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ABSTRACT 
 
Drought stress is one of the major abiotic stress that can causes huge loss to the world food 
production. It remains a major contributor to severe food shortage and famine. With a consistent 
increase in world population, pressure will continue to mount on the existing yet limited water 
resources. The situation is respected to further aggravate due to the predicted increase in 
temperature and decrease in precipitation consequent upon global warming. Water scarcity has 
already become a severe constraint in plant survival and productivity of crops in arid and semi-arid 
regions. The active response of plants to drought stress through various biochemical and 
physiological modifications improves the metabolism and can further the mobilize various defense 
mechanisms in order to enhance survival of the plants under conditions of drought. In this review, 
various physiological and biochemical responses in plants towards enhancement of drought 
tolerance are discussed. 
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1. INTRODUCTION 
 
Drought is one of the most significant abiotic 
stress that limits the growth and productivity of 
crop plants [1].  Drought triggers a wide array of 
plant responses, ranging from cellular 
metabolism to changes in growth rates and crop 
yields. Exposure of plants to extreme stress 
conditions such as drought initiate a diverse set 
of physiological, morphological and 
developmental changes in order to survive in 
adverse condition, as has been widely reported 
[2,3]. However, tailoring crops in under to enable 
them to grow successfully in environments that 
are drought prone is promising [4]. Drought 
stress progressively decreases CO2 assimilation 
rates due to reduced stomatal conductance. It 
reduces leaf size, stem extension and root 
proliferation; disturbs plant water relations and 
reduces water-use efficiency. It disrupts the 
photosynthetic pigments and reduces the gas 
exchange leading to a reduction in plant growth 
and productivity. The critical role of osmolyte 
accumulation under drought stress conditions 
has been researched actively to understand the 
tolerance of plants to dehydration [4]. Several 
mechanisms have been adopted by drought 
tolerant plants to adapt to water stress including 
reduction in water loss by increasing stomatal 
resistance, increase of water uptake by 
developing large and deep root system and 
accumulation of osmolytes [5]. The accumulated 
osmolytes are amino acids such as proline, 
glutamate, glycine-betaine and sugars (mannitol, 
sorbitol and trehalose). These compounds play a 
key role in preventing membrane disintegration 
and enzyme inactivation in the low water 
available environment. Plants display a variety of 
physiological and biochemical responses at 
cellular and whole-organism level towards 
prevailing drought stress, thus making it a 
complex phenomenon. The identification of 
suitable plant characters for screening large 
number of genotypes in a short time at critical 
stage of crop growth with the aim of selecting 
drought tolerant cultivars remains a major 
challenge to the plant breeder [4,6].  
 
The measurement of solute leakage from plant 
tissue is a proven method for measuring 
membrane integrity in relation to environmental 
stress [7]. This technique involves measurement 
of electrolyte leakage into an aqueous medium, 
where the degree of cell membrane stability is 
considered to be one of the best physiological 

indicators of drought stress tolerance [8]. 
Maintenance of turgor pressure during stress is 
important to preserve metabolic response in crop 
species and is a well recognized mechanism in 
breeding toward drought stress tolerance. 
Relative water content (RWC) allows for the 
comparison of metabolic changes in the plant, at 
the same cellular water status. RWC further 
allows the estimation of plant water status in 
terms of cellular hydration and is under the 
possible effect of both leaf water potential and 
osmotic adjustment. RWC can be used 
effectively to evaluate drought tolerance and 
selection of the most drought tolerant genotypes 
[9]. Plants have evolved a number of enzyme 
and non-enzyme antioxidants that ameliorate 
oxidative stress by scavenging reactive oxygen 
species (ROS). Drought stress causes oxidative 
injury, and the ability to increase the levels of 
antioxidative capacity or increased levels of 
antioxidants during stress can limit membrane 
damage and enzyme activity can be an important 
measurement of drought tolerance There are 
numerous reports on these enzymes protecting 
plants during oxidative stress initiated by drought 
[5,6,10,11].  
 
Although plant stress tolerance mechanisms are 
not known clearly, accumulation of new proteins 
and stress gene expression that encode 
biosynthetic enzymes against osmotic stress 
have been investigated. Also a study on gene 
proteins have shown that osmotic proteins 
increase in low water stress [12]. The quantity of 
aquaporin existing in plasma membrane 
regulates membrane hydrolytic function and 
increases water permeability under 
environmental factors like low water, hormones 
and light conditions. 
 

