proper intrinsic local metric

frame (d∅ρ′,∅csd∅t′) by negative intrinsic angle
−∅ψm,P in Fig. 15. Consequently Fig. 15, like
Fig. 12, is valid with respect to all 3-observers
in the relativistic Euclidean 3-spaces, IE3 and
−IE3∗, in our universe and the negative universe.

Again Fig. 15 is the inverse of Fig. 13 like Fig. 9(b)
is the inverse of Fig. 8(b) in [5], reproduced as
Figs. 9(b) and 8(b) of this article. Consequently
the procedure applied in deriving partial inverse
intrinsic affine coordinate transformation from
Fig. 9(b) in [5] shall be applied in deriving
partial inverse intrinsic metric coordinate interval
transformation from Fig. 15 here.

Now the interval ∅csd∅t′ of the inclined
relative proper intrinsic metric time dimension
∅cs∅t′ along the inclined path AC′ in the first
quadrant in Fig. 15, is the projection of the
non-inclined interval ∅csd∅t of the relativistic
intrinsic metric time dimension ∅csd∅t along the
horizontal in the first quadrant in that figure.
That is, ∅csd∅t′ = ∅csd∅t cos(−∅ψm,P ) =
∅csd∅t cos(∅ψm,P ). The interval ∅csd∅t must
be expressed in terms of its projection ∅csd∅t′
along the path AC′ with respect of 3-observers in
IE3 in Fig. 15 as

∅csd∅t = ∅csd∅t′ sec∅ψm,P .
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Fig. 15. The inverse of the local diagram of Fig. 13, drawn from the global diagram of Fig. 11,
for deriving partial inverse transformations of elementary intrinsic metric spacetime

coordinate intervals in terms of relative proper intrinsic static flow speed with respect to
3-observers in the relativistic metric Euclidean 3-spaces in the positive and negative

universes
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This is all the elementary intrinsic metric spacetime coordinate interval transformation that should
have been possible along the inclined path AC′, with respect to 3-observers in the relativistic Euclidean
3-space IE3 in the first quadrant in Fig. 15, except that the interval d∅ρ of relativistic intrinsic metric
space along the horizontal projects a component, d∅ρ cos∅η along the inclined path AC′, where
∅η + ∅ψm,P = ∅π/2, or ∅η = ∅π/2 − ∅ψm,P . Hence, d∅ρ cos∅η = d∅ρ sin∅ψm,P . This
component must be added to the right-hand side of the last displayed equation to have

∅csd∅t = ∅csd∅t′ sec∅ψm,P + d∅ρ sin∅ψm,P ;

(w.r.t. 3− observers in IE3)

However, d∅ρ′ = d∅ρ cos(−∅ψm,P ) , hence, d∅ρ = d∅ρ′ sec∅ψm,P , along the horizontal in the first
quadrant in Fig. 15. Using this in the last displayed equation gives

∅csd∅t = ∅csd∅t′ sec∅ψm,P + d∅ρ′ tan∅ψm,P ;

(w.r.t. 3− observers in IE3) . (9)

This is the partial inverse transformation of elementary intrinsic metric spacetime coordinate intervals
that can be derived along the inclined path AC′ with respect to 3-observers in the relativistic Euclidean
3-space IE3 in the first quadrant (or in our universe) in Fig. 15. Collecting Eqs. (8) and (9) gives

∅csd∅t = ∅csd∅t′ sec∅ψm,P + d∅ρ′ tan∅ψm,P ;

(w.r.t 3− observers in IE3) ;

d∅ρ = d∅ρ′ sec∅ψm,P + ∅csd∅t′ tan∅ψm,P ; (10)

(w.r.t 1− observers in cst) .

System (10) derived from the local diagrams of Figs. 14 and 15 is the inverse of system (7) derived
from the local diagrams of Figs. 12 and 13.

Let us consider an intrinsic event that involves interval ∅csd∅t′ of relative proper intrinsic metric time
dimension but zero interval of relative proper intrinsic metric space (d∅ρ′ = 0). This reduces system
(10) as

∅csd∅t = ∅csd∅t′ sec∅ψm,P ;

d∅ρ = ∅csd∅t′ tan∅ψm,P . (11)

Dividing the second into the first equation of system (11) gives

d∅ρ
∅csd∅t

= sin∅ψm,P . (12)

But d∅ρ/d∅t = ∅V ′m,P , is the positive relative proper intrinsic static flow speed of the primed
intrinsic local metric frame (d∅ρ′,∅csd∅t′) and its projective unprimed intrinsic local metric frame
(d∅ρ,∅csd∅t), knowing that intrinsic dynamical speed is absent, since no particle is in motion.

Let us also recall the definition of sin∅ψ̂m,P in Eq. (80) of the preceding third part of this paper [3]
and the discussion following it. The corresponding definition of sinψm,P in the present context is,
sin∅ψP = d∅ρ/∅csd∅t = d∅ρ′/∅csd∅t′ = ∅V ′m,P /cm . As discussed in converting Eq. (80) to
Eqs. (81) and (82) of the preceding article, the ratio, sin∅ψm,P = ∅V ′m,P /∅cm (where ∅cm, with
magnitude 3 × 108 m s−1, is the maximum over all relative proper intrinsic static-flow speeds ∅V ′m
that can be established in intrinsic metric spacetime), is the appropriate ratio. The ratio, sin∅ψm,P =
∅V ′m,P /∅cs, where ∅cs is the maximum intrinsic static geodesic flow-speed that appears in the time
dimensions, ∅cs∅t and ∅cs∅t′ (introduced in sub-section 2.1 of [7]), is inappropriate. Indeed ∅cs is
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equivalent to zero magnitude of ∅V ′m. The speed V ′m and cm shall referred to as gravitational flow-
speed and re-denoted upon particularizing the results of this paper to the gravitational field elsewhere.
Then the difference between ∅cs and ∅cm shall become clarified. Hence,

sin∅ψm,P = ∅V ′m,P /∅cm ≡ ∅βm,P (∅V ′m,P ) (13a)

sec∅ψm,P = (1−
∅V ′2m,P
∅c2m

)−1/2 ≡ ∅γm,P (∅V ′m,P ) . (13b)

