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ABSTRACT 
 

This paper calculates the stress function constants to determine and analyse the stress field of a 
beam with an elliptical cross-section under transverse loading. This was performed using linear 
elasticity principles. The Beltrami-Michell compatibility equations were used to derive the formulas 
used to calculate these parameters in the beam with the elliptical cross-section. This paper uses 
dimensionless analysis to comprehend the effect of each variable in the problem. The loading was 
applied at the centre of the right-end face of the elliptical beam. This loading configuration is the 
same as an existing linear elasticity problem; however, that problem models a cylindrical beam 
instead of an elliptical one. Thus, the existing parameters from the cylindrical model were used to 
verify the formulas, calculated in this paper, for the elliptical beam. 
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1. INTRODUCTION 
 
The elliptical cross-section of the beam in this 
paper is in a state of bending. Bending is the 
“most common form of loading” in real world 
applications  [1]. To analyse bending 
mathematically, it is useful to employ linear 
elasticity principles. 
 
There are various ways a beam can be loaded to 
undergo bending. Calculations were made for a 
beam bending under a transverse load. With this 
type of load, there is no bending due to an 
applied moment. This loading does, however, 
produce a bending moment within the beam. 
Transverse loading is a load applied normal to 
the neutral axis.  
 
The basis for the mathematical analysis of this 
bending problem are the Beltrami-Michell 
compatibility equations. These equations are 
especially useful since they avoid the 
deformation solutions 𝑢𝑖 (displacement field) and 

𝑒𝑖𝑗  (strain field) if there are defined traction 

boundary conditions. These equations, therefore, 
allow for a streamlined process without 
unnecessary variables.  
 

 
 

Fig. 1. Model of transverse loading of beam 
 
Fig. 1 shows the model discussed in this paper 
under the transverse loading. This load is 
denoted by the letter P. It acts along the centre of 
the right end face of the beam.  
 
These equations and relationships form the basis 
for the analysis of the elliptical beam presented 
in this paper. They provide the foundation for 

defining the stress function, 𝐹 = 𝐴𝑥2
3 + 𝐵𝑥1

2𝑥2 +
𝐶𝑥2 , which in turn, yields the formulas for the 

constants 𝐴, 𝐵, and 𝐶. Since the formulas used 
to determine the beam stresses stemmed from 
the Beltrami-Michell equations, the displacement 
fields and the strains can be ignored in this 
analysis. 
 

The setup of this problem is heavily based on the 
cylindrical example presented in [1].That problem 

uses the same methodology of determining the 
constants from the stress function to achieve 
formulas for the various stresses in the beam. 
Additionally, the cylindrical example is loaded 
identically to the problem presented in this paper.  
 
[2] also uses a similar setup with constants to 
determine the formulas for the stresses in a 
beam with an elliptical cross-section; however, in 
[2], the model is a beam with half an ellipse as its 
cross section. The formulas in [2] use elliptical 
coordinates instead of using the cartesian 
coordinates presented in this paper to determine 
the equations of stress. [2] mainly analyses the 
aspect ratio’s effect on the stresses within the 
elliptical cross section. 
 
The findings of this research could be useful in 
analysing cylindrical beams that undergo 
deformation. An example of this could be beams 
used in the construction process. It is common 
for cylindrical beams to obtain elliptical cross-
sections through bending [3]. [4] presents the 
case for a hollow beam with an elliptical cross-
section under uniform loading, which transverse 
loading could create. This article mainly looks at 
how the length of a cylindrical beam affects its 
point of transition from having circular cross 
sections to an elliptical cross section.  
 
[4] presents the same physical model as this 
paper, a solid homogenous beam with elliptical 
cross-sections. In [4] the model is in torsion, 
which encompasses very different calculations 
than for a beam under transverse loading.  
 
The elastic properties of cylindrical beams under 
transverse loading have been examined in 
various other research work for different 
applications. One example of this is studying 
beam theory in nanoscale and microscale 
applications [5]. The principles of beam theory 
become more challenging under these smaller 
scales.  
 
It is important to note that beams with other 
various cross-sections have been studied under 
the same loading as presented in this paper. For 
example, examining sandwich beams’ stress 
response under transverse loading has proved to 
be useful for construction applications [6]. This is 
in addition to the study of “non-prismatic” beams, 
a beam that has a variable cross-section, under 
the loading discussed in the paper [7], [8], [9], 
[10]). This has applications for things such as 
performing stress analysis on the blades of a 
wind turbine [7]. References [8] and [10] focus 
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more on beams with variable rectangular cross-
sections. Reference [10] also analyses beams 
with variable cross-sections.  
 
The number of sources discussed in this paper 
were limited because the setup discussed in this 
paper was unique compared to most articles 
about stresses in bended beams and articles 
about beams with elliptical cross-sections. 
 

2. METHODOLOGY  
 
In Fig. 2, the ellipse’s minor axis contains 𝑏. The 

major axis has 𝑎 along it. 𝑃 is the load that is on 
the centre of the right-end face of the beam. Only 
the axes 𝑥1  and 𝑥2  are shown here. This is 
because this is the front view of just the elliptical 
cross-section. There is, in fact, an 𝑥3  axis as 
well, which would represent the length of the 
beam.  
 

 
 

Fig. 2. Elliptical cross-section of the beam 
with loading 

 
The moment of inertia for the beam is written as: 
 

𝐼 =  
𝜋

4
𝑎𝑏3                                                         (1) 

 
The lateral boundary, 𝜕𝜋, will be denoted by: 
 

(
𝑥1

𝑎
)

2

+ (
𝑥2

𝑏
)

2

= 1                                        (2) 

 
Assuming the stress function to be: 
 

𝐹 = 𝐴𝑥2
3 + 𝐵𝑥1

2𝑥2 + 𝐶𝑥2                   (3) 
 

{
∇2𝐹 =

𝑣

1+𝑣

𝑃

𝐼
 𝑥2 − 2𝛽𝜇  

𝑑𝐹

𝑑𝑠
=

𝑃

2𝐼
 𝑥1

2 𝑑𝑥2

𝑑𝑠

on π                (4) 

 
on ∂π 
 

Equation (8.21) for the stress function is written 
as [1]: 
 
Where π represents the cross-section, ∂π is the 
boundary, 𝑣 is Poisson’s ratio, 𝛽 is the twist per 
unit length of the beam at the centroid, and s is a 
curvilinear parameter measuring length around 
∂π. The second of equations (4) stem from the 
fact that the stress traction vector is null along 
the surface of the beam.   
 
