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Abstract

We propose a novel exact method to solve the probabilistic catalog matching problem faster than previously
possible. Our new approach uses mixed integer programming and introduces quadratic constraints to shrink the
problem by multiple orders of magnitude. We also provide a method to use a feasible solution to dramatically
speed up our algorithm. This gain in performance is dependent on how close to optimal the feasible solution is.
Also, we are able to provide good solutions by stopping our mixed integer programming solver early. Using
simulated catalogs, we empirically show that our new mixed integer program with quadratic constraints is able to
be set up and solved much faster than previous large linear formulations. We also demonstrate our new approach
on real-world data from the Hubble Source Catalog. This paper is accompanied by publicly available software to
demonstrate the proposed method.

Unified Astronomy Thesaurus concepts: Astronomical methods (1043); Catalogs (205); Photometry (1234); Bayes
factor (1919)

1. Introduction

A cornerstone of modern astronomy is ambitious systematic
surveys by dedicated telescopes with well-understood selection
functions. Their imaging data collected over many years and a
wide range of wavelengths are summarized in catalogs for most
astronomy research projects. To enable time-domain and
multiwavelength studies, several tools have been developed
to combine or crossmatch the catalogs, such as TOPCAT
(Taylor 2005), the CDS XMatch (Pineau et al. 2015) portal,
and ASPECTS (Fioc& Michel 2014). Most of these, however,
rely on some sort of heuristics and do not take into account the
inherent statistical nature and computational challenge of the
global catalog matching problem.

Budavári & Szalay (2008) approached the problem through
Bayesian hypothesis testing. Their methodology was imple-
mented into SkyQuery (Dobos et al. 2012), a service part of the
SciServer Science Platform (Taghizadeh-Popp et al. 2020).
Budavári & Basu (2016) solved the problem globally for the
simpler two-catalog case by reformulating the problem as a
linear assignment problem. Their method maximized the
marginal likelihood of a crossmatching using the Hungarian
algorithm (Kuhn 1955). Shi et al. (2019) extended the method
to handle more than two catalogs by enumerating all subsets of
the data set (all possible associations to hypothesized
astronomical objects) and solving the problem using mixed
integer linear programming (MILP). Nguyen et al. (2022)
modified the MILP formulation to improve its speed for a
larger number of catalogs. They applied their method over
small sections of (simulated) catalogs called islands created by
a DBSCAN (Ester et al. 1996) clustering procedure, which
guaranteed that every such cluster or island was far away from
each other. However, limited by the scaling of their algorithmic
solution, Nguyen et al. (2022) could not process more than 20

catalogs in an island in under 45 minutes on our standard
desktop computing hardware described in Section 5.
In this paper, we introduce a significantly faster, yet exact,

approach to crossmatching that improves globally optimal
algorithmic solutions by reformulating the problem using
quadratic constraints. Section 2.1 introduces the Bayesian
hypothesis testing framework we use. Section 2.2 explains the
methods that we build upon. Section 3 explains our new
approach using quadratic constraints. Section 4 puts forward
numerical accuracy improvements and an algorithm to provide
a bound of the maximum number of objects in a data set.
Section 5 demonstrates empirically that our new approach is
superior to prior methods using simulated catalogs. Section 6
demonstrates our new method on real-world data from the
Hubble Source Catalog. Section 7 provides concluding remarks
and discusses possible future improvements.

2. Globally Optimal Matching

The goal of astronomical catalog crossmatching is to best
match sources from different catalogs to the same astronomical
objects. We follow the Bayesian hypothesis testing framework
introduced by Budavári & Szalay (2008), which considers the
marginal likelihood of possible competing associations. At the
heart of the approach is the member likelihood function that is
the probability density of the measurement for each source i in
catalog c given a hypothesized true direction ω and uncertainty.
The data for source (i,c), represented hereafter by Dic, is often
summarized into an estimated direction xic, and the member
likelihood function is often assumed to be a Gaussian in the
tangent plane of the observation. Our goal is to optimally match
all available ic detections as appropriate. Below we formulate
the problem in general and discuss the specializations for the
usual application limits.