Using Eqs. (13a) and (13b) in systems (7) and (10) gives the following respectively

d∅t′ = ∅γm,P (∅V ′m,P )(d∅t−
∅V ′m,P
∅c2m

d∅ρ);

(w.r.t. 1− observers in cst) ;

d∅ρ′ = ∅γm,P (∅V ′m,P )(d∅ρ−∅V ′m,P d∅t);
(w.r.t. 3− observers in IE3)

(14)

and

d∅t = ∅γm,P (∅V ′m,P )(d∅t′ +
∅V ′m,P
∅c2m

d∅ρ′);

(w.r.t. 3− observers in IE3) ;

d∅ρ = ∅γ (∅V ′m,P )(d∅ρ′ + ∅V ′m,P d∅t′);
(w.r.t. 1− observers in cst) .

(15)

Systems (14) and (15) in terms of intrinsic static flow speed ∅V ′m,P , take on the forms of intrinsic
Lorentz transformation (∅LT) and its inverse respectively in terms of relative intrinsic dynamical speed
∅v, in the context of intrinsic special theory of relativity (∅SR), presented as systems (20) and (21)
of [5]. Hence systems (14) and (15) shall be referred to as intrinsic local Lorentz transformation
(∅LLT) and its inverse (in terms of intrinsic static flow speed), in the context of the intrinsic theory of
relativity associated with the presence of intrinsic metric force field in intrinsic metric spacetime.

Either system (10) or its inverse (7), or the explicit form in terms of relative proper intrinsic static flow
speed (14) or (15), leads to intrinsic local Lorentz invariance

∅c2sd∅t2 − d∅ρ2 = ∅c2sd∅t′2 − d∅ρ′2 . (16)

The intrinsic local Lorentz transformation of elementary relative proper intrinsic metric spacetime
intervals, d∅ρ′ and ∅csd∅t′, into elementary relativistic intrinsic metric spacetime intervals, d∅ρ and
∅csd∅t, of system (7) or (14) and its inverse system (10) or (15), written at symmetry-partner points P
and P0 along the curved relative proper intrinsic metric space ∅ρ′ and curved relative proper intrinsic
metric time dimension ∅cs∅t′ in Figs. 5 and 7 and their inverses Figs. 10 and 11, can equally be
written at another symmetry-partner points Q and Q0 along those curved relative proper intrinsic
metric spaces and curved relative proper intrinsic metric time dimensions, in terms of intrinsic angle
∅ψm,Q and relative proper intrinsic static flow speed ∅V ′m,Q of the new symmetry-partner points,
and this can be done at every symmetry-partner points along these curved intrinsic metric spacetime
dimensions.

It follows from the preceding paragraph that the intrinsic local Lorentz invariance (16) obtains between
every point of the global curved two-dimensional relative proper intrinsic metric spacetime (∅ρ′,∅cs∅t′)
and the corresponding point of the projective relativistic intrinsic metric spacetime (∅ρ,∅cs∅t) in
Fig. 5 through Fig. 11. This guarantees that the projective two-dimensional relativistic intrinsic metric
spacetime (∅ρ,∅cs∅t) is everywhere flat within every long range metric force field.

Having derived the local diagrams of Figs. 12 and 13 from the global diagrams of Figs. 5 and 7
respectively and the inverse local diagrams of Figs. 14 and 15 from the inverse global diagrams
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of Figs. 10 and 11 respectively, let us now demonstrate how the global diagrams arise from the
respective local diagrams. Now when the inclinations of the primed (or proper) intrinsic local metric
frame (d∅ρ′,∅csd∅t′) relative to its projective flat (or non-inclined) unprimed (or relativistic) intrinsic
local metric frame (d∅ρ,∅cs∅t) by positive intrinsic angle ∅ψm,P in Figs. 12 and 13, are drawn at
consecutive points away from point O (where ∅ψ ≈ 0 and ∅V ′m ≈ 0), then one obtains the extended
curved relative proper intrinsic metric spacetime (∅ρ′,∅cs∅t′) relative to its projective extended
flat relativistic intrinsic metric spacetime (∅ρ,∅cs∅t) in the positive universe, and the symmetrical
extended curved (−∅ρ′∗,−∅cs∅t′∗) relative to its projective extended flat (−∅ρ∗,−∅cs∅t∗) in the
negative universe in Figs. 5 and 7.