Since 𝑃 acts in the centre, 𝛽 = 0. The equation 
above becomes: 
 

∇2F =
𝑣

1+𝑣
 
𝑃

𝐼
 𝑥2                                                        (5) 

 
The last two equations give: 
 

∇2𝐹 =
𝜕2𝐹

𝜕𝑥1
2 +

𝜕2𝐹

𝜕𝑥2
2 = 2𝐵𝑥2 + 6𝐴𝑥2               (6) 

 
This further simplifies to: 
 

6𝐴 + 2𝐵 =
𝑣

1+𝑣
 

𝑃

𝐼
                                                    (7) 

 
From the second part of equation (8.21)  [1] (also 
the second of equations (4)): 
 

𝑑𝐹

𝑑𝑠
=

𝑃

2𝐼
𝑥1

2 𝑑𝑥2

𝑑𝑠
                                               (8) 

 
Additionally: 
 

𝑑𝐹

𝑑𝑠
=

𝑑𝐹

𝑑𝑥1
 
𝑑𝑥1

𝑑𝑠
+

𝑑𝐹

𝑑𝑥2
 
𝑑𝑥2

𝑑𝑠
                                   (9) 

 
This becomes: 
 
𝑃

2𝐼
𝑥1

2 𝑑𝑥2

𝑑𝑠
= 2𝐵𝑥1𝑥2

𝑑𝑥1

𝑑𝑠
+ (3𝐴𝑥2

2 + 𝐵𝑥1
2 + 𝐶)

𝑑𝑥2

𝑑𝑠
    (10) 

 
Now differentiating equation (2) with respect to s 
yields, after some re-arrangement: 
 
𝑑𝑥1

𝑑𝑠
= −

𝑥2

𝑥1

 
𝑎2

𝑏2
 
𝑑𝑥2

𝑑𝑠
 

 
This equation is then substituted in equation (10) 

to have all terms involving 
𝑑𝑥2

𝑑𝑠
. These terms, on 

the left and right sides of the modified equation 
(10), can then be equated: 
 
𝑃

2𝐼
𝑥1

2 = −
2𝑎2𝐵

𝑏2
𝑥2

2 + 3𝐴𝑥2
2 + 𝐵𝑥1

2 + 𝐶          (11) 

 
Re-writing equation (2): 
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𝑥1
2 = 𝑎2 − 𝑎2  

𝑥2
2

𝑏2                                    (12) 

 
substituting the last formula back into equation 
(11) yields: 
 

𝑃𝑎2

2𝐼
−

𝑃𝑎2

2𝐼𝑏2
𝑥2

2 = (−
2𝑎2𝐵

𝑏2
+ 3𝐴 −

𝑎2𝐵

𝑏2
) 𝑥2

2 + 𝐵𝑎2 + 𝐶    (13) 

 
By comparing the coefficients of the L.H.S and 
the R.H.S. of the equation then: 
 

−
𝑃𝑎2

2𝐼𝑏2 = 3𝐴 −
3𝑎2𝐵

𝑏2                                (14) 

 
𝑃𝑎2

2𝐼
= 𝐵𝑎2 + 𝐶                                              (15) 

 
There are now three equations, equations (7), 
(14), and (15), that can be used to find the values 
for 𝐴, 𝐵, and 𝐶. 
 
From equations (7) and (14): 
 

𝐵 =
𝑃

2𝐼

𝑏2

(3𝑎2 + 𝑏2)
(

𝑣

1 + 𝑣
+

𝑎2

𝑏2
)                  (16) 

 
From equation (7); 
 

𝐴 =
𝑃

6𝐼
[

𝑣

1 + 𝑣
(1 −

𝑏2

3𝑎2 + 𝑏2
) −

𝑎2

3𝑎2 + 𝑏2
]  (17) 

 
From equation (15): 
 

𝐶 =
𝑃𝑎2

2𝐼
(1 −

𝑏2

3𝑎2 + 𝑏2
(

𝑣

1 + 𝑣
+

𝑎2

𝑏2
))        (18) 

 
Solving for the stress values: 
 

𝜎13 = 𝐹,2 −
𝑃𝑥1

2

2𝐼
= 3𝐴𝑥2

2 + 𝐵𝑥1
2 + 𝐶 −

𝑃𝑥1
2

2𝐼
(19) 

 
𝜎23 = −𝐹,1 = −2𝐵𝑥1𝑥2                                                   (20) 

 

𝜎33 = −
𝑃

𝐼
(𝐿 − 𝑥3)𝑥1                                       (21) 

 
with the shear stress given by: 
 

𝜏 = √𝜎13
2 + 𝜎23

2                                             (22) 

 

2.1 Comparison to Cylindrical Beam for 
Formula Validation 

 

For checking these results, it is necessary to set 
the ellipse’s major axis equal to its minor axis, 

𝑎 =  𝑏. In this case, the constant values should 
be the same as those for a cylindrical                          
beam with a circular cross-section. In this section 
of the paper, the constants for the                       
cylindrical constants will have the subscript 
labelled ‘cylinder’ to distinguish it from the 
constants for the elliptical case. 
  