2.1. Problem Formulation

To formalize the problem, we follow the notation in Nguyen
et al. (2022). Let there be C catalogs with each catalog indexed
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c ä {1,K,C}. We subscript variables with ic as shorthand for
(i,c) to denote a variable associated with source i in catalog c.
Suppose there are Nc sources in each catalog with Dic denoting
the source’s raw imaging data. Each source has a corresp-
onding true direction ω it comes from and likelihood

ℓ p D . 1ic ic( ) ( ∣ ) ( )w w=

This framework allows for other properties, such as color and
brightness, to be considered, which is explored in Salvato et al.
(2018) and Marquez et al. (2014). However, we choose to
focus on directional data only.

Crossmatching is equivalent to partitioning of the sources
where no sources in the same catalog are assigned to the same
subset. Given a partition S S S, , , N1 2 obj { }= ¼ , each nonempty
subset in the partition, indexed by o äO= {1,K, Nobj},
represents an astronomical object. Each astronomical object
also has additional properties such as an unknown true
direction and spectrum. In the rest of the paper, we use object
as shorthand for a nonempty subset in a partition of sources.
We denote each source’s directional uncertainty as σic. Under
this framework, we seek to find the partition with maximum
likelihood.

The likelihood of a partition  is the product of
conditionally independent likelihoods

D D Dp , , , , , 2ic N C
o O

o11 ,c   ( ) ( ∣ ) ( )= ¼ ¼ =
Î

which we aim to maximize. Here, o is the marginal
likelihood of an association corresponding to an object o and
is calculated via

ℓ d , 3o C
ic S

ico

o

 ( ) ( ) ( )ò r w w w=
Î

where Co:={c: ic ä So} is the subset of catalogs associated with
object o, and Co

( )r w is the prior probability density function of
the object direction creating the sources within each catalog of
Co. For convenience, we also define the marginal likelihood of
a nonassociation for an object’s sources as

ℓ d , 4o
ic S

c ic
NA

o

 ( ) ( ) ( )ò r w w w=
Î

where ρc(ω) is the prior probability density function of the
sources in catalog c. For a detailed discussion on this notation
and its assumptions, see Nguyen et al. (2022).

For an object in a partition, the Bayes factor is the ratio of the
marginal likelihood of the object association and the marginal
likelihood of the nonassociation of the sources in the object:

B . 5o
o

o
NA




( )=

When the Bayes factor is greater than 1, the hypothesis for
association is more likely than the hypothesis for nonassocia-
tion. When the Bayes factor is less than 1, the hypothesis for
nonassociation is more likely than the hypothesis for associa-
tion. We note that o

NA is independent of the proposed
partition, i.e., constant, hence optimizing o is equivalent to
maximizing ∏Bo.

We summarize a source’s imaging data, Dic, with its
measured direction and directional uncertainty. To model the
uncertainty in the measured directions, we use the simplest

spherical analog of the normal distribution known as the Fisher
(1953) distribution:

ℓ f x x: ; ,
4 sinh

exp , 6ic ic ic ic
ic

ic
ic ic( ) ( )

( )
( · ) ( )w w k

k
p k

k w= =

where κic is a concentration parameter. When κic? 1, the
Fisher distribution is approximately equal to a two-dimensional
normal distribution in the tangent plane with variance ic

2s
where 1ic ic

2k s= . We denote κic in arcseconds−2 as ic
seck and

denote κic in radians−2 without the superscript. Let  =
3600 180 arcseconds2 2 2( · ) p to convert from arcseconds−2 to
rad−2. We denote any κ in arcseconds−2 as seck and any κ in
radians−2 without the superscript. So, we have

. 7sec ( )k k=

Using this flat-sky approximation, Budavári & Szalay (2008)
showed that an object’s Bayes factor can be written as

