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ABSTRACT 
 

Traditional means of reactive power regulation are limited to adjusting the ratio of the On-Load Tap 
Changer or changing the access position of the reactive power compensation device and its 
access capacity. In order to save the cost of putting in reactive power compensation devices, this 
paper proposes to use the characteristics of the reactive power output function on both sides of the 
power electronic transformer to regulate the system reactive power distribution. For this purpose, a 
reactive power optimization model including distributed power supplies and power electronic 
transformers is constructed with the objectives of minimizing voltage excursions, maximizing 
voltage stability margins and minimizing active losses in the network. At the same time, based on 
the characteristics of decision variables, cross-feedback hybrid optimization algorithm is used to 
solve different types of variables, and an improved wolf pack algorithm using Tent chaotic map and 
Levy flight strategy is proposed to improve the solution efficiency of the algorithm. The 
experimental results conclude that the proposed model and algorithm are valid, and the algorithm 
has significant advantages in terms of model solution time and global search capability when 
compared with the traditional Wolf Pack algorithms and Particle Swarm Optimization algorithms. 
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1. INTRODUCTION 
 
With the development of the national economy, 
the improvement of user demand, and the 
development of large-scale new energy 
generation and high-penetration distributed 
renewable power all require the distribution 
network to be able to provide high-quality electric 
energy [1-3], for the distribution network The 
demand for better voltage control is becoming 
more and more urgent [4]. Reactive power and 
voltage control is the basis for ensuring the safe 
and stable operation of the power system. The 
study of reactive power optimization in the 
distribution network is of great importance for 
stabilizing node voltage, reducing line loss, 
improving power quality and transmission 
efficiency has practical significance, and is an 
important means to ensure the safe and stable 
operation of distribution network [5-7]. It is the 
most common adjustment method to adjust the 
reactive voltage of the distribution network 
through the on-load tap changer transformer 
(OLTC) and switching capacitors. This kind of 
method has low adjustment accuracy and slow 
speed, and is easily limited to the transformation 
ratio or changing the access position and access 
capacity of the reactive power compensation 
device. Although the static synchronous 
compensator has higher adjustment accuracy 
and faster speed, its cost is higher and it is 
difficult to meet the requirements of economical 
operation of the distribution network. 
 
Power Electronic Transformer [8-11] (PET) is a 
transformer device that can provide high-quality 
electric energy, also known as Solid State 
Transformer (SST), Intelligent General 
Transformer (IGT), etc. PET can’t only maintain 
the functions of traditional transformer power 
transfer and voltage conversion, but also better 
control the capacity and voltage of the primary 
and secondary sides, realize the flexible control 
and adjustment of the reactive voltage of the 
distribution network, and improve the voltage of 
the distribution network Stability [12] has 
received extensive attention in application fields 
such as smart distribution network and new 
energy Internet, and is the key equipment of the 
next generation smart grid [13-15]. Using PET as 
a reactive voltage adjustment method for reactive 
power optimization has obvious advantages over 
OLTC. Compared with traditional transformers, it 
is also more suitable for applications such as 

enriching system functions and improving system 
performance [8]. 
 
In recent years, there has been some research 
on reactive power optimization of distribution 
networks using PET at home and abroad. 
Literature [16] takes the voltage offset and 
network active power loss as the objective 
function, and uses the improved genetic 
algorithm to simulate the reactive power 
optimization method with power electronic 
transformer. The experiment shows that the 
application of power electronic transformer can 
optimize the reactive power of the power grid. 
Improve voltage quality and reduce reactive 
power loss. Literature [3] takes the active power 
loss and voltage offset of the system as the 
objective function, constructs the reactive power 
optimization model of the active distribution 
network including distributed power supply, 
energy storage components and PET, and uses 
the particle swarm algorithm to solve it. The 
experiment shows that, The effect of reactive 
power optimization using PET is better than 
OLTC. Literature [17] proposed a hybrid multi-
objective optimization algorithm to solve the 
reactive power optimization model including PET, 
and the experimental results showed the 
feasibility of PET for reactive power optimization 
and the rapidity of algorithm solution. Literature 
[18] used PET for double-fed induction motor 
wind power generation system, and the 
experiment proved the effectiveness and 
superiority of PET for reactive power 
optimization. 
 