First solving for an 𝐴 value in the case of 𝑎 =  𝑏: 
 
 

𝐴𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 =
𝑃

6𝐼
[

𝑣

1 + 𝑣
(1 −

𝑎2

3𝑎2 + 𝑎2) −
𝑎2

3𝑎2 + 𝑎2] (23) 

 

𝐴𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 =
𝑃

6𝐼
[

𝑣

1 + 𝑣
(

3

4
) −

1

4
]                          (24) 

 

𝐴𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 =
𝑃

24𝐼
(

3𝑣

1 + 𝑣
− 1) =

𝑃

24𝐼
(

2𝑣 − 1

1 + 𝑣
) (25) 

 
 
Using the formulas from the ellipse problem, with 
𝑎 =  𝑏, to solve for 𝐵  in the case of a circular 
cross-section: 
 

𝐵𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 =
𝑃

2𝐼
 

𝑎2

3𝑎2 + 𝑎2
(

𝑣

1 + 𝑣
+

𝑎2

𝑎2
) =

𝑃

2𝐼
(

1

4
) (

𝑣

1 + 𝑣
+ 1) (26) 

 

𝐵𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 =
𝑃

8𝐼
 
2𝑣 + 1

1 + 𝑣
                                               (27) 

 
Lastly, using the equations to solve for the 𝐶 
value: 
 
 

𝐶𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 =
𝑃𝑎2

2𝐼
[1 −

𝑎2

3𝑎2 + 𝑎2
(

𝑣

1 + 𝑣
+

𝑎2

𝑎2
)]    (28) 

 

𝐶𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 =
𝑃𝑎2

2𝐼
[1 −

1

4
(

2𝑣 + 1

1 + 𝑣
)] =

𝑃𝑎2

8𝐼
(4 −

2𝑣 + 1

1 + 𝑣
)            (29) 

 

𝐶𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 =
𝑃𝑎2

8𝐼
(

3 + 2𝑣

1 + 𝑣
)                                 (30) 

 
The results for these constants ( 𝐴𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 , 

𝐵𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 , and 𝐶𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 ) are the same as the 

values for these constants, which describes the 
case of a beam with a circular cross-section 
undergoing transverse loading [1]. In addition, 
the stress field resulting from the above analysis 
was used to check the compatibility, equilibrium, 
and boundary conditions for the problem as a 
sanity check. It was found that the obtained 
stress field equations satisfied all these 
conditions. 
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2.2 Dimensionless Analysis 
 
In this section of the paper, a superscript of a 
star (*) was used to denote the dimensionless 
variables. The following non dimensional 
parameters were used in the dimensionless 
analysis shown below: 
 

x1
∗ =

x1

a
 , x2

∗ =
x2

b
 , x3

∗ =
x3

L
 , λ =

a

b
 

 

τ∗ =
τ

P
πab⁄

 ,           L∗ =
L

b
  

 

A∗ =
A

P
πa2b2⁄

 ,          B∗ =
B

P
πa2b2⁄

 ,          C∗ =
C

P
πab⁄

 

 
Using the definitions above, it is possible to solve 
for 𝐴∗: 
 

𝐴∗ =
𝐴𝜋𝑎2𝑏2

𝑃
=

𝜋𝑎2𝑏2

𝑃

𝑃

6𝜋𝑎𝑏3

4⁄
[

𝑣

1+𝑣
(1 −

𝑏2

3𝑎2+𝑏2
) −

𝑎2

3𝑎2+𝑏2] 

(31) 
 

which becomes: 
 

𝐴∗ =
2𝑎

3𝑏
[

𝑣

1+𝑣
(1 −

𝑏2

3𝑎2+𝑏2) −
𝑎2

3𝑎2+𝑏2]             (32) 

 

Using the relationship for lambda, λ =
𝑎

𝑏
 , as 

defined in the previous equations: 
 

𝐴∗ =
2

3
𝜆 [

𝑣

1 + 𝑣
(1 −

1

3𝜆2 + 1
) −

𝜆2

3𝜆2 + 1
]  (33) 

 
Next, solving for 𝐵∗: 
 

𝐵∗ =
𝐵𝜋𝑎2𝑏2

𝑃
=

𝜋𝑎2𝑏2

𝑃
∙

𝑃

2𝜋𝑎𝑏3

4⁄
∙

𝑏2

(3𝑎2+𝑏2)
∙ (

𝑣

1+𝑣
+

𝑎2

𝑏2
) (34) 

 

𝐵∗ = 2 ∙
𝑎

𝑏
∙

𝑏2

(3𝑎2 + 𝑏2)
∙ (

𝑣

1 + 𝑣
+

𝑎2

𝑏2
)          (35) 

 

𝐵∗ = 2𝜆 ∙
1

(3𝜆2 + 1)
∙ (

𝑣

1 + 𝑣
+ 𝜆2)                (36) 

 
Solving for 𝐶∗: 
 

𝐶∗ =
𝐶𝜋𝑎𝑏

𝑃
=

𝜋𝑎𝑏

𝑃
∙

𝑃𝑎2

2𝜋𝑎𝑏3

4⁄
∙ [1 −

𝑏2

(3𝑎2 + 𝑏2)
∙ (

𝑣

1 + 𝑣
+

𝑎2

𝑏2)] 

(37) 
 

𝐶∗ = 2 ∙
𝑎2

𝑏2 ∙ [1 −
𝑏2

(3𝑎2+𝑏2)
∙ (

𝑣

1+𝑣
+

𝑎2

𝑏2)]      (38) 

 

𝐶∗ = 2 𝜆2 [1 −
1

(3𝜆2 + 1)
∙ (

𝑣

1 + 𝑣
+ 𝜆2)] (39) 

The next variables to solve for in the non-
dimensional analysis would be the stresses, 
starting with 
  
𝜎13

∗: 
 

𝜎13
∗ =

𝜎13

𝑃
𝜋𝑎𝑏⁄

=
𝜋𝑎𝑏

𝑃
∙ [3𝐴𝑥2

2 + 𝐵𝑥1
2 + 𝐶 −

𝑃𝑥1
2

2𝐼
] (40) 

 

Multiplying this by 
𝑎𝑏

𝑎𝑏
 : 

 