B 2 exp
4

, 8o
S ic ic

ic ic

ic i c ic i c ic i c

ic ic

1
sec sec

,
2

sec
o ⎛

⎝
⎜

⎞

⎠
⎟ ( )∣ ∣ k

k
k k y

k
=



å
-
å å

å
- ¢ ¢ ¢ ¢ ¢ ¢

where |So| is the number of sources in an object and ic i c,y ¢ ¢ is
the squared distance between sources ic and i c¢ ¢. Putting this
together, our objective is to maximize

B 9
o O

o ( )
Î

over the space of feasible partitions. Equivalently, we can
minimize the negative log of the Bayes factors product

Bln , 10
o O

o( ) ( )å -
Î

where

B Sln 1 ln 2 ln

ln
4

. 11

o o
ic

ic

ic
ic

ic i c ic i c ic i c

ic ic

sec sec
,

2

sec⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( ∣ ∣) ( ) ( )

( ) ( )

å

å

k

k
k k y

k

- = - -

+ +
å å

å
¢ ¢ ¢ ¢ ¢ ¢

Optimizing the log Bayes factor instead of the Bayes factor
itself allows us to optimize over a sum instead of a product.
Optimizing over a sum allows the use of fast mathematical
programming methods.

2.2. Prior State of the Art

Budavári & Lubow (2012) proposed optimizing the Bayes
factor by creating a fully connected graph between sources and
removing the largest edge until the (logarithm) Bayes factor
was optimal. Their Chainbreaker method is essentially
equivalent to single-linkage clustering. However, Chainbreaker
provides only an approximate solution and does not enforce the
constraint that two sources from the same catalog are not
associated with each other. For two catalogs, Budavári & Basu
(2016) solved the problem in polynomial time using the
Hungarian algorithm. However, for three or more catalogs, the
problem becomes NP-Hard. Shi et al. (2019) formulated the
problem using mixed integer linear programming. However,
their formulation enumerated all subsets of of the source data
set, which grows exponentially fast with the number of catalogs
and sources. We denote the data set of source-catalog pairs as
D. Nguyen et al. (2022) reformulated the problem by assigning

2
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sources to hypothetical objects. This reformulation reduced the
size of the formulation from exponential to polynomial.
However, their method was still not able to process more than
20 catalogs in a reasonable amount of time. Following the
naming convention in Nguyen et al. (2022), we refer to the
method by Shi et al. (2019) as CanILP and the method by
Nguyen et al. (2022) as DirILP. We build upon ideas in the
DirILP formulations, hence we describe the relevant compo-
nents next.

2.3. The DirILP Solver

We start with a concise review of DirILP and its parts
relevant to our improved method; see Appendix in Nguyen
et al. (2022) for a full description. DirILP directly assigns
sources to hypothetical objects rather than enumerating all
possible subsets like in CanILP. Let N be the maximum
number of objects. They introduced binary variables xic

o for
each source-catalog pair ic äD and hypothetical object o ä {1,
K, N} where x 1ic

o = if ic is associated with object o and 0
otherwise. So, a subset So in a partition  can be represented as
all sources where x 1ic

o = . To capture the number of sources
assigned to an object, for each k ä {0,K,C}, they introduced
binary variables

z
x k1 if

0 else
. 12k

o
ic

ic
o

⎧
⎨
⎩

( )
å

=
=

DirILP also introduced binary variables

y x x1 if 1
0 else

, 13ic i c
o ic

o
i c
o

,
⎧
⎨⎩

( )= = =
¢ ¢

¢ ¢

which indicates if two sources from different catalogs c and c¢
are assigned to the same object.

To linearize the term ln ic ic( )kå in the negative log Bayes
factor formula, Nguyen et al. created a piecewise linear
approximation. First, they introduced constant terms
b b b b b b: , , , , Rmin 1 2 3 max≕= ¼ where

b

b C

ln min ,

ln max . 14

ic D
ic

ic D
ic

min

max ⎛
⎝

⎞
⎠

( )
( )

k

k

=

=

Î

Î

Next, they set an error threshold ò and set

R
b b

: , 15max min⎡
⎢⎢

⎤
⎥⎥

( )=
-

and the list of constants are defined for p= 1, K, R as

b b p 1 . 16p min ( ) ( )= + -

Next, they defined for each object o binary variables
...o o

R
o

1 2   cc c and imposed a new constraint

b b b xexp exp exp .