The application of PET in the distribution network 
with distributed power can promote multi-energy 
complementarity in the region, realize efficient 
utilization and consumption of energy [19], and 
also have great advantages in voltage 
stabilization and reactive power compensation. 
However, the above documents all focus on 
proving the feasibility of PET applied to reactive 
power optimization of distribution network and 
the superiority compared with traditional 
transformers. There is a lack of research on 
solving the reactive power optimization model 
containing PET. Based on this, this paper 
regards PET as the core equipment of the active 
distribution network, combines wind power, 
photovoltaic and other distributed power sources 
with reactive power adjustment equipment, and 
established a multi-objective reactive power 
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optimization model with network loss, voltage 
quality and voltage stability as objective 
functions. And this paper proposed an improved 
wolf pack algorithm based on Tent mapping and 
Levy flight. According to different variable 
characteristics, the algorithm solves real 
variables and integer variables separately, and 
realizes the complete decoupling of variable ratio 
and capacity variables and solves the optimal 
transformation ratio and capacity to achieve the 
purpose of reactive power optimization. The 
simulation example analysis of the improved 
IEEE 33 node shows that the algorithm has good 
advantages in solving speed and global 
optimization ability. It is of great significance to 
save the cost of investing in reactive power 
compensation devices and to economically and 
stably operate the distribution network. 

 
1.1 Reactive Power Optimization Model of 

Active Distribution Network with PET 
 
1.1.1 The structure and principle of PET 

 
A simplified model of PET is shown in Fig. 1: 

 

 
 

Fig. 1. PET simplified physical model 

 
Among them, X1 、 X2 are DC side filter 

reactance; C is DC link capacitance; U1、U2 are 

voltage source converter (VSC) AC measured 

voltage amplitude respectively; US、U0 are PET 

head end voltage amplitude respectively; Ps、Qs 

are PET head end injection, P0、Q0 are the 

active power and reactive power output by the 

terminal, respectively; P1、 Q1 are the active 

power and reactive power absorbed by the 

rectifier, respectively; P2、 Q2 are the active 

power and reactive power output by the inverter, 
respectively. According to the principle of PWM 
modulation [20], the reactive power mathematical 
model [21] can be obtained: 

 

1 1 1( / 2 cos ) / XS S S dcQ U U M U      (1) 

 

0 0 2 2 0 2(M cos / 2 ) / XdcQ U U U       (2) 

Among them,M1、M2 are the modulation degrees 

of the primary and secondary sides of PET,δ1、
δ2are the modulation angles of the primary and 
secondary sides of PET. Considering the safety 

margin of the converter, there are δ1<45°、

δ2<45°, under this condition, Qs、Q0 respectively 

for M1、M2 to obtain the partial derivatives are: 

∂Qs/∂M1<0, ∂Qs/∂M1>0 , that is linear relationship 

with Qs、M1 , and Q0、M2. That is, the reactive 

power at the beginning and end of the PET can 
be controlled by M1 and M2. 
 

1 1SQ K M                                                (3) 

 

0 2 2Q K M                                               (4) 

 
1.1.2 Objective function 
 
In this paper, system network loss, voltage 
quality and voltage stability index (VSI) are used 
to judge the quality of distribution network status. 
The objective function is shown in formula (5): 
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Among them, λ1 、 λ2 and λ3 are weight 

coefficients, calculated by entropy weight 

method, and 1 2 3+ + =1   .  maxijmax ij
l L
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  , 

the expression of ijL 7]
 is shown in formula (6). 

iU 、 jU are the voltage amplitudes of the first 

section and the end of the branch respectively; 

i j    ; i 、 j are the voltage phase 

angles at the beginning and end of the branch 
respectively; K is the set of all branches in the 

distribution network; maxU 、 minU  are the 

voltage phase angles of all nodes in the 
distribution network Highest voltage and lowest 
voltage. 
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1.1.3 Constraints 
 

Constraint conditions include power flow 
equation constraints, node voltage constraints, 
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branch current constraints and PET control 
variable constraints. The power flow equation 
constraints are: 

 

1
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 (7) 

 

In the formula: iP、 iQ  are the total active power 

emitted by DG; LP is the active power absorbed 

by the load; ijB  is the imaginary part of the 

admittance between node i  and node j ; ijG is the 

real part of the admittance between node i  and 

node j . where the node voltage constraints are: 

 
min max

i i iV V V               (8) 

 

where, 
max

iV and
min

iV are the maximum and 

minimum voltage amplitudes allowed by node 
respectively. The branch current constraints are: 

 
max| I |ij ijI                                        (9) 

 

Where, 
max

ijI  is the maximum current that can 

flow through the branch between nodes i  and j . 