2. PLANTS ARE CATEGORIZED 
BROADLY DEPENDING UPON THEIR 
RESPONSE TO DROUGHT  

 

2.1 Drought Escape 
 
Drought escape is defined as the ability of a plant 
to complete its life cycle before serious soil            
and plant water deficits occurs. This mechanism 
involves rapid phenological development             
(early flowering and early maturity), 
developmental plasticity (variation in duration of 
growth period depending on the extent of water 
deficit) and remobilization of pre anthesis 
assimilates [13]. 
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2.2 Drought Avoidance 
       
Drought avoidance comprises of mechanisms 
that reduce water loss from plants, by stomatal 
control of transpiration, and also maintain water 
uptake through an extensive and prolific root 
system [14]. Hence, drought avoidance involves 
minimizing water loss (closing stomata, reducing 
light absorbance through rolled leaves, 
decreasing canopy leaf area) and maximizing 
water uptake (increasing investment in the root, 
reallocation of nutrients stored in older leaves, 
higher rates of photosynthesis) [15]. 
 

2.3 Drought Tolerance 
   

Drought tolerance is the ability of plants to 
withstand water-deficit with low tissue water 
potential. The mechanism of drought tolerance is 
maintenance of turgor through osmotic 
adjustment (accumulation of solutes in the cell), 
increased cell elasticity & decreased cell size 
and desiccation tolerance by protoplasmic 
resistance [13]. 
 
3. PHYSIOLOGICAL AND BIOCHEMICAL 

RESPONSE  
 
Drought stress causes tissue dehydration which 
is characterized by fundamental changes in 
water relations, physiological and biochemical 
processes, membrane structure as well as 
ultrastructure of subcellular organelles. At the 
whole-plant level, drought stress leads to a 
progressive suppression of photosynthesis 
caused by stomatal and non-stomatal limitations. 
Tolerant genotypes not only retain sufficient 
water under drought, but also have a highly 
active system for protection against oxidative 
stress injury. 
 

3.1 Photosynthetic Pigments 
 

Photosynthetic pigments are important to plants 
mainly for harvesting light and production of 
reducing power [16]. Chlorophyll is one                 
of the major chloroplast components for 
photosynthesis, and relative chlorophyll content 
has a positive relationship with photosynthetic 
rate. The decrease in chlorophyll content under 
drought stress has been considered a typical 
symptom of oxidative stress and may be the 
result of pigment photo-oxidation and chlorophyll 
degradation as reported in cherry tomato [17]. 
The Chlorophyll a and b ratio reduced in resistant 
species of tomato against low water condition 
and this indicated that photosystem II protects 

the plant against low water stress [18]. Drought 
stress is known to inhibit photosynthetic activity 
in tissues due to an imbalance between light 
capture and its utilization [4]. The decrease in the 
maximum quantum yield of PSII photochemistry 
FV/FM (Variable fluorescence: Maximum 
fluorescence) implies a decrease in the capture 
and conversion rate of excitation energy by PSII 
reaction centre and so, a reduction in PSII 
photochemical efficiency indicating the dis-
organisation of PS II reaction centres under 
water stress conditions. In general, the harvested 
energy in excess of that consumed by the Calvin 
Cycle must be dissipated to avoid oxidative 
stress which leads to decrease PSII 
performance.  FV/FM was not affected by 
drought in Calluna, but a small (1.5%) yet 
significant decrease was seen in Deschampsia 
across season. Photosystem II (PSII) is highly 
sensitive to light and down regulation of 
photosynthesis under drought stress causes an 
energy imbalance in the PSII reaction centre 
leading to photo-inhibition [19]. Mechanisms 
have evolved in the plant to protect from photo-
inhibition, such as non photochemical quenching, 
transport to molecules other than CO2, 
particularly to oxygen, which leads to 
photorespiration and Mehler reaction [20], non-
radiative energy dissipation mechanisms

 
[21]

 
and 

chlorophyll concentration changes [19].  
 

3.2 Stomatal Conductance   
 
One of the basic mechanisms for reducing the 
impact of drought is early stomatal closure at the 
beginning of the period of water deficit. Stomatal 
closure not only reduce water loss, but also 
reduce the gas exchange between the plant and 
the ambient air. The reduced CO2 intake then 
results in reduced photosynthesis [22]. As plant 
water potential falls due to water deficit, 
photosynthesis rate reduces. Water deficit 
causes reduction in photosynthesis mainly due to 
decreased stomatal conductance. Stomatal 
closure has been reported in tomato at leaf water 
potential (leaf) between -0.7 to 0.9 MPa [23], in 
pepper at -0.58 to -0.88 MPa [24], however 
eggplant can withstand a greater drought than 
the most other vegetables. Bahadur et al. [25] 
observed significant reduction in photosynthesis 
rate and stomatal conductance in spring-summer 
okra when water stress was imposed for 10 or 12 
days. Although stomatal conductance is the 
major limitation to photosynthesis under drought 
conditions in cowpea; however, a pronounced 
non-stomatal limitation may occur under severe 
drought stressed conditions that may also lead to 
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impairment of photosynthetic activity [26]. If 
perpetual decline in photosynthesis is more than 
the transpiration, then non-stomatal factors 
contribute more to the reduction of 
photosynthesis than the stomatal effects. This is 
because stomatal resistance accounts for a 
smaller portion of total resistance in CO2 
pathway. During this non-stomatal control of 
photosynthesis, intercellular resistance for CO2 
from the intercellular space of the chloroplasts 
plays an important role. Thus, a decrease of the 
photosynthetic rate under water deficit condition 
can be attributed to both stomatal and non-
stomatal limitations. Non-stomatal photo-
synthesis limitation has been attributed to the 
reduced carboxylation efficiency, ribulose-1,5- 
bisphospate (RuBP) regeneration, amount of 
functional Rubisco, or to the inhibited functional 
activity of PSII. The drought-tolerant species 
control stomatal function to allow some carbon 
fixation during stress, thus improving water use 
efficiency, or open stomata rapidly when water 
deficit is relieved. In fact, stomatal conductance 
can be used as an integrative parameter to 
reflect the severity of drought stress. 
 