17

o

p

R

p
o

p p
ic

ic ic
o

1 1
2

1( ) [ ( ) ( )]

( )

å åc c k+ -
=

-

So, the new variables provide an approximation to the original
term:

b b b

b

ln

. 18

ic
ic

o

p

R

p
o

p p

o

p

R

p
o

1 1
2

1

1 min
2

⎜ ⎟
⎛
⎝

⎞
⎠



( )

( )

å å

å

k c c

c c

» + -

= +

=
-

=

For an example of how these variables work see Section 2.2.2
in Nguyen et al. (2022). To linearize the S1 ln 2o( ∣ ∣) ( )- term in
the objective function, they introduced new variables po for
each object where

p
k z k C1 ln 2 if 1 for some

0 else
. 19o k

o
⎧
⎨⎩

( ) ( ) [ ] ( )= - = Î

Finally, to linearize the double sum in the objective function

4
, 20ic i c ic i c ic i c

ic ic

sec sec
,

2

sec ( )
k k y

k
å å

å
¢ ¢ ¢ ¢ ¢ ¢

they introduced new constants

c

c C

: min ,

: max , 21
ic D

ic

ic D
ic

min
sec

max
sec ( )

k

k

=

=
Î

Î

and grid points 0:=c0, c1,K,cQ, where c1 is cmin rounded to the
nearest 100 and cQ is cmax rounded to the nearest 100. Then,
∀i> 2, ci := c1+ 100(i− 1). Then they introduced new
variables uk

o for each object where

u
x c1 if

0 else
, 22k

o
ic

ic ic
o

k
sec

⎧
⎨
⎩

[ ]
( )

å k
=

=

where k ä {0, 1,K,Q}. uk
o approximates ic S ic

sec
o
kå Î in the

denominator of the double sum. Then, they defined the
variables t o as

For details on how close this approximation is to the actual
term, see Nguyen et al. (2022). In terms of the new variables in
DirILP, the objective function is:

p x b tln , 24
o

o

ic
ic
o

ic
o

p

R

p
o o

1 min
2

⎛

⎝
⎜

⎞

⎠
⎟( ) ( )å å åk c c- + + +

=

which is linear in all the new variables. Nguyen et al. used
Gurobi (Gurobi Optimization, LLC 2023) to solve the mixed

t u k Qif 1 for some 1, 2, ,

0 else.
23o

y

c k
o

4

ic i c ic i c ic i c ic i c
o

k

sec sec
,

2
,⎧

⎨
⎩

{ } ( )= = Î ¼
k k yå å ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
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integer linear program. However, even setting up the problem

takes a long time because the t o variables involve
D

2
⎛
⎝

⎞
⎠

∣ ∣
terms

where |D| is the number of sources-catalog pairs in the data
set D.

3. Our Approach Using MIQCP

We improve on DirILP by introducing quadratic constraints
and removing some terms from the objective function that are
constant across any partition. We also propose a method to
provably bound N, the maximum number of objects, which
allows far fewer optimization variables to be created. A naive
bound on the maximum number of objects is the total number
of sources, which was used in DirILP. Our method to bound N
method is described in the next section.

First, the objective function of our problem is

B Sln 1 ln 2 ln

ln
4

. 25

o
o

o
o

ic
ic

ic
ic

ic i c ic i c ic i c

ic ic

sec sec
,

2

sec

⎜

⎜ ⎟

⎛
⎝

⎛
⎝

⎞
⎠

⎞

⎠
⎟

( ) ∣ ∣) ( ) ( )

( ) ( )

å å å

å

k

k
k k y

k

- = - -

+ +
å å

å
¢ ¢ ¢ ¢ ¢ ¢

DirILP approximated the first term through the po variables.
However, looking at the sum of the first term we see that

S S

K D

1 ln 2 ln 2 ln 2

ln 2 ln 2 , 26
o

o
o o

o( ∣ ∣) ( ) ( ) (∣ ∣) ( )

( ) ∣ ∣ ( ) ( )

å å å- = -

= -

where K is the number of nonempty objects in the solution and |D|
is the total number of source-catalog pairs in the data set D. The
latter term does not change between different partitions. So, it can
be removed from the optimization problem. We can also see that

ln ln . 27
o ic S

ic
ic D

ic

o

( ) ( ) ( )åå åk k=
Î Î

So, this term can also be removed from the optimization
problem.