𝜎13
∗ =

1

𝑎𝑏
∙ [3 ∙

𝐴

𝑃
𝜋𝑎2𝑏2⁄

∙ 𝑥2
2 +  

𝐵

𝑃
𝜋𝑎2𝑏2⁄

∙ 𝑥1
2 +

𝐶

𝑃
𝜋𝑎𝑏⁄

𝑎𝑏

−
𝜋𝑎2𝑏2𝑥1

2

2𝜋𝑎𝑏3

4⁄
]                                                (41) 

 
Using the definitions for 𝐴∗, 𝐵∗, and 𝐶∗ : 
 

𝜎13
∗ =

3𝐴∗

𝑎𝑏
𝑥2

2 +
𝐵∗

𝑎𝑏
𝑥1

2 + 𝐶∗ −
2

𝑏2
𝑥1

2       (42) 

 
Using the definitions for 𝑥1

∗ and 𝑥2
∗ :  

 

𝜎13
∗ =

3𝐴∗

λ
(𝑥2

∗)2 + λB∗ ∙ (𝑥1
∗)2 + 𝐶∗ − 2λ2 ∙ (𝑥1

∗)2(43) 

 

𝜎13
∗ =

3𝐴∗

λ
(𝑥2

∗)2 + λ ∙ (𝑥1
∗)2(𝐵∗ − 2λ) + 𝐶∗(44) 

 
Using the same methodology as above to solve 
for 𝜎23

∗: 
 

𝜎23
∗ =

𝜎23

𝑃
𝜋𝑎𝑏⁄

=
𝜋𝑎𝑏

𝑃
(−2)𝐵𝑥1𝑥2                        (45) 

 

Multiplying by 
𝑎𝑏

𝑎𝑏
 : 

 

𝜎23
∗ = −2 ∙

𝐵

𝑃
𝜋𝑎2𝑏2⁄

∙
𝑥1

𝑎
∙

𝑥2

𝑏
                                (46) 

 
Using the above definitions for 𝐵∗, 𝑥1

∗,  and 𝑥2
∗ : 

 
𝜎23

∗ = −2𝐵∗ ∙ 𝑥1
∗ ∙ 𝑥2

∗                                    (47) 
 
Solving for 𝜎33

∗ : 
 

𝜎33
∗ =

𝜎33

𝑃
𝜋𝑎𝑏⁄

= −
𝜋𝑎𝑏

𝑃
∙

𝑃

𝜋𝑎𝑏3

4⁄
∙ (𝐿 − 𝑥3)𝑥1(48) 

 

𝜎33
∗ = −

4

𝑏2
(𝐿 − 𝑥3)𝑥1                                           (49) 

 

Multiplying this by 
𝑎

𝑎
 : 
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𝜎33
∗ = −4 ∙

𝑎

𝑏
∙

𝐿

𝑏
(1 −

𝑥3

𝐿
) ∙

𝑥1

𝑎
                         (50) 

 
Using the definitions for 𝐿∗, 𝑥1

∗, and 𝑥3
∗ : 

 
𝜎33

∗ = −4𝜆𝐿∗(1 − 𝑥3
∗) 𝑥1

∗                           (51) 
 

Finally, the dimensionless shear stress can be 
calculated as: 
 

𝜏∗ = √𝜎13
∗2 + 𝜎23

∗2                                     (52) 

 

3. RESULTS AND DISCUSSION 
 

From the formulas calculated in the 
dimensionless analysis, the effects of the 
variables from the equations can be studied. The 
variables discussed below are   𝜆, 𝑣, 𝑥3

∗, and 𝐿∗ .  
These can otherwise be referred to as the ellipse 
aspect ratio (𝜆), the ellipse beam material (𝑣), the 
beam’s axial position (𝑥3

∗), and the beam length 

( 𝐿∗ ). Figs for the stress concentrations in the 
elliptical cross-section of the beam are shown 
below. This is in addition to the plots generated 
for the values of 𝑥1

∗  or 𝑥2
∗   versus the stress 

values for each mentioned variable. 
 

The other three parameters were kept constant 
while analysing the effect of each specific 
parameter. The baseline values for these 
parameters were λ = 1.0, ν = 0.3, x3

∗ = 0.5, and 

L∗= 10. 
 

3.1 Effect of Ellipse Aspect Ratio (λ) 
 

In order to study the impact the ellipse aspect 
ratio (𝜆) variable has on the stress field, it was 
necessary to choose various values for lambda 
keeping the other free parameters constant. This 
is to witness the different effects  𝜆 values have 
on the stress concentration diagram of the 
elliptical cross-section. Three values of 𝜆  were 
used to analyse the model given as: 𝜆 = 0.5, 𝜆 = 

1.0, and 𝜆  = 2.0. It can be seen from these 
figures that, as the aspect ratio increases the 
stress values increases too.  
 

Below is Fig. 3, which displays the σ13
∗  stress 

concentration diagrams for λ at 0.5, 1.0, and 2.0. 
The aspect ratio, as observed from the Figs 3.a-
3.c, impacts the orientation of the cross-section 
as well as the stress distributions and 
magnitudes. From these Figs, it appears that that 
the maximum σ13

∗ value quadruples every time λ 
is doubled in value. By looking back at equation 
(44), this should not be surprising since this 

stress component is proportional to the square of 
λ. Note in Figs 3 that the σ13

∗ stress value is zero 
at the top and bottom of each of the cross-
sections. This is expected from the enforcement 
of the zero-stress traction condition along the 
wall of the prismatic beam (i.e. the wall produced 
from extruding 𝜕𝜋 along the 𝑥3 axial direction). 
 