Since different types of nodes have different 
power flow characteristics, different types of DG 
can’t be connected to the same location. The 
PET control variable constraints are: 
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                                             (10) 

 

Among them, 1kP and 2kP  are the active power 

connected to the PET branch; 1kQ and 2kQ are 

the reactive power absorbed by the PET head 
and end. The reactive output constraints of 
photovoltaic and wind power are: 

 
min max

, , ,pvi t pvi t pvi tQ Q Q                                    (11) 

 

min max

, , ,pwi t pwi t pwi tQ Q Q   
                                 

(12) 

 

Among them, 
min

,pvi tQ and
max

,pvi tQ are the minimum 

and maximum reactive power that can be 
compensated by the i-th photovoltaic power 
station at the moment t, respectively, and are the 
reactive power output by the i-th photovoltaic 

power station at the moment t; 
min

,pwi tQ and
max

,pw iQ  

Are respectively the minimum and maximum 
reactive power that can be compensated by the i-

th wind turbine at time t, respectively, ,pwi tQ is 

the reactive power compensated by the first wind 
turbine at time t. 
 

1.2 Model Solving Algorithm 
 
1.2.1 Wolf pack algorithm 
 
Wolf pack algorithm (WPA) [22] is a random 
probability search algorithm, which enables it to 
quickly find the optimal solution with a large 
probability. It can start searching from multiple 
positions at the same time, and between different 
search positions without interfering with each 
other. The wolves are mainly divided into alpha 
wolf, detective wolves and ferocious wolves. The 
alpha wolf is the most ferocious wolf in the wolf 
pack and is responsible for decision-making. 
Scout wolves are a relatively elite part of the wolf 
pack, they are responsible for wandering around 
looking for prey, and if they outperform the alpha 
wolf, they will replace them. The Detective Wolf 
communicates the location information of the 
prey to the head wolf, and the head wolf sends 
out a call, attracting the ferocious wolf to follow 
and keep looking for the optimal location. When 
the location of the head wolf is less than a certain 
distance, it will start to besiege the prey. This 
algorithm can be divided into the following steps: 
 

1) Initialization. Set the number of wolves in 
the initial wolf pack to N, the dimension to 
D, the proportion factor of the detective 

wolves is δ the walking step is sstep , the 

running step is bstep , the siege step is

wstep , the number of walking directions is 

h and the critical distance from running to 
siege is d0. 

 

2) Wandering behavior. In the solution space, 
the best S artificial wolves except the alpha 
wolf are regarded as the detective wolves, 
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and the prey fitness of each detective 
wolves is calculated respectively. If it is 
greater than the fitness of the alpha wolf, 
the detective wolf become the alpha wolf 
and re-initiate the calling behavior. 
Otherwise, the detective wolf will go further 
in the h direction according to the walking 
step: 

 

sin(2 / )p d

id id sx x p h step                 (13) 

 

Among them, e is the P-th direction, i is the D-th 
direction. 
 

3) Summoning behavior. After the wandering 
behavior is over, an alpha wolf will be 
generated, and the alpha wolf will call the 
surrounding M ferocious wolves to the 
alpha wolf's position, and the ferocious 
wolves will quickly approach the alpha wolf 
with a running pace and search for prey. 
During the attacking process of the 
ferocious wolves, if the prey has a higher 
fitness, the ferocious wolf will replace the 
alpha wolf. When the distance between the 
ferocious wolf and the alpha wolf is less 
than the threshold, it will turn into a siege 
behavior. 

 

1

| |

k k
k k d d id
id id b k k

d id

g x
x x step

g x

 
  


                  (14) 

 

Among them, 
k

dg is the current head wolf 

position. 
 

4) Siege behavior. When the ferocious wolf 
senses the call of the alpha wolf, it 
immediately runs to the alpha wolf's 
position. During the running process, if it 
finds that the prey is more adaptable, it 
immediately replaces the original alpha 
wolf and directs other wolves to act. 