We introduce new binary variables qo where

q x ic S , 28o
ic
o

o ( ) " Î

so that the number of nonempty objects is given by ∑oqo: since
we are minimizing, in the optimal solution qo will equal 0
when all x 0ic

o = and 1 if any x 1ic
o = for an object o.

We introduce quadratic constraints in order to improve t o in
DirILP. Unlike DirILP, our new method is exact for the double-
sum term. Our formulation is based on Werner (2022), which
uses mixed integer quadratically constrained programming
(MIQCP) to solve the k-means clustering problem. As shown
in Appendix, minimizing the weighted sum of squared
distances is equivalent to minimizing the sum of squared
distances to a subset’s centroid. Let μ o be a continuous vector
with the same dimension as the source positions in the data set.
Let ric be nonnegative continuous variables. Then, we can
minimize the sum of the squared distances to a subset’s

centroid through the following program

r

I x r M x

ic D o N

II x ic D

III x c C o N

min

s.t. . 1
,

. 1

. 1 , , 29

ic
ic

ic ic
o

ic ic
o

o
ic
o

i
ic
o

sec
2
2∣∣ ∣∣ ( )

[ ]

[ ] [ ] ( )





å

å

å

k m- + -
" Î Î

= " Î

" Î Î

where M is chosen large enough. Here, M can be chosen as
the largest weighted pairwise distance between any two
points in the data set. Constraint I, which is a convex
quadratic constraint, makes sure that ric is at least the
weighted squared distance between a source and the
centroid of its assigned subset. Since we are minimizing,
ric will be equal to the weighted squared distance. Constraint
II ensures that all sources are assigned to an object.
Constraint III ensures no two sources from the same catalog
are assigned to the same object. With these new variables,
we find that:

r
4

1

2
. 30

o

ic i c ic i c ic i c

ic ic ic
ic

sec sec
,

2

sec
⎛

⎝
⎜

⎞

⎠
⎟ ( )å å

k k y
k

å å

å
=¢ ¢ ¢ ¢ ¢ ¢

We use the same approximation as DirILP for the ln ic( )kå
term. Putting all of this together, we get that our final mixed
integer quadratically constrained program is

r q b

q x ic S

x ic D o N

o N p R

o N

e e e

x o N

min
1

2
ln 2

ln

s.t. Constraints I, II, and III from Equation 29 .

0, 1 ,

0, 1 ,

...

. 31

ic
ic

o

o o

ic S
ic
o

ic

o
ic
o

o

ic
o

p
o

o o
R
o

o b

p

R

p
o b b

ic
ic ic

o

1 min

1 2

1
2

o

p p1 1

⎜
⎛
⎝

⎞

⎠
⎟

( )

(

( )

{ } [ ]
{ } [ ] [ ]

[ ]

( )

[ ] ( )



  



å å

å

å

å

c

c k

c

c c c

c c

k

+ +

+

" Î
Î " Î Î
Î " Î Î

" Î

+ -

" Î

Î

=

-

Using quadratic constraints, we are able to capture the double-
sum term in O(|D|) terms rather than O(|D|2) terms in DirILP.
This dramatically reduces the time to set up the program since |
D| grows quickly with the number of catalogs. This change
brings the problem into a more complex class of mixed integer
problems with different optimization algorithms. However,
Gurobi has improved their MIQCP solver a lot in the past
several years, and our results in Section 5 show that their
MIQCP solver is fast.
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4. Numerical Accuracy and Bounding Improvements

We propose two improvements that allowed us to further
speed up the solver by multiple orders of magnitude on top of
the MIQCP formulation. These improvements allow us to both
reduce the number of optimization variables needed and reduce
the magnitude of numbers we input into the integer program-
ming solver. Integer programming solvers perform much better
with fewer variables and with small-magnitude numbers.