The same methods used on 𝜎13
∗ were applied to 

the dimensionless analysis equations for 𝜎23
∗ to 

create the Fig.s 4.a-4.c below. It is important to 
note that changes in the maximum stress 
concentration are due to the change of the 
orientation of the ellipse with respect to the 
direction of the load 𝑃. This can be seen in Fig. 4 

below for the 𝜎23
∗ values. Additionally, the stress 

magnitude appears to increase linearly with the 
increase in aspect ratio values. According to 
equation (47), 𝜎23

∗ increases linearly with λ. Note 

that the role of the  𝜎23generation in the cross-
section is to combine with 𝜎13such that the total 

shear stress 𝜏 is always tangential in the cross-
section to the perimeter and hence the zero-
stress traction condition is preserved along the 
prismatic bar axial wall. Such results provide 
verification for the results of this paper.  
 

𝜎33
∗ at the specified λ values are depicted in the 

stress concentration Figs 5.a-5.c below. It is 
shown that variation in the ellipse aspect ratio 
impacts the magnitude and distribution of stress 
as well as the orientation of the cross-section 
with respect to the applied load. Note the linear 
change in 𝜎33

∗ values with λ which is expressed 
mathematically in equation (51). Also, note the 
linear change of this stress component along the 
𝑥1 direction, from the neutral axis, which is due to 
the bending of the beam or bar. 
 

Next, for Fig. 6 below, the shear stress, 𝜏∗, was 
analysed using the dimensionless equations 
(equation (52)), in the same manner as the 
stress values above with the same values for the 
aspect ratios. It can be noted that the aspect 
ratio affects the magnitude and distribution of the 
shear stress along with the orientation of the 
cross-section with respect to the loading.  
  
Fig. 7.c below shows 𝑥1

∗  values versus the 

stress values for 𝜎33
∗ . Upon inspection, it 

appears that as the 𝑥1
∗  values increase the 

stress values decrease linearly (see above 
discussion). At 𝜆  = 2.0, the magnitude of the 
slope is the greatest of all the other lambda 
values. In other words, a higher aspect ratio 
value yields a greater change in stress along 𝑥1

∗.  
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Fig. 3.c. 𝝈𝟏𝟑
∗ stress concentration diagram for 𝝀 = 2.0, ν = 0.3, 𝒙𝟑

∗ = 0.5, and 𝑳∗ = 10 
 

 
 

Fig. 4.c. 𝝈𝟐𝟑
∗ stress concentration diagram for 𝝀 = 2.0, ν = 0.3, 𝒙𝟑

∗ = 0.5, and 𝑳∗ = 10 

 
 

Fig. 3.a. 𝝈𝟏𝟑
∗ stress concentration diagram for 

𝝀 = 0.5, ν = 0.3, 𝒙𝟑
∗ = 0.5, and 𝑳∗ = 10 

  

 
 

Fig. 3.b. 𝝈𝟏𝟑
∗ stress concentration diagram for 

𝝀 = 1.0,  ν = 0.3, 𝒙𝟑
∗ = 0.5, and 𝑳∗ = 10 

 
 

Fig. 4.a. 𝝈𝟐𝟑
∗ stress concentration diagram for 

𝝀 = 0.5,  ν = 0.3, 𝒙𝟑
∗ = 0.5, and 𝑳∗ = 10 

 
 

Fig. 4.b. 𝝈𝟐𝟑
∗ stress concentration diagram for 

𝝀 = 1.0,  ν = 0.3, 𝒙𝟑
∗ = 0.5, and 𝑳∗ = 10 
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Fig. 5.a. 𝝈𝟑𝟑
∗ stress concentration diagram for 

𝝀 = 0.5, ν = 0.3, 𝒙𝟑
∗ = 0.5, and 𝑳∗ = 10 

 
 

Fig. 5.b. 𝝈𝟑𝟑
∗ stress concentration diagram for 

𝝀 = 1.0, ν = 0.3, 𝒙𝟑
∗ = 0.5, and 𝑳∗ = 10 

 
 

Fig. 5.c. 𝝈𝟑𝟑
∗ stress concentration diagram for 𝝀 = 2.0, ν = 0.3, 𝒙𝟑

∗ = 0.5, and 𝑳∗ = 10 
  

 
 

Fig. 6.a. 𝝉∗ stress concentration diagram for λ 

= 0.5, ν = 0.3, 𝒙𝟑
∗ = 0.5, and 𝑳∗ = 10 

 
 

Fig. 6.b. 𝝉∗ stress concentration diagram for λ 
= 1.0, 

ν = 0.3, 𝒙𝟑
∗ = 0.5, and 𝑳∗ = 10 

 
 

Fig. 6.c. 𝝉∗ stress concentration diagram for λ = 2.0, ν = 0.3, 𝒙𝟑
∗ = 0.5, and 𝑳∗ = 10 
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In the plots below, 𝜏∗  was analysed along both 

𝑥1
∗, Fig. 7.a, and 𝑥2

∗, Fig. 7.b. For FiZ. 7.a, λ = 
2.0, again, for  𝑥1

∗, leads to the greatest change 
in shear stress among the other displayed 
lambda values (from the initial value on the plot 
to the final value). The relationship for the shear 
stress along 𝑥1

∗ is nonlinear.   
 
For Fig. 7.b, the plot of 𝜏∗ along 𝑥2

∗, the slopes 
for all the lambda values seem very similar to 
one another. Therefore, there is no notable effect 
of the lambda value on the slope of 𝜏∗ along 𝑥2

∗. 
Also, the slopes appear to be small in value. 
However, it is important to note that for λ = 2.0 
the shear stress is at a value greater than the 
other lambda parameters.  
 
From plot 7.d. below, it can be seen that  𝜏∗

𝑚𝑎𝑥 

and 𝜎∗
33𝑚𝑎𝑥

 are proportionally related in terms of 

λ. As λ increases, 𝜏∗
𝑚𝑎𝑥  and 𝜎∗

33𝑚𝑎𝑥
 also 

increase in value as well. 𝜎∗
33𝑚𝑎𝑥

 versus λ 

exhibits a linear relationship while 𝜏∗
𝑚𝑎𝑥  with λ 

represent a non-linear relationship. 
 

The ellipse aspect ratio impacting the stress 
values is important because it is a representation 
of the ratio of the major axis and the minor axis 
of the elliptical cross-section. This means that if 
an experiment was performed with the same 
loading set-up as presented in this paper (with an 
elliptical beam), the orientation of the ellipse 
would affect the stress values.  
 