Now let us return to the elementary intrinsic metric spacetime interval transformation (14) and its
inverse (15) and collect the partial intrinsic transformations that are valid with respect to 3-observers
in the relativistic Euclidean 3-space IE3 in those systems to have

d∅ρ′ = ∅γm,P (∅V ′m,P )(d∅ρ−∅V ′m,P d∅t) ;

d∅t = ∅γm,P (∅V ′m,P )(d∅t′ +
∅V ′m,P
∅c2m

d∅ρ′) ;
(17)

(w.r.t 3-observers in IE3 .
Now from the point of view of what can be observed and measured as intrinsic space interval with
intrinsic laboratory rod and as intrinsic time interval with intrinsic laboratory clock by ‘intrinsic 1-
observers’ in the intrinsic space ∅ρ, the terms −γm,P (∅V ′m,P )∅V ′m,P d∅t and
γm,P (∅V ′m,P )(∅V ′m,P∅c2m)d∅ρ′ must be set to zero in system (17), thereby reducing that system
as follows from the point of view of what can be measured with intrinsic laboratory rod and clock by
hypothetical intrinsic 1-observers in ∅ρ

d∅ρ = ∅γm,P (∅V ′m,P )−1d∅ρ′ = d∅ρ′(1−
∅V ′′2m,P
∅c2m

)1/2 (18)

and

d∅t = ∅γm,P (∅V ′′m,P )d∅t′ = d∅t′(1−
∅V ′2m,P
∅c2m

)−1/2 . (19)

Equations (18) and (19) give intrinsic metric space contraction and intrinsic metric time dilation
formulae with respect to 3-observers in the relativistic Euclidean 3-space IE3, explicitly in terms of
relative proper intrinsic static flow speed at point P along the curved ∅ρ′ and the symmetry-partner
point O0 along the curved ∅cs∅t′ in the global diagrams. These are intrinsic length contraction and
intrinsic time dilation formulae in the context of the intrinsic theory of relativity associated with the
presence of a long-range intrinsic metric force field in intrinsic metric spacetime.

Now the intrinsic theory of relativity on the flat two-dimensional relativistic intrinsic metric spacetime
(∅ρ,∅cs∅t) associated with the presence of a long-range relativistic intrinsic metric force field on
(∅ρ,∅cs∅t), will be made manifested outwardly in the theory of relativity on the flat four-dimensional
relativistic metric spacetime (IE3, cst), due to the presence of a long-range relativistic metric force
field in (IE3, cst). Consequently the intrinsic local Lorentz transformation (∅LLT) of system (7) and
its inverse of system (10) in the two-dimensional intrinsic metric spacetime, will be made manifested
outwardly in local Lorentz transformation (LLT) and its inverse in the four-dimensional metric spacetime
respectively as

csdt
′ = csdt secψ − dx1 tanψm,P ;

(w.r.t. 1− observers in cst) ;

dx′1 = dx1 secψm,P − csdt tanψm,P ; dx′2 = dx2; dx′3 = dx3;

(w.r.t. 3− observers in IE3)

(20)
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and
csdt = csdt

′ secψm,P + dx′1 tanψm,P ;

(w.r.t. 3− observers in IE3) ;

dx1 = dx′1 secψm,P + csdt
′ tanψm,P ; dx2 = dx′2; dx3 = dx′3;

(w.r.t. 1− observers in cst) .

(21)

The explicit forms of ∅LLT (14) and its inverse (15) in the two-dimensional intrinsic metric spacetime
are likewise made manifested in LLT and its inverse on the flat four-dimensional metric spacetime
respectively as

dt′ = γm,P (V ′m,P )(dt−
V ′m,P
c2m

dx1);

(w.r.t. 1− observers incst)

dx′1 = γm,P (V ′m,P )(dx1 − V ′m,P dt); dx′2 = dx2; dx′3 = dx3 ;

(w.r.t. 3− observers in IE3)

(22)

and

dt = γm,P (V ′m,P )(dt′ +
V ′m,P
c2m

dx′1) ;

(w.r.t. 3− observers in IE3) ;

dx1 = γm,P (V ′m,P )(dx′1 + V ′m,P dt
′) ; dx2 = dx′2; dx3 = dx′3;

(w.r.t. 1− observers in cst) ;

(23)

where

γm,P (V ′m,P ) = secψm,P = (1−
V ′2m,P
c2m

)−1/2 . (24)

The dimension x1 of the relativistic Euclidean 3-space IE3 is considered to be orientated along the
isotropic relativistic intrinsic metric space ∅ρ, while the dimensions x2 and x3 of IE3 are orientated
along other directions in IE3. It then follows that the dimension x′1 of the relative proper Euclidean 3-
space IE′3 was orientated along the isotropic relative proper intrinsic metric space ∅ρ′, while the
dimensions x′2 and x′3 of IE′3 were orientated along other directions in IE′3 in Fig. 4 or Fig. 11
of [3], reproduced as Fig. 1 of this article, at the first stage of evolution of spacetimes and intrinsic
spacetimes in a long-range metric force field, prior to the evolution of Figs. 5, 7, 10 and 11 at the
second stage.

Now the intrinsic static flow speed ∅V ′m,P lies along the isotropic proper intrinsic metric space
∅ρ′ underlying IE′3 (in Fig. 1) at the first stage and along ∅ρ underlying IE3 at the second stage.
Consequently the static flow velocity ~V ′m,P lies along x′1 in IE′3 and along x1 in IE3. It has no
component along the coordinate x′2 or x′3 in IE′3 and no component along coordinate x2 or x3 in IE3.
These make systems (20) through (23) to take on their forms, in which the intervals dx′2 and dx′3

transform into intervals dx2 and dx3 trivially as, dx′2 = dx2 and dx′3 = dx3. A robust explanation
of why systems (20) – (23) take on their forms in all long-ranged metric force-fields—spherically
symmetric or not—shall be given when we fully make connection to the gravitational field elsewhere.