4.1. Numerical Accuracy Improvements

For the simulated data, the uncertainties are very small when
converted to radians (�10−5). So, the κic terms are very large
(>1010). This poses a numerical problem for the κic in rad−2,
particularly for the ln ic( )k terms. However, we can avoid this
since we are taking the natural logarithm of all of our terms.

We convert between seck and rad−2 using Equation (7).
Converting all the seck terms to rad−2 prior to taking the natural
logarithm leads to numerical errors. This calculation requires
floating-point arithmetic, which suffers from numerical errors
for large numbers. These errors are small relative to the large
numbers. However, since we are reducing the numerical
magnitude by taking the logarithm of these large numbers, the
relative errors are magnified. So, we instead can use the
following identities:

Sln ln ln , 32
ic S

ic o
ic S

ic
sec sec

o o

 ( ) ∣ ∣ ( ) ( ) ( )å åk k= +
Î Î

ln ln ln . 33
ic S

ic
ic S

ic
sec sec

o o

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ ( ) ( )å åk k= +

Î Î

By taking the logarithm of our large numbers before
multiplication, we can reduce the relative error in the final
term. Equation (32) is only useful in calculating the negative
logarithm of the Bayes factor and not the optimization since it
can be removed from the optimization problem as shown in
Section 3. Equation (33) is useful in the optimization to reduce
the magnitude of numbers going into the solver. We can handle
the ln ( ) term since it is constant and only affects the
optimization when an object is nonempty. So, in the final
optimization, we optimize over q lno

o ( )å since qo is only
nonzero if the subset for object o is nonempty.

4.2. Bounding Algorithm

Here, we present an algorithm to provide a better upper
bound on the maximum number of nonempty objects, denoted
N. We show empirically in Section 5 that the bounding
algorithm dramatically decreases the number of decision
variables and the overall runtime of the MIQCP solver. To
give an upper bound on N, we use a good feasible solution with
objective function value B̂. This good feasible solution can be
found by stopping the MIQCP method early. We then use
Algorithm 1 to find that upper bound. Solving a relaxed
MIQCP problem provides a lower bound on the optimal
objective function value for the original MIQCP problem. So,
by iteratively restricting the minimum number of nonempty
objects, we can provide an upper bound on N, which we
denote N̂ .

Algorithm 1. An algorithm to find an upper bound on the
maximum number of hypothetical objects.

1:N 0ˆ  .
2:While N Nˆ < do.
3: Create an instance of the MIQCP model.
4: Add a constraint q No

o ˆå .
5: Relax the MIQCP model by removing binary and integer constraints.
6: Solve the relaxed problem to get a lower bound on the new problem’s
optimal objective function value, L.

7: If L B̂> then
8: return N̂ ,
9: else
10: N N 1ˆ ˆ + .
11: Return N̂ .

As seen in our MIQCP formulation, N is present whenever we sum
over all of the hypothetical objects. So, reducing N can
dramatically reduce the number of variables we have and allow
Gurobi to solve our problem much faster. This runtime
improvement is shown for the simulated data in the next section.