3.2 Effect of the Ellipse Beam Material (ν) 
 

To analyse the effect of the beam material 
represented by the different Poisson’s ratios (𝜈), 

different values of 𝜈  were put into the stress 
equations from the dimensionless analysis to see 
how this value affects stress in the system. The 
parameters used were: 𝜈 = 0.1, 𝜈 = 0.3, and 𝜈 = 
0.5. 
 

Fig. 8 below shows the 𝜎13
∗  stress 

concentrations for the three different values of ν. 
It is shown that while variation in ν doesn’t impact 
the magnitude of the 𝜎13

∗  stress, it does affect 
the 𝜎13

∗ stress distribution.   

 

 
 

Fig. 7.a. Plot of 𝝉∗ vs. 𝒙𝟏
∗𝐟𝐨𝐫 𝛌 

 
 

Fig. 7.b. Plot of 𝝉∗ vs. 𝒙𝟐
∗𝐟𝐨𝐫 𝛌 

 
 

Fig. 7.c. Plot of 𝝈𝟑𝟑
∗* vs  𝒙𝟏

∗  for λ 

 
 

Fig.7.d. Plot of 𝝉∗
𝒎𝒂𝒙 and 𝝈∗

𝟑𝟑𝒎𝒂𝒙
 vs. λ 
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Fig. 8.a. 𝝈𝟏𝟑
∗ stress concentration diagram for 

ν = 0.1, λ = 1.0, 𝒙𝟑
∗ = 0.5, and 𝑳∗ = 10 

 
 
 

Fig. 8.b. 𝝈𝟏𝟑
∗ stress concentration diagram for 

ν = 0.3, λ = 1.0, 𝒙𝟑
∗ = 0.5, and 𝑳∗ = 10 

 
Fig. 8.c. 𝝈𝟏𝟑

∗ stress concentration diagram for ν = 0.5, λ = 1.0, 𝒙𝟑
∗ = 0.5, and 𝑳∗ = 10 

 
Next, the stress concentration diagrams for 
𝜎23

∗are shown in Fig. 9 below. Refer to Fig. 4.b. 

for the 𝜎23
∗  stress diagram when ν = 0.3. The 

figures below show that increasing ν slightly 
impacts the stress values for this stress 
component with similar spatial distribution.  
 
The stress concentration diagrams for 𝜎33

∗  are 
identical to Fig. 5.b. for the three studied values 
of ν, ν = 0.1, ν = 0.3, and ν = 0.5. This suggests 
that ν has no effect on the stress magnitude or 
distribution. Equation (51) shows the 
independence of 𝜎33

∗ from ν.  
 
The specified values of 𝜈  were used in the 
dimensionless analysis equation (equation (52)) 
for shear stress, 𝜏∗ , to obtain Figs 10.a-10.c 
below. While the magnitude of the shear stress is 
unchanging for the different values of ν, the 
distribution of the shear stress varies for the 
different Poisson’s ratio values.  
 
Fig. 11.a, shown below, demonstrates that there 
is an inverse relationship between increasing 𝑥1

∗ 
values and the shear stress, 𝜏∗ . The plot also 
reveals that increasing the value of ν from 0.1 to 
0.5 does not significantly impact the relationship 
between 𝑥1

∗ and 𝜏∗. This can also be seen in Fig. 

8. It is important to note that the lines describing 
each of the ν values starts in a different place 
than one another with ν = 0.1 starting at the 
highest value. This means that at ν = 0.1 the 
cross-section centre point shear stress value is 
the greatest.  
 
For Fig. 11.b, the slopes of the curves decrease 
after 𝜈 = 0.1 until it reaches 𝜈 = 0.5, where it is 

almost a straight line. Therefore, at 𝜈 = 0.1, the 
𝑥2

∗ values have the greatest impact on the shear 
stress values. Additionally, the centre point shear 
stress value is the greatest at 𝜈 = 0.1. Note that 

there is more change in the value of 𝜏∗ with 𝑥1
∗ 

than with 𝑥2
∗. 

 

Fig. 11.c reveals that the lines that describe all 
the various values of ν are the same, thus why 
only the line for ν = 0.5 is visible. This plot shows 
that 𝜎∗

33 decreases linearly with the increase in 
the 𝑥1

∗ values. This independence of 𝜎∗
33 from ν 

is clear in equation (51). 
 

Fig. 11.d. reveals that while the maximum shear 
stress value decreases as the value of Poisson’s 
ratio increases, the axial stress 𝜎∗

33𝑚𝑎𝑥
 remains 

constant regardless of the value of ν. Thus, ν 
does not affect 𝜎∗

33𝑚𝑎𝑥
. 
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Fig. 9.a. 𝝈𝟐𝟑
∗ stress concentration diagram for 

ν = 0.1, λ = 1.0, 𝒙𝟑
∗ = 0.5, and 𝑳∗ = 10 

 
 

Fig. 9.b. 𝝈𝟐𝟑
∗ stress concentration diagram for 

ν = 0.5, λ = 1.0, 𝒙𝟑
∗ = 0.5, and 𝑳∗ = 10 

 

 
 

Fig. 10.a. 𝝉∗stress concentration diagram for ν 

= 0.1, λ = 1.0, 𝒙𝟑
∗ = 0.5, and 𝑳∗ = 10 

 
 

Fig. 10.b. 𝝉∗stress concentration diagram for ν 

= 0.3, λ = 1.0, 𝒙𝟑
∗ = 0.5, and 𝑳∗ = 10 

 
 

Fig. 10.c. 𝝉∗stress concentration diagram for ν = 0.5, λ = 1.0, 𝒙𝟑
∗ = 0.5, and 𝑳∗ = 10 

 

3.3 Effect of the Beam Axial Position (𝒙𝟑
∗) 

 

The impact of the beam’s axial position 
represented by the dimensionless parameter 𝑥3

∗ 

on the stress values was analysed by setting 𝑥3
∗ 

to different values. These values were then 
applied in the dimensionless analysis formulas to 
see this parameter’s effect on the stress values. 
The specific values used in this analysis for 𝑥3

∗ 

were: 𝑥3
∗ = 0.0, which is the base of the beam 

fixed on one side, 𝑥3
∗ =  0.5, and 𝑥3

∗ = 0.9. Since 

(from equations 44, 47, and 51) 𝑥3
∗  is only 

affecting the stress field of 𝜎33
∗, the analysis was 

done for such stress field only. 
 