Either the LLT (20) or its inverse (21), or the explicit form (22) or (23), leads to local Lorentz invariance
(LLI)

c2sdt
2 − (dx1)2 − (dx2)2 − (dx3)3 = c2sdt

′2 − (dx′1)2 − (dx′2)2 − (dx′3)2 . (25)

This is the outward manifestation in the four-dimensional metric spacetime of the intrinsic local
Lorentz invariance (∅LLI) (16) in the two-dimensional intrinsic metric spacetime. The local Lorentz
invariance (25) is valid at every point on the four-dimensional spacetime, implying flatness everywhere
in a long-range metric force field of the four-dimensional relativistic metric spacetime (IE3, cst).
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The intrinsic length contraction formula (18) and intrinsic time dilation (19) on the flat two-dimensional
intrinsic metric spacetime are likewise made manifested outwardly in length contraction and time
dilation formulae on the flat four-dimensional metric spacetime as

dx1 = γm,(V
′
m,P )−1dx′1 = (1−

V ′2m,P
c2m

)1/2dx′1 ; dx′2 = dx2; dx′3 = dx3 (26)

and

dt = γm,P (V ′m,P )dt′ = (1−
V ′2m,P
c2m

)−1/2dt′ . (27)

As a summary of this section, we have
derived the global curved intrinsic metric
spacetime/global flat metric spacetime
geometries of Figs. 5 – 11 and the associated
local spacetime/intrinsic spacetime geometries of
Figs. 12 – 15 in the four-world picture. We have
derived the intrinsic local Lorentz transformation
(∅LLT) and its inverse of systems (7) and (10), or
systems (14) and (15); we have validated intrinsic
local Lorentz invariance (∅LLI) and have derived
the intrinsic length contraction and intrinsic time
dilation formulas (18) and (19), at an arbitrary
point in spacetime within a long range metric
force field, with the aid of Figs. 12 – 15 (as must
be done at every point in spacetime) in every
long-range metric force field. These are results
in the context of the intrinsic theory of relativity
associated with the presence of an intrinsic
metric force field in intrinsic metric spacetime.

The theory of relativity in the metric spacetime
due to the presence of a long-range metric force
field in the metric spacetime, being mere outward
manifestation of the intrinsic theory of relativity in
intrinsic metric spacetime, due to the presence
of intrinsic metric force field in the intrinsic metric
spacetime; the results of the theory of relativity
in spacetime have been written directly from
the corresponding results of intrinsic theory of
relativity in intrinsic metric spacetime. These
are the local Lorentz transformation (LLT) and
its inverse of system (20) and (21) or system
(22) and (23); local Lorentz invariance (25) and
the length contraction and time dilation formulae
(26) and (27), all of which have been written
at an arbitrary point in spacetime in a long-
range metric force field. The central purpose
of this article is to develop a new geometrical
background for the theory of relativity associated
with the presence of a long-range metric force
field in the metric spacetime within the four-
world picture, in which the four-dimensional

metric spacetime is underlay by a hidden two-
dimensional intrinsic metric spacetime in each
universe, derived in [5–8]. We deem the results
derived in this section and summarized in the
foregoing two paragraphs as adequate for this
purpose. It is to be recalled from the derivation
of the concept of intrinsic static flow speed and
static flow speed in part three of this paper [3]
that, the intrinsic static flow speed and static flow
speed, which appear in the intrinsic theory of
relativity and theory of relativity associated with
the presence of a long-range metric force field
in spacetime in this article are pure geometrical
parameters. Nevertheless, they will not arise in
the absence of a source of a metric force field
and a source of intrinsic metric force field.

2.3 Clarifications of the Concepts
of Relative Static Flow-
Speed, Relativity Associated
with Static Flow-speed and
Relative Metric Force Fields

It is appropriate to shine some light on the new
concepts in the topic of this sub-section that are
introduced in this article. Let us start with the
familiar concept (or parameter) in physics namely,
the dynamical velocity ~v (or speed v). It is an
observable and measurable property of a particle
or object in motion. The dynamical velocity
is a relative parameter because its magnitude
varies with the observer or frame of reference
relative to which the particle is in motion. The
relativity of dynamical velocity is the origin of
the relativity of motion of material particles
and objects described by the special theory of
relativity.

On the other hand, the relative proper static flow
speed V ′m is a property of space, established
in space by the source of a long-range

65



Joseph; PSIJ, 26(5): 35-72, 2022; Article no.PSIJ.83303

relative proper (or classical) metric force field,
irrespective of whether a particle or object is
present in space or not. A particle or object of
any mass located at a point P in space where
the relative proper static flow speed is V ′m,P , will
acquire V ′m,P but will not move relative to any
observer or frame of reference at this speed. If
it also possesses dynamical velocity ~v relative to
an observer while moving through point P, then it
will be observed to move at the velocity ~v only
relative to the observer, despite the static flow
speed V ′m,P it has acquired.

The static flow speed established at a point in
space cannot be observed or measured. It does
not give rise to flow of space and, consequently,
it does not give rise to translation in space of
a material particle or object that acquired it, as
mentioned above. Further more, the static flow
speed of a point in space is the same with respect
to all observers of frames of reference. It is
hence an absolute parameter from the point of
view of dynamical relativity (or the special theory
of relativity). Then how come the concepts of
relative static flow speed and relativity associated
with static flow speed?