 

1 | g |k k d k k

id id w d idx x step x                   
(15)

 

 

5) The number of iterations is increased by 1, 
and when the maximum number of 

iterations is met maxT , jump to step 6), 

otherwise, substitute the detective wolves 
position at the front of the bulletin board 
and the randomly generated ferocious 
wolves position into step 2). 

 

6) Output the optimal position and optimal 
fitness. 

1.2.2 Feedback wolf pack algorithm 

 
1.2.2.1Tent mapping and levy flight strategy 

 
1) The algorithm proposed in this paper 

uses Tent mapping to initialize the 
population, and its mathematical 
expression is: 
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                 (16) 

 

In the formula ， 0.5   Map the chaotic 

variables to the solution space of the problem to 
be solved: 

 

min max min( ) yY x x x                        (17) 

 

In the formula， minx and maxx  are the minimum 

and maximum values of variables, respectively. 

 
2)  Add the "Levy flight" search strategy to 

ensure that both near and far distances 
can be considered during the search 
process. The continuous jumping path and 
time t of Levy flight obey the Levy 
distribution, simplify and perform Fourier 
transform on it, and obtain the probability 
density function of its power form: 

 

~ ,  1 3Levy u t                            (18) 

 

In the formula， is the number of powers. The 

calculation formula for simulating the Levy flight 
path proposed by Mantegna is adopted: 

 

1// | |l u v                                              (19) 
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In the formula, l —Levy flight,  —parameter, 

take 0 2   ; u v、 —Normal distribution 

random number. 
 

Introducing the random step size in Levy flight l  

makes the search direction and step size 
uncertain, so as to increase the diversity of 
population positions and improve the ability of 
the algorithm to jump out of local optimal 
solutions. 
 

3) After joining the Levy flight strategy, the joiner 
performs position update according to formula 
(22). 
 

1

,

21

,

1 1

,

exp ,    / 2

| | ,   else

k k
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e d
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 (22) 
 

where: Q —Random numbers that follow a 

normal distribution; eE —The size of the wolf 

group; W —A 1 d  matrix is all 1; ,

k

e dX  ——

The d dimension position of the e-th individual in 

the k-th generation; 
1k

bestX 
and

k

worstX  ——The 

optimal position occupied by the current 
discoverer and the current global worst position; 
A——a row of multidimensional matrix whose 

elements are 1 or-1 , and
1( )T TA A AA  . 

 

1.2.2.2 Feedback wolf pack algorithm 
 

In the comprehensive optimization model 
proposed in this paper, the number of variables 
contained is large and the types are different. 
Using the traditional wolf pack algorithm for 
optimization is easy to fall into a local optimum, 
and the same number of iterations is used for 
both variables, which is greatly improved. 
Increased the time used for optimization. In view 
of this, this paper proposes a Feedback Wolf 
Pack Algorithm (FWPA) with cross-feedback 
mechanism based on Tent chaotic map and Levy 
flight, and separate processing of EPT ratio 
variable X and reactive output variable Y. First, 
the reactive output variable Y is randomly 
generated, and the variable ratio variable X is 
optimized by using the wolf pack algorithm. After 
obtaining the optimized transformation ratio 
information X, then feed it back to the reactive 

output variable Y and optimize Y. Feedback the 
optimized reactive output variable Y to the 
transformation ratio variable X and optimize X. In 
this way, X and the Y are optimized repeatedly 
using the optimization information of the other 
party, and the number of iterations of the inner 
loop is separated. When the maximum number of 

iterations of the outer loop is met maxT , the 

optimization process ends. The algorithm flow is 
as follows: 

 
1)  Initialization. Enter the node information, 

branch information and initial data of DG of 
the distribution network. Determine the 
number of wolves in the wolf pack is N, the 
dimension is D, the scale factor of 
detective wolves detection is δ, the walking 

step is sstep , the running step is bstep , 

the siege step is wstep , the number of 

walking directions is h and the critical 
distance from running to siege is d0. 