Refer to Fig. 8.b. for the σ13

∗  stress 

concentration diagrams for when 𝑥3
∗  is 0, 0.5, 

and 0.9. Since the figures for these values are all 
identical to one another, it can be seen that 
change in the 𝑥3

∗   value has no impact on the 

σ13
∗ stress distribution or magnitude. 

 
Refer to Fig. 4.b. for the σ23

∗  stress 

concentration diagrams for 𝑥3
∗  values of 0, 0.5, 



 
 
 
 

Roth et al.; PSIJ, 25(6): 48-63, 2021; Article no.PSIJ.74836 
 
 

 
59 

 

and 0.9. Since the figures for all these values are 
the same, variation in 𝑥3

∗ has no impact on the 

magnitude or distribution of the σ23
∗ stress. 

 
The Figs 12.a-12.c below show the stress 
concentration diagrams for 𝜎33

∗  for different 

values of 𝑥3
∗. From Fig. 12 it can be noted that 

the distribution of 𝜎33
∗ is uniform across 𝑥2, and it 

decreases in magnitude as it moves away from 
the base and gets closer to the applied                       
load. This is because of the deceasing moment 
value when getting close to the load. This is due 
to the decrease of the arm length for the 
moment.  

 

 
 

Fig. 11.a. Plot of 𝝉∗  vs. 𝒙𝟏
∗for ν 

 
 

Fig. 11.b. Plot of 𝝉∗  vs. 𝒙𝟐
∗for ν 

 
 

Fig. 11.c. Plot of 𝝈𝟑𝟑
∗   vs. 𝒙𝟏

∗for ν 

 
 

Fig. 11.d. Plot of 𝝉∗
𝒎𝒂𝒙 and 𝝈∗

𝟑𝟑𝒎𝒂𝒙
 vs. ν 

 

 
 

Fig. 12.a. 𝝈𝟑𝟑
∗ stress concentration diagram 

for 𝒙𝟑
∗= 0.0, λ = 1.0, ν= 0.3, and 𝑳∗ = 10 

 
 

Fig. 12.b. 𝝈𝟑𝟑
∗ stress concentration diagram 

for 𝒙𝟑
∗= 0.5, λ = 1.0, ν= 0.3, and 𝑳∗ = 10 

 
 

Fig. 12.c. 𝝈𝟑𝟑
∗ stress concentration diagram for 𝒙𝟑

∗= 0.9, λ = 1.0, ν= 0.3, and 𝑳∗ = 10 
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Refer to Fig. 10.b for the stress diagrams for 𝜏∗ 

for the specified 𝑥3
∗values, 0, 0.5, and 0.9. The 

fact that there is not variation in the stress 
diagrams for the values of 𝑥3

∗  shows that 𝑥3
∗ 

does not impact the shear stress magnitude or 
distribution.  
 

The figure below, Fig. 13.c, shows a plot for 𝑥1
∗ 

versus 𝜎33
∗  for the specified values of 𝑥3

∗ . At 

𝑥3
∗ = 0.0, the magnitude of the slope was the 

greatest compared to the other two 𝑥3
∗  values. 

For all the specified 𝑥3
∗ values, as 𝑥1

∗ increases 

the values for 𝜎33
∗  decreases. Since there’s a 

notable difference in the slopes for each of the 
𝑥3

∗ values, it can be concluded that the 𝑥3
∗ value 

will impact the stress results along 𝑥1
∗. 

 

Fig. 13.a only shows the relationship for 𝑥3
∗  = 

0.9, but the other lines for the various 𝑥3
∗ values 

are under the line. In other words, the lines that 
describe the different values are all the same. 
This plot shows that the shear stress decreases 
with the increase in 𝑥1

∗ . This relationship, 
however, is not linear. We have seen similar 
drops in Figs 11a and 7a.  
 

Fig. 13.b is similar to 13.a. A notable difference is 
that 13.b has a higher shear stress value when 

𝑥2
∗ = 1 than 13.a, which is at 0 when 𝑥1

∗ = 1. The 
shape of the line itself, however, has a reduced 
slope but similar shape. Again, 𝑥3

∗ does not have 
an effect on 𝜏∗. 
 
Fig. 13.d. shows that the maximum shear stress 
is not impacted by changes in 𝑥3

∗ . 𝜎∗
33𝑚𝑎𝑥

 is 

shown to be linearly related to 𝑥3
∗ (see equation 

(51)).  
 
3.4 Effect of the Beam Length L* 
 
The effect of beam length, represented by the 
dimensionless parameter 𝐿∗, on the stress values 
was found by setting this variable equal to 
specific values and then using them in the 
dimensionless analysis equations. The specific 
values used for this parameter were: 𝐿∗= 5, 𝐿∗ = 

10, and 𝐿∗  = 20. Again, this parameter is only 
affecting the stress field of 𝜎33

∗. As a result, the 
analysis was done for such stress field only. 
 
Fig. 8.b. is the same as the stress concentration 

diagrams for σ13
∗ when L

∗
 is 5, 10, and 20. This 

suggests that varying L
∗

 values have no       
effect on the σ13

∗  stress magnitude or 
concentration. 