In order to answer the question ending the
preceding paragraph, let us revisit the length
contraction and time dilation formulae (26) and
(27). Although the relative proper static flow
speed V ′m of a point in space cannot be observed
or measured and, although its square V ′2m cannot
be observed or measured, the quantities (1 −
V ′2m /c

2
m)

1
2 dx′1 and (1 − V ′2m /c

2
m)−

1
2 dt′ can be

observed and measured. This follows from
the fact to be formally derived upon making
connection to gravity elsewhere that V ′2m is
related to the classical potential Φ′m of the metric
force field that establishes V ′m in space as, Φ′m =
− 1

2
V ′2m (for an attractive metric force field). The

quantity V ′2m , like the potential Φ′m at a point in
space, cannot be observed or measured (as is
the case with gravitational potential in particular).

Now the quantities,

(1− V ′2m /c2m)
1
2 dx′1 = (1/cm)(c2m − V ′2m )

1
2 dx′1

and

(1− V ′2m /c2m)−
1
2 dt′ = cm(c2m − V ′2m )−

1
2 dt′,

can be measured, since, c2m − V ′2m , being
equivalent to difference of potentials, can be

measured. It then follows that the length
contraction and time dilation formulae (26) and
(27) can be observed and measured.

Thus by allowing an event that involves proper
time interval dt′ and proper space intervals,
dx′1, dx′2 and dx′3, to occur at different positions
in space within a long-range metric force field,
the observed (or relativistic) time interval dt
and the observed (or relativistic) interval dx1 of
the relativistic Euclidean 3-space IE3 (in Fig. 5)
involved in the same event, will vary with position
in IE3, while the observed intervals, dx2 and dx2,
of IE3 involved in the event will be the same at all
positions within the metric force field, according
to systems (26) and (27). The variations with
the magnitude of the relative proper static flow
speed V ′m and, consequently, with position in
space within a long-range metric force field, of
the observed (or relativistic) time interval dt and
the observed (or relativistic) interval dx1 of the
Euclidean 3-space IE3, of an event, is the concept
of relativity associated with relative proper static
flow-speed, or with the presence of a long-range
metric force field in spacetime.

In brief, the relativity associated with relative
proper static flow speed in a long-range metric
force field is relativity with position in space
within the field (and not relativity with observer or
frame of reference). Relativity of relative proper
static flow speed likewise refers to variation of
magnitude of relative proper static flow speed
with position in space within a long-range metric
force field. In other words, it refers to the fact
that the relative proper static flow speeds, V ′m,P
and V ′m,Q, of two positions P and Q of different
distances, x′1P and x′1Q, respectively, from the
origin of the long-range metric force field, have
different magnitudes. It does not refer to variation
of the magnitude of a static flow speed with
observers or frames of reference. As mentioned
earlier, the relative proper static flow speed at a
point in space is the same relative to all observers
or frames of reference.

In the light of the foregoing, a relative (or
relativistic) metric force field is the one that
establishes non-zero relative proper static flow
speed in space. That is, one that establishes
relative proper static flow speeds of different
magnitudes (no matter how small in magnitudes
in a strict sense), at different positions in
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the relative proper metric Euclidean 3-space
IE′3, which transforms invariantly as relative
proper static flow speeds in the relativistic
metric Euclidean 3-space IE3 within the metric
force field. The possibility of the relativity
of other physical parameters, such as mass,
electric and magnetic fields, energy, fluxes,
temperature, entropy, potentials, etc, in the
sense of the variations of their observed (or
relativistic) magnitudes with relative proper static
flow speed and, consequently, with position in
space within a long-range metric force field,
on the flat four-dimensional relativistic metric
spacetime (IE3, cst) (in Fig. 5), now isolated, shall
be investigated upon applying the results of this
article to the gravitational field elsewhere.

Expectedly, it will be possible to derive the
transformations of physical parameters and
physical constants, classical and special-
relativistic non-gravitational laws, as well as
classical gravitational laws, on flat spacetime
within a long-range metric force field, with the aid
of the local Lorentz transformation and its inverse
in terms of relative proper static flow speed of
systems (22) and (23), in the context of the theory
of relativity associated with the presence of a
long-range metric force field in metric spacetime
and, in particular, in the gravitational field. This
will be analogous to the Lorentz transformations
of parameters and natural laws on flat spacetime
in the context of the special theory of relativity.

c ts

c ts

c ts

c ts

c ts
c ts

ab ab

c tsab ab
ab

ab

ab

c tsab ab

3

Fig. 16. The curved ‘two-dimensional’ absolute intrinsic metric spacetime made valid with
respect to 3-observers in the flat relative proper metric 3-space solely; the correct diagram
for absolute intrinsic Riemannian metric spacetime geometry in our universe; (Fig. 7 of [3])

3 ABSOLUTE INTRINSIC RIEMANN GEOMETRY ON THE CURVED
‘TWO-DIMENSIONAL’ ABSOLUTE INTRINSIC METRIC SPACE-
TIME AT THE SECOND STAGE OF EVOLUTIONS OF SPACE-
TIME/INTRINSIC SPACETIME IN A METRIC FORCE FIELD

The ‘two-dimensional’ absolute intrinsic metric spacetime (∅ρ̂,∅ĉs∅t̂) is curved relative to its projective
flat ‘2-dimensional’ absolute proper intrinsic metric spacetime (∅ρ′ab,∅csab∅t′ab), which is imperceptibly
embedded in the flat relative proper intrinsic metric spacetime (∅ρ′,∅cs∅t′) in Fig. 1, at the first
stage of evolution of spacetimes and intrinsic spacetimes within a long-range metric force field.
Consequently the absolute intrinsic Riemann geometry has been formulated on the curved (∅ρ̂,∅ĉs∅t̂)
with respect to 3-observers in the relative proper Euclidean 3-space IE′3 that overlies ∅ρ′ in [3].
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On the other hand, the ‘two-dimensional’ absolute intrinsic metric spacetime (∅ρ̂,∅ĉs∅t̂) is curved
relative to the flat two-dimensional relativistic intrinsic metric spacetime (∅ρ,∅cs∅t) in Fig. 5, at the
second stage of evolution of spacetime/intrinsic spacetime in a long-range metric force field. It then
follows that absolute intrinsic Riemann geometry must be formulated on the curved (∅ρ̂,∅ĉs∅t̂) with
respect to 3-observers in the relativistic Euclidean 3-space IE3 that overlies ∅ρ in Fig. 5, at the second
stage of evolution of spacetime and intrinsic spacetime.

In order to show that absolute intrinsic Riemann geometry on the curved absolute intrinsic metric
spacetime (∅ρ̂,∅ĉs∅t̂) takes on the same form with respect to 3-observers in the relative proper
Euclidean 3-space IE′3 solely in Fig. 4 or Fig. 11 of [3], reproduced as in Fig. 1 of this article, and
with respect to 3-observers in the relativistic Euclidean 3-space IE3 solely in Fig. 5 of this article, let
us revisit the derivation of the absolute intrinsic metric tensor without star label with the aid of Fig, 7
of [3], reproduced as Fig. 16 of this article, from Eq. (48a-b) through Eq. (64) of [3].

Let us re-write Eq. (53) of that article as follows

(d∅s′ab)2 = ∅c2sab(d∅t′ab)2
(

cos2 ∅ψ̂m,P + sin2 ∅ψ̂m,P
)

− (d∅ρ′ab)2
(

sec2 ∅ψ̂m,P − tan2 ∅ψ̂m,P
)
. (28)

Equation (28) gives the absolute intrinsic line element on the curved ‘two-dimensional’ absolute
intrinsic spacetime (∅ρ̂,∅ĉs∅t̂ ), written in terms of the intervals of the absolute proper intrinsic metric
spacetime (∅ρ′ab,∅csab∅t′ab) in Fig. 16, which is valid with respect to 3-observers in the relative
proper Euclidean 3-space IE′3 in that figure.

Then the established invariance of intrinsic line element (or absolute intrinsic local Lorentz invariance
(A∅LLI)) is deriveed between the curved (∅ρ̂,∅csab∅t′ab) and its projective flat (∅ρ′ab,∅ĉs∅t̂) in
Fig. 7 of [3], reproduced as Fig. 16 of this article and expressed by Eq. (54) of that article. It shall be
reproduced here as

∅ĉ2s(d∅t̂)2 − (d∅ρ̂)2 = ∅c2sab(d∅t′ab)2 − (d∅ρ′ab)2 . (29)

The (d∅ρ′ab)2 and ∅c2sab(d∅t′ab)2 in this equation are replaced with (d∅ρ̂)2 and ∅ĉ2(d∅t̂)2 respectively,
yielding Eq. (56) of [3], reproduced here as

(d∅ŝ)2 = ∅ĉ2s(d∅t̂)2(cos2 ∅ψ̂m,P + sin2 ∅ψ̂m,P )

− (d∅ρ̂)2(sec2 ∅ψ̂m,P − tan2 ∅ψ̂m,P ) . (30)

The absolute intrinsic metric tensor without star label of Eq. (63) or Eq. (64) of [3] and the absolute
intrinsic Ricci tensor without star label of Eq. (67) or Eq. (68) of that article, were then derived with
respect to 3-observers in the relative proper Euclidean 3-space IE′3 solely in Fig. 16, from Eq. (30)
above (or Eq. (56) of [3]), between Eqs. (58) and (68) of that article.

Now the absolutism of the absolute intrinsic metric spacetime (∅ρ̂,∅ĉs∅t̂) and absolute proper
intrinsic metric spacetime (∅ρ′ab,∅csab∅t′ab), implies that they are invariant with intrinsic local Lorentz
transformation (14) and its inverse (15) in the context of the theory of relativity associated with the
presence of a long-range metric force field in spacetime. In other words, we can write as follows

(d∅ρab)2 −∅c2sab(d∅tab)2 = (d∅ρ′ab)2 −∅c2sab(d∅t′ab)2 . (31)

Just as the flat absolute proper intrinsic metric spacetime (∅ρ′ab,∅csab∅t′ab) is imperceptibly embedded
in the flat relative proper intrinsic metric spacetime (∅ρ′,∅cs∅t′) in Fig. 1, at the first stage of
evolution of metric spacetimes and intrinsic metric spacetimes in a long-range metric force field,
the flat ‘absolute relativistic’ intrinsic metric spacetime (∅ρab,∅csab∅tab) is imperceptibly embedded
in the flat relativistic intrinsic metric spacetime (∅ρ,∅cs∅t) in Fig. 5, at the second stage of evolution
of metric spacetimes and intrinsic metric spacetimes in a long-range metric force field, and the
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invariance (31) obtains between (d∅ρ′2ab,∅c2sabd∅t′2ab) and its projective (d∅ρ2ab,∅c2sabd∅t2ab). This
allows us to replace ∅c2sab(d∅t′ab)2 and (d∅ρ′ab)2 with ∅c2sab(d∅tab)2 and (d∅ρab)2 respectively in
Eq. (28) to have

(d∅sab)2 = ∅c2sab(d∅tab)2
(

cos2 ∅ψ̂m,P+ sin2 ∅ψ̂m,P
)

− (d∅ρab)2
(

sec2 ∅ψ̂m,P − tan2 ∅ψ̂m,P
)
. (32)

While the absolute proper intrinsic line element d∅s′ab in Eq. (28) on absolute proper intrinsic metric
spacetime (∅ρ′ab,∅csab∅t′ab) is valid with respect to 3-observers in the relative proper Euclidean 3-
space IE′3 solely in Fig. 1, at the first stage of evolution of metric spacetimes and intrinsic metric
spacetimes in a long-range metric force field, the unprimed absolute intrinsic line element d∅s in
Eq. (32) on the ‘absolute relativistic’ (or absolute unprimed) intrinsic metric spacetime (∅ρab,∅csab∅tab),
is valid with respect to 3-observers in the relativistic Euclidean 3-space IE3 solely in Fig. 5 of this
article at the second stage.