2)  Optimize the individual variable ratio 
variable X. Initialize the individual reactive 
output variable Y, calculate the individual 
fitness, confirm the alpha wolf, and then 
perform behaviors such as wandering, 
calling, and besieging. After the position 
update is completed, the Levy flight 
mutation is performed on the selected 

individual. After iteration max1t times, the 

optimal individual position is output. 
3)  Optimize the reactive output variable Y. On 

the basis of determining variable ratio 
variable X, use wolf pack algorithm to 
optimize variable Y, the process is similar 
to step 2), and output optimal fitness and 
optimal position after iteration times. 

4)  Increase the number of iterations by 1, 
retain the fitness output of step 3), and 
compare it with the optimal fitness output 
of the previous step 3), if it is better than 
the previous optimal fitness, then retain the 
current position (X, Y), Update the optimal 
fitness for this iteration. When the 

maximum number of iterations is met , 
jump to step 5), otherwise, substitute the 
output optimal running variable Y into step 
2). 

5)  Output the optimal solution and optimal 
position. 

 
The algorithm flow of FWSA is shown in Fig. 2. 

 

maxT
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Initialize the distribution network and DG 

parameters, and randomly generate the 

wolf group reactive power output variable Y

Initialize the wolf group variable 

ratio variable X

Calculate the fitness of individual X

Whether satisfied maximum 

number of iterations𝑡𝑚𝑎𝑥1 

N

Output the optimal variable ratio X, initialize the 

fish swarm reactive output variable Y

Calculate the fitness of individual Y

Update the position of  ferocious wolves.and detective wolves

Whether satisfied maximum 

number of iterations𝑡𝑚𝑎𝑥2  

Whether satisfied maximum 

number of iterations

Output ( X, Y )

𝑇𝑚𝑎𝑥  

N

Y

Y

T=T+1

N

Y

Levy flight mutation on selected individuals

Update the position of  ferocious wolves.and detective wolves

Levy flight mutation on selected individuals

 
 

Fig. 2. FWSA algorithm flow 
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1.3. Case Analysis 
 
1.3.1 Simulation parameters 
 
In order to verify the superiority and effectiveness 
of the improved algorithm and reactive power 
optimization model established in this paper, as 
shown in Fig. 3, the improved IEEE 33 node 
power distribution system is analyzed. The 
system has a total of 33 nodes with a capacity of 
10MW and a voltage level of 12.66kV. The load 
variation coefficient is shown in Fig. 4. Two wind 
power plants are connected to node 33 and node 
22 respectively, with a capacity of 600kW; the 
photovoltaic power station is connected to node 
18, with a rated power of 500kW; the power 

factor adjustment range of distributed power is -
0.95~0.95; PET is connected to nodes 8 and 24 
and 30. The number of wolves in the pack is 100, 
the scale factor of wolf detection is 0.5, and the 
number of walking directions is 20. The predicted 
value of wind power output is shown in Fig. 5.  
 
1.3.2 Simulation calculation 
 
In order to more fully illustrate the superiority of 
the improved wolf pack algorithm in the example 
environment, this paper compares the simulation 
effects of particle swarm algorithm (PSO), 
traditional wolf pack algorithm (WPA) and the 
proposed improved WPA algorithm. The fitness 
comparison curve is shown in Fig. 6. 
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Fig. 3. Active distribution network with PET 
 

 
 

Fig. 4. Load variation coefficient 
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Fig. 5. Daily wind forecast output curve 
 

 
 

Fig. 6. Comparison of algorithm convergence 
 
According to the comparison of the fitness curve 
in Fig. 6, it can be seen that the PSO algorithm 
starts to converge after 50 iterations, and the 
algorithm takes 42203s. The traditional WPA 
algorithm starts to converge after 44 iterations 
and takes 37501s. The improved WPA algorithm 
starts to converge after 12 iterations and takes 
12618s. Obviously, the improved algorithm has a 
certain improvement in convergence and speed. 
The reason is that the FWSA algorithm splits 
complex variable combinations into two groups of 
variable combinations, which reduces the 
dimensionality of variable combinations and 
effectively improves the optimization speed. 
Secondly, although there are small loops nested 

in the large loop of the FWPA algorithm, the time 
of each iteration is longer than that of the WPA 
algorithm, but the reduction of the total number of 
iterations effectively reduces the time required for 
optimization. 
 
According to the above mathematical model and 
algorithm application, the distribution network 
loss per hour of the three algorithms is output, 
and compared with the data before optimization. 
The comparison results of active network loss 
are shown in Fig. 7. 
 