 

 
 

Fig. 13.a. Plot of 𝝉∗ vs. 𝒙𝟏
∗for 𝒙𝟑

∗ 

 
 

Fig. 13.b. Plot of 𝝉∗ vs. 𝒙𝟐
∗for 𝒙𝟑

∗ 

 
 

Fig. 13.c. Plot of 𝝈𝟑𝟑
∗ vs. 𝒙𝟏

∗ for 𝒙𝟑
∗ 

 
 

Fig. 13.d. Plot of 𝝉∗
𝒎𝒂𝒙 and 𝝈∗

𝟑𝟑𝒎𝒂𝒙
 vs. 𝒙𝟑

∗ 
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Fig. 4.b. is identical to the stress concentration 

diagrams for σ23
∗ when L

∗
 is 5, 10, and 20. This 

suggests that L
∗
 has no impact on the stress 

magnitude or distribution since there is no 
change in the figures for the different values of 

L
∗
. 

 
The stress diagram for σ33

∗ is shown in Fig. 14 
below. Fig. 5.b. is the same as the                      

diagram for σ33
∗   when L

∗
 is 10. It               

appears that change in L
∗
 has both an impact on 

the stress distribution as well as the           
magnitude of stress present in the cross-       
section.  

Fig. 10.b. is representative of the stress 

concentration diagrams for τ∗ when  L
∗
 is 5, 10, 

and 20. Since there is no change in the stress 
magnitudes and distributions between the 

diagrams with the different L
∗
 values, it is seen 

that L
∗
 has no effect on the τ∗ stress.  

 

Fig. 15.a shows that the same line describes the 
relationships for 𝐿∗ at 5, 10, and 20. This is also 
true for Fig. 15.b, thus why both these plots only 
have the line for 𝐿∗ = 20 visible. This additionally 

means that the value of  𝐿∗ has no impact on the 

relationship between the shear stress and  𝑥1
∗  or 

the 𝑥2
∗ values.  

 

 
 

Fig. 14.a. 𝝈𝟑𝟑
∗ stress concentration diagram 

for 𝑳∗ = 5, λ = 1.0, 𝒙𝟑
∗ = 0.5, and ν = 0.3 

 
 

Fig. 14.b. 𝝈𝟑𝟑
∗ stress concentration diagram 

for 𝑳∗ = 20, λ = 1.0, 𝒙𝟑
∗ = 0.5, and ν = 0.3 

 

 
 

Fig. 15.a. Plot of 𝒙𝟏
∗ vs. 𝝉∗ for 𝑳∗ 

 
 

Fig. 15.b. Plot of 𝒙𝟐
∗ vs. 𝝉∗ for 𝑳∗ 

 
Fig. 15.c. Plot of 𝒙𝟏

∗ vs. 𝝈𝟑𝟑
∗ for 𝑳∗ 

 
Fig. 15.d. Plot of 𝝉∗

𝒎𝒂𝒙 and 𝝈∗
𝟑𝟑𝒎𝒂𝒙

 vs. 𝑳∗ 
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Fig. 15.a ends at 𝑥1
∗  = 1 and 𝜏∗  = 0 while Fig. 

15.b ends when 𝑥2
∗  = 1 and 𝜏∗  is greater than 

zero. They also both have starting points that are 
very close in value to one another. This means 
that the slope for the 𝑥1

∗ values is greater than 

the one for the 𝑥2
∗  values. Both plots show an 

inverse relationship between the increasing 
shear stress values and the 𝑥1

∗ and 𝑥2
∗ values. It 

is also important to note that neither plot shows a 
linear relationship. 
 
Fig. 15.c shows the relationship between 𝜎33

∗and 

𝑥1
∗ in a plot for 𝐿∗. When 𝐿∗ = 20 the magnitude 

of the slope is the greatest. According to the plot, 
as 𝑥1

∗ increases 𝜎33
∗ decreases for any given 𝐿∗. 

Since the magnitudes of the slopes vary for each 
value of 𝐿∗, 𝐿∗ affects the stress value 𝜎33

∗. The 
plot shows this relationship as being linear 
between 𝜎33

∗ and 𝑥1
∗.  

 
Fig. 15.d shows that the shear stress stays 
constant with varying 𝑳∗ values, while 𝝈∗

𝟑𝟑𝒎𝒂𝒙
 is 

linearly proportional to the increasing 𝑳∗values. 
 
4. CONCLUSIONS 
 
The Beltrami-Michell compatibility equations 
were successful in deriving a formula for 
analysing the stresses in a prismatic beam/bar 
with an elliptic cross-section, with loading along 
the centre of the right end on one of the cross-
section axes. The resulting stress equations 
discovered for a beam with an elliptical cross-
section differed from the equations describing the 
cylindrical beam. To verify, the elliptical formulas 
were checked in the limit for an aspect ratio of 
unity. This produced exactly the analytical 
solution for a cylindrical beam/bar presented in 
[1].  
 
The variables found in the stress equations for 
the elliptical beam were also studied to see their 
effects on the stress values for the beam. This 
was done using dimensionless analysis. This 
analysis revealed that the aspect ratio had the 
greatest impact on the shear and normal axial 
stresses. The Poisson’s ratio had minimal impact 
on the stress magnitude. Also, the beam length 
and axial position of a cross-section affected the 
axial normal stress. 
 
The parameters studied in the Results and 
Discussion section for an elliptical cross-section 
beam had similar effects on beams with other 
cross-sections presented in previous research 
work. For example, Poisson’s ratio impacted 

beams with other cross-sections as shown in 
references  [2], [4], [6], [7], and [9]. The beam 
length was also shown to impact certain stress 
values in the referenced works of [2], [7], and [9].  
 
The results from varying the ellipse aspect ratio 
when analysing the shear stress were very 
similar to the findings presented in [2]. This is 
because [2] notes that for larger ellipse aspect 
ratios the stress is located more in the “mid-
plane,” but as the ratio value decreases the 
stresses concentrates more at the “load tip.” This 
can be seen in Fig. 6.  
 
Through understanding the properties of ellipses 
and using linear elastic principles, it was possible 
to create new formulas that describe stresses in 
a beam with an elliptical cross-section under a 
transverse loading.  
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