Combining the absolute intrinsic local Lorentz invariance (A∅LLI) (29) and (31) we have

∅c2sab(d∅tab)2 − (d∅ρab)2 = ∅c2sab(d∅t′ab)2 − (d∅ρ′ab)2 =

∅ĉ2s(d∅ρ̂)2−(d∅ρ̂)2 . (33)

Equation (33) allows us to replace ∅c2sab(d∅tab)2 and (d∅ρab)2 by ∅ĉ2s(d∅t̂)2 and (d∅ρ̂)2 respectively
in Eq. (32) to have Eq. (30) again.

It then follows that the absolute intrinsic metric
tensor of Eq. (63) or (64) and absolute intrinsic
Ricci tensor of Eq. (67) or (68) of [3], derived from
Eq. (30) of this article, with respect to 3-observers
in the relative proper Euclidean 3-space IE′3

solely in Fig. 4 or Fig. 11 of [3], reproduced as
Fig. 1 of this article, but with the aid of Fig. 7 of
that article, reproduced as Fig. 16 of this article,
at the first stage of evolution of metric spacetimes
and intrinsic metric spacetimes in a long-range
metric force field, are equally valid with respect to
3-observers in the relativistic Euclidean 3-space
IE3 solely in Fig. 5 of this article at the second
stage.

The starred absolute intrinsic line element d∅ŝ∗,
the starred absolute intrinsic metric tensor ∅ĝ∗ij
and the starred absolute intrinsic Ricci tensor
∅R̂∗ij on the curved ‘two-dimensional’ absolute
intrinsic metric spacetime (∅ρ̂,∅ĉs∅t̂) in Fig. 1,
given by Eqs. (31), (33) and (39) respectively
of [3], which are valid partially with respect to
3-observers in the flat relative proper metric
3-space IE′3 and partially with respect to 1-
observers in the relative proper metric time
dimension cst

′ in that figure, as explained in
that article, are equally valid on the curved

(∅ρ̂,∅ĉs∅t̂) in Fig. 5 of this article, partially
with respect to 3-observers on the flat relativistic
metric 3-space IE3 and partially with respect to 1-
observers in the relativistic metric time dimension
cst in that figure.

Thus the formulation of absolute intrinsic
Riemann geometry on the curved ‘two-
dimensional’ absolute intrinsic metric spacetime
(∅ρ̂,∅ĉs∅t̂) with respect to 3-observers in the
relativistic metric Euclidean 3-space IE3 solely
in Fig. 5 of this article, at the second stage
of evolution of metric spacetimes and intrinsic
metric spacetimes within a long-range metric
force field, follows the same procedure used to
formulate absolute intrinsic Riemann geometry
on the curved (∅ρ̂,∅ĉs∅t̂), with respect to 3-
observers in the relative proper Euclidean 3-
space IE′3, with the aid of Fig. 7 of [3], reproduced
as Fig. 16 of this article, in [3] at the first stage.

The preceding paragraph means that just as
done at the first stage of evolution of metric
spacetimes/intrinsic metric spacetimes, one
must write the pair of absolute intrinsic tensor
equations involving starred absolute intrinsic
tensors ∅ĝ∗ij and ∅R̂∗ij , derived on the curved
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(∅ρ̂,∅ĉs∅t̂) in [3], and presented as Eqs. (34)
and (38) of that article. One must then solve
those equations algebraically to obtain ∅ĝ∗ij and
∅R̂∗ij in terms of the square of the absolute
intrinsic curvature parameter ∅k̂2 as Eqs. (64)
and (68), or in terms of absolute intrinsic static
flow speed as Eqs. (81) and (82) of [3]. The
starred absolute intrinsic tensors so derived are
valid partially with respect to 3-observers in the
relativistic Euclidean 3-space IE3 and partially
with respect to 1-observers in the relativistic time
dimension cst in Fig. 5 of this article.

Then in order to obtain the absolute intrinsic
metric tensor without star label ∅ĝij , which is
valid with respect to 3-observers in the relativistic
Euclidean 3-space IE3 solely, one must use
the relations among the components of the
starred absolute intrinsic metric tensor ∅ĝ∗ij and
the components of the absolute intrinsic metric
tensor without star label ∅ĝij in systems (65a)
and (65b) of [3]. Once ∅ĝij has been obtained,
one must apply the tensorial statement of intrinsic
local Lorentz invariance (66) of [3] to derive the
absolute intrinsic Ricci tensor without star label
∅R̂ij , which is valid with respect to 3-observers
in IE3 solely.