5. Results and Performance on Simulated Data

We tested the new MIQCP solver on simulated catalogs. We
used Gurobi (Gurobi Optimization, LLC 2023) to set up and solve
DirILP and our MIQCP method. All of our code is available on
GitHub (Feitelberg 2023). The computer we run our tests on has
an Intel® CoreTM i9-9900K CPU and 32GB of RAM.
We create the synthetic astronomy catalogs as described by

Nguyen et al. (2022). Using the flat-sky approximation
appropriate for the typical large compactness parameters
κ= 1/σ2 of modern surveys, i.e., small directional uncertain-
ties, we simulate two objects by drawing sources from multiple
Gaussian distributions. These distributions represent the
directions of two objects. For each simulated object, we draw
a source from its distribution. In practice, we can first separate
sources that have a large angular separation, in relation to their
uncertainties, into connected islands to allow for parallel
processing of smaller optimization problems.
Nguyen et al. (2022) used DBSCAN in Scikit-Learn to

isolate islands. For our simulations, we skip this step and only
simulate two objects. We set the distance between the objects
to be close enough that the two boundaries of samples drawn
from the distributions overlap. Nguyen et al. also set the MIP
Gap (optimality gap) to 0.5% to reduce the runtime to prove
optimality. However, for our simulations, we keep the MIP
Gap at the default value of 0.01%. So, our results are closer to
optimal. We also do not enforce any of the heuristics in
Section 4 of Nguyen et al. (2022).
Figure 1 illustrates the performance of the new method

compared to Chainbreaker for a simulation with 20 catalogs.
MIQCP is able to recover the true solution whereas Chain-
breaker predicts the wrong number of objects and provides a
worse solution than MIQCP. This is because Chainbreaker only
considers removing the largest edge in the pairwise distance
graph, but not all other combinations of associations. If the
largest edge removal does not lead to a better Bayes factor, then
Chainbreaker stops searching.
Our results in Figure 2 show that for more than 5 catalogs,

our MIQCP method is much faster than DirILP. As shown by
the error bars, the runtime can vary a lot for a larger number of
catalogs for both DirILP and our MIQCP method. This
behavior is common with integer programming solvers. As
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shown in Figure 3, the MIQCP setup is much faster than
DirILP. Our results in Figure 4 also show while DirILP cannot
process more than 25 catalogs in a reasonable amount of time,

Figure 1. Simulation with 20 catalogs with object assignment shown through the different colors. The two object centers are denoted with x-ticks in red and blue.
MIQCP is able to recover the true solution shown in the top left. Chainbreaker is not able to find a good solution and predicts the wrong number of objects.
Chainbreaker also violates constraints by assigning sources within the same catalog to the same object.

Figure 2. Simulation Total Runtime vs. Number of Catalogs for DirILP and
MIQCP. We set the distance between the object centers to 0 13. We set the
uncertainties for both objects to 0 04. For these runtimes, we use the algorithm
to find a better upper bound on the maximum number of hypothetical objects.
We repeat the simulations five times for each setting. MIQCP has a faster total
runtime than DirILP.The DirILP line does not have data points for 30 and 35
catalogs because we stopped the program after 45 minutes. We show in
Figure 4 exactly what percentage of the runs succeeded in finishing before 45
minutes. The error bars at the end of DirILP and MIQCP are zero because only
1 out of 5 runs finished on time for both methods.

Figure 3. Setup Time vs. Number of Catalogs for DirILP and MIQCP. We set
the distance between the object centers to 0 13. We set the uncertainties for
both objects to 0 04. For these runtimes, we do not use the algorithm to find a
better upper bound on the maximum number of hypothetical objects. We repeat
the simulations 5 times for each setting. MIQCP has a faster setup time than
DirILP.
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our MIQCP method can solve up to 35 catalogs. For these
results, we set a reasonable amount of time to 45 minutes.

Finally, to demonstrate the importance of finding a good
upper bound on the maximum number of hypothetical objects,
we manually set the bound to 2 and ran our MIQCP method.
As seen in Figure 5, the runtime is reduced by multiple orders
of magnitude, and we are able to provide globally optimal
solutions in under 20 minutes even for 80 catalogs.

6. Results on Real-world Data

We also tested our new method on real-world data from the
Hubble Source Catalog (HSC; Whitmore et al. 2016).4 The

only other previous algorithm tested on this data was the
chainbreaker algorithm Budavári & Lubow (2012). The HSC is
built from the Hubble Legacy Archive (HLA) source lists. The
HLA contains extracted sources in white-light images that
combines photons across multiple photometric bands to
increase the signal-to-noise ratio before detection. The data
can be found at the HSC website.5

A match is a collection of sources that is far away from other
sources, equivalent to an island in Nguyen et al. (2022). Each
match was created using the original chainbreaker method on
the entire data set with a large distance threshold. We found
that the real-world data was dissimilar to our simulated
catalogs. As shown in Figure 7, real-world sources do not
always follow the circular structure like in the simulated data.
Also, during simulation, we always drew 2 samples from each
object’s distribution for each catalog. In real-world data
though, some objects only show up in a subset of all the
catalogs. This is apparent in the match shown in Figure 6 where
each catalog only has 1 source despite there being at least three
clearly defined objects.
For this section, we chose matches that were small enough to

run our algorithms on. As shown in the match in Figure 6,
DirILP was not able to process even a small real-world match.
What is also seen in the real-world data is that there are many
other variables that affect the runtime of any integer

Figure 4. Percent of Optimization Problems Solved vs. Number of Catalogs for
DirILP and MIQCP. For these results, we set a reasonable amount of time to 45
minutes. We set the distance between the object centers to 0 13. We set the
uncertainties for both objects to 0 04. For these runtimes, we use the algorithm
to find a better upper bound on the maximum number of hypothetical objects.
We repeat the simulations five times for each setting. MIQCP is able to solve
more problems within 45 minutes than DirILP.

Figure 5. MIQCP Runtime vs. Number of Catalogs with N 2ˆ = . We manually
set the maximum number of hypothetical objects to 2. We set the distance
between the object centers to 0 13. We set the uncertainties for both objects to
0 04. We repeat the simulations five times for each setting. Comparing to the
runtimes in Figure 2, reducing N̂ dramatically reduces the overall runtime.

Figure 6. HSC match with three catalogs. In the first plot, we color each point
according to its catalog. We also shade the circle of radius σ around the source
center. In the second plot, we show through colors which points are assigned to
the same object by the Chainbreaker and MIQCP methods. Their solutions are
the same. So, we do not show separate plots. Both methods predict three total
objects. DirILP was not able to find a solution for this match within a
reasonable amount of time.

4 Found in 10.17909/T97P46. 5 http://mastweb.stsci.edu/hcasjobs/
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programming method such as the values of κic, how many total
sources there are, and the distances between points. However,
some matches have hundreds or thousands of sources in them,
which is outside the capabilities of our new method and any
prior exact method.

7. Conclusion

In this paper, we introduced a novel approach to globally
optimal catalog matching and have demonstrated significant
improvements in the performance of finding provably
optimal catalogs. Our new MIQCP method is a modification
of DirILP that introduces quadratic constraints to shrink the
size of the problem dramatically, which reduces the runtime
by multiple orders of magnitude. While no exact method
will be able to overcome the exponential runtime inherent to
the combinatorial nature of the matching problem, our new
method allows us to set up and solve the problem a fraction
of the time as DirILP, which makes our MIQCP method a
clear choice in all cases. Future improvements to the
MIQCP method might include better approximations for the
log-sum part of the DirILP formulation, which we did not
modify here. In the immediate future, we plan on testing
new approximate algorithms on more real-world data from
the HSC to process matches that have hundreds or
thousands of sources in them.
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Appendix
Equivalence of Weighted Centroid Distance and Pairwise

Distances

Here, we provide a proof that the weighted sum of pairwise
squared distances is equivalent to the weighted sum of squared
distances to cluster centroids. Let xi

dÎ for i = 1,K, n. Each
sample xi has a weight αi, i = 1,K, n. The weighted mean for a
cluster is
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Figure 7. HSC match with 4 catalogs. In the first plot, we color each point
according to its catalog. We also shade the circle of radius σ around the source
center. In the second plot, we use pairwise lines to show which points are
assigned to the same object by the Chainbreaker method. MIQCP and DirILP
could not find a solution for this match within 45 minutes.
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Next,
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So, the sum of the squared distances between points in clusters
is equivalent the weighted sum of the squared distance to the
centroids.
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