3.3 Cell Membrane Stability 
 
A major impact of plant environmental stress is 
cellular membrane modification, which results in 
its perturbed function or total dysfunction. The 
cellular membrane dysfunction due to stress is 
expressed by increased permeability and 
leakage of ions, which can be readily measured 
by the efflux of electrolytes, and may be used as 
a tolerance index for drought stress [27]. It is 
generally accepted that the maintenance of 
integrity and stability of membranes under water 
stress is a major component of drought tolerance 
in plants [28]. Cell membrane stability declined 
rapidly in Kentucky bluegrass when exposed to 
drought. Cell membrane stability, reciprocal to 
cell membrane injury is a physiological index 
widely used for the evaluation of drought 
tolerance. Moreover, it is a genetically related 
phenomenon since quantitative trait loci for this 
have been mapped in drought-stressed rice at 
different growth stages. Dhanda et al. [29] 
showed that membrane stability of the leaf 
segment was the most important trait to screen 
the germplasm for drought tolerance.  The 
increase in cell membrane stability under water 
deficit conditions in response to drought stress is 
species specific and correlation with a reduction 
in relative growth rate. In holm oak (Quercus ilex) 
seedlings, hardening increased drought 
tolerance primarily by reducing osmotic potential 

and stomatal regulation, improved new root 
growth capacity and enhanced cell membrane 
stability. Among treated seedlings, the greatest 
response occurred in seedlings subjected to 
moderate hardening. Variation in cell membrane 
stability, stomatal regulation and root growth 
capacity was negatively related to osmotic 
adjustment [30].  
 

3.4 Relative Water Content  
 
Relative water content (RWC) is related to water 
uptake by the roots as well as water loss by 
transpiration. A decrease in the RWC in 
response to drought stress has been noted in 
wide variety of plants as reported by Nayyar and 
Gupta [31] that leaves when subjected to 
drought, exhibit large reductions in RWC and 
water potential. Exposure of plants to drought 
stress substantially decrease the leaf water 
potential, relative water content and transpiration 
rate with a concomitant increase in leaf 
temperature. RWC is affected by the interaction 
of severity, duration of the drought and species 
[4,32]. Bahadur et al. [33] noticed significant 
reduction in leaf RWC in okra and tomato with 
imposing drought tolerance. When RWC can be 
maintained in cells and tissues, it allows 
continuation of the metabolic activity by osmotic 
adjustment and other traits of adaptation to 
drought. Recovery of RWC after re-watering is a 
very important factor and often neglected in 
drought tolerant studies [5]. In faba bean, 
determination of leaf water potential was useful 
for describing the drought effect, but was not 
suitable for discriminating tolerant from sensitive 
genotypes. This suggested that water potential 
was not the defining feature of the tolerance [34]. 
Nevertheless, other studies opined that 
determination of leaf water status in the morning 
and water content in leaves in the afternoon were 
potentially useful for screening drought tolerance 
in chickpea [35]. The RWC correlated indirectly 
with the activity of SOD, GR and APX, arein A. 
hypochondriacus decreased to a very low 33% 
after 17 days of severe drought stress [5]. 
Similarly a sharp decline in RWC below 30% was 
experienced several Bermuda grass spp [36], 
below 40% in spruce sp. and 45% in maize [37] 
during severe drought stress. 
 

3.5 Water Use Efficiency  
 
Water use efficiency is an important indicator for 
plant adaptation and resistance to drought 
conditions [38]. Water use efficiency (WUE) is 
traditionally defined either as the ratio of dry 
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matter accumulation to water consumption over a 
season; or as the ratio of photosynthesis to 
transpiration over a period of time. It is among 
one of traits that has been studied extensively 
because it can give an idea of the variation 
amongst genotypes in their ability to utilize water 
efficiently under limited water supply [39]. 
Comprehensive literature on crop WUE based on 
carbon isotope dissemination studies depicts 
relation of WUE and drought tolerance with yield 
potential. Briefly, apparent genotypic variations in 
WUE are expressed mainly due to variations in 
water use. Higher WUE is generally achieved by 
specific plant traits and environmental responses 
that reduce yield potential in tomato [40]. Under 
most dryland situations where crops rely on 
unpredictable seasonal rainfall, the