The superposition procedure developed in
absolute intrinsic Riemann geometry at the first
stage of evolution of spacetimes and intrinsic
spacetimes in [3], when two or a larger number
of curved absolute intrinsic metric spacetimes co-
exist, is equally applicable at the second stage.
The clarifications of the concepts of absolute
intrinsic static flow speed, absolute proper
intrinsic static flow speed, absolute intrinsic
metric tensor and absolute intrinsic metric theory
of physics associated with them, introduced in [3]
and this section, shall be done upon making
connection to gravity in the next article and
elsewhere.

4 SUMMARY, CONCLUSION
AND DIRECTION FOR
FURTHER INVESTIGATION

The summary in brief of the four parts of
this paper is that metric spacetime and its

underlying intrinsic metric spacetime follow
two stages of evolution in the sequence of
absolute metric spacetime/absolute intrinsic
metric space → proper metric spacetime/proper
intrinsic metric spacetime → relativistic
metric spacetime/ relativisic intrinsic metric
spacetime in every long-range metric force
field. The proper metric spacetime is
comprised of ‘two-dimensional’ absolute proper
metric spacetime (ρ′ab, csabt

′
ab) and the 4-

dimensional relative proper metric spacetime
(IE′3, cs

′), where (ρ′ab, csabt
′
ab) is imperceptibly

embedded in (IE′3, cst
′), as illustrated in

Fig. 1. The proper intrinsic metric spacetime
is likewise comprised of ‘two-dimensional’ of
absolute proper intrinsic metric spacetime
(∅ρ′ab,∅csab∅t′ab) and the two-dimensional
relative proper intrinsic metric spacetime
(∅ρ′,∅cs∅t′), where (ρ′ab, csabt

′
ab) is embedded

in (∅ρ′,∅cs∅t′), as also illustrated in Fig. 1, at
the first stage of evolution of metric spacetimes
and intrinsic metric spacetimes in a long-range
metric force field.

The relativistic metric spacetime is comprised
‘two-dimensional’ ‘absolute relativistic’ metric
spacetime (ρab, csabtab) and the four-dimensional
‘relative relativistic’ (simply referred to as
relativistic) metric spacetime (IE3, cst), where
(ρab, csabtab) is imperceptibly embedded in
(IE3, cst) in Fig. 5. The relativistic intrinsic
metric spacetime is likewise comprised of
‘two-dimensional’ ‘absolute relativistic’ intrinsic
metric spacetime (∅ρab,∅csab∅tab) and two-
dimensional relativistic intrinsic metric spacetime
(∅ρ,∅cs∅t), where (ρab, csabtab) is embedded
in (∅ρ,∅cs∅t) in Fig. 5, at the second stage
of evolution of metric spacetimes and intrinsic
metric spacetimes in long-range metric force
fields. It shall be shown elsewhere that the
second stage of evolution of metric spacetimes
and intrinsic metric spacetimes in a long-range
metric force field is the final stage.

The theories and intrinsic theories of a given
long-range metric force field encompassed by the
geometry of Fig. 1 at the first stage of evolution
of spacetime and intrinsic spacetime in a long-
range metric force field and those encompassed
by the geometries of Figs. 2 and 7 and their
inverses of Figs. 10 and 11, at the second stage,
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shall be formulated upon particularizing to the
gravitational field elsewhere.

The spacetime/intrinsic spacetime geometry of
Fig.1 and the associated theories and intrinsic
theories of a given metric force field, which
evolve at the first stage of evolution of spactime
and intrinsic spacetime in the long-range metric
force field, endure for no moment before
transforming into the enduring spacetime/intrinsic
spacetime geometries of Figs. 5, 7, 10 and
11 and the associated theories and intrinsic
theories of the given metric force field at the
second (and final) stage. Indeed the first and
second stages commence simultaneously and
progress together, as shall be demonstrated
upon particularizing to the gravitational field
elsewhere. It is therefore the theories and
intrinsic theories encompassed by Figs. 5 and
7 and their inverses of Figs. 10 and 11, at the
second stage that exist in every long-range metric
force field in the universe.

A crucial conclusion is that the four-dimensional
(relativistic) metric spacetime (IE3, cst) and its
underlying two-dimensional (relativistic) intrinsic
metric spacetime (∅ρ,∅cs∅t) are everywhere
flat in long-range metric force fields; the only
curved spacetime with Riemannian metric tensor,
so to speak, with respect to 3-observers in the flat
(or Euclidean) three-dimensional metric space
IE3, being the ‘two-dimensional’ absolute intrinsic
metric spacetime (∅ρ̂,∅ĉs∅t̂) with absolute
intrinsic sub-Riemannian metric tensor ∅ĝik,
isolated progressively in the first three parts of
this paper [1–3].

The next natural step is to particularize the
newly derived spacetime/intrinsic spacetime
geometries of Figs. 5 and 7 and their inverses
of Figs. 10 and 11, in long-range metric force
fields and the associated flat spacetime theory
of metric force field on the flat four-dimensional
metric spacetime (IE3, cst) and hierarchy of
theories of intrinsic metric force field on the
hierarchy of intrinsic metric spacetimes namely,
the flat relativistic intrinsic metric spacetime
(∅ρ,∅cs∅t), the curved relative proper intrinsic
metric spacetime (∅ρ′,∅cs∅t′) with intrinsic
Lorentzian metric tensor and the curved absolute
intrinsic metric spacetime (∅ρ̂,∅ĉs∅t̂), with

absolute intrinsic sub-Riemannian metric tensor,
to the gravitational field. This will yield the
corresponding flat spacetime theory of gravity
and hierarchy of theories of intrinsic gravity in
the gravitational field. Particularization to the
gravitational field shall be done elsewhere.
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