According to the comparison results in Fig. 7, it 
can be seen that during the peak period of power 
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consumption, that is, around 21:00 in the 
afternoon, the network loss of the distribution 
network can be as high as 252.71 kW when 
reactive power compensation equipment and 
corresponding optimization strategies are not 
used. After taking reactive power compensation 
measures, the active power loss of the system 
optimized by the FWPA algorithm can be 
reduced to about 150.51 kW. Within 24 hours a 
day, after the optimal configuration strategy of 
reactive power compensation equipment is 
completed through the FWPA algorithm, the 
maximum efficiency of system network loss 
optimization can reach about 53%, and the 
minimum value is about 40%. Combined with the 
above comparison results, the network loss of 
the distribution network system optimized by the 
FWPA algorithm is significantly reduced, and the 
optimized reactive power compensation 
equipment PET makes the power transmission 
efficiency of the distribution network significantly 
improved.  
 
Select the moment of maximum load throughout 
the day to analyze the system voltage value, and 
output the node voltage before and after reactive 
power optimization at this moment. As shown in 
Fig. 8, the comparison results of the voltage 
change of the improved IEEE 33-node system 
including distributed power and PET are 
presented. 
 
According to Fig. 8, it can be seen that when the 
system does not take reactive power adjustment 

measures, the system voltage reaches the 
lowest point of 0.93p.u. at node 32. When the 
PSO algorithm is used in it, the minimum 
amplitude of the node voltage is 0.95p.u., which 
appears at node 14. For traditional WPA 
optimization, the lowest node voltage value 
appears at node 14, which is about 0.95p.u. 
When the optimized FWPA algorithm is used, the 
lowest node voltage appears at node 14, 
reaching about 0.96p.u. In addition, the voltage 
value of node 32 at the lowest point of the 
original system voltage also increased to 
0.96p.u., reaching the system voltage              
standard. 
 
Further, analyze the voltage stability index 
comparison curve under the model in this paper, 
as shown in Fig. 9. Before optimization, the 
maximum value of the VSI index of the system is 
about 0.08 in the 22nd period; the minimum 
value appears in the 8th period, which is                   
about 0.04. After the PSO algorithm and                    
WPA algorithm are optimized, the peak-to-valley 
voltage VSI indicators are around 0.02 and 0.06 
respectively. With the FWPA optimization 
strategy put into operation, the peak-to-valley 
VSI index is reduced to about 0.02 and                   
0.05. Compared with the traditional WPA 
algorithm and PSO algorithm, the VSI value 
optimized by the FWPA algorithm is lower at 
each moment, indicating that the improved 
optimization algorithm proposed in this paper              
has a stronger ability to improve system            
stability. 

 

 
 

Fig. 7. System active network loss comparison 
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Fig. 8. IEEE 33 node voltage change curve and comparison 
 

 
 

Fig. 9. Comparison curve of voltage stability index before and after optimization 

 
2. CONCLUSION 
 
This paper established a reactive power 
optimization model that comprehensively 
considers system active power loss, voltage 
quality and voltage stability margin, including 
PET, and proposed an improved wolf pack 
algorithm with cross-feedback mechanism based 
on Tent mapping and Levy flight to solve the 
problem according to the characteristics of 
different optimization variables. Through 
experimental analysis and comparison results, it 
can be seen that using the reactive power output 
capability of PET can effectively support the 
distribution network voltage, improve voltage, 
improve system stability, and reduce system 
active network loss. Compared with the 

traditional wolf pack reactive power optimization 
algorithm and particle swarm algorithm, the 
improved wolf pack algorithm can effectively 
improve the computing efficiency. 
 
In this paper, wind power, photovoltaic and other 
distributed power sources are combined with 
reactive power adjustment equipment to 
participate in reactive power optimization 
simultaneously, which is of great significance to 
the safe and economical operation of the 
distribution network and the cost saving of 
investment in reactive power compensation 
devices. It provides a feasible solution for the 
stable operation of the distribution network after 
the new energy is connected to the grid. 
Combined with the reactive power compensation 
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capability of PET, the optimization of the energy 
structure is coordinated to improve the utilization 
rate of new energy such as wind power and 
photovoltaics in the distribution network. It 
provides reference and reference for reactive 
power optimization of distribution network system 
containing distributed renewable energy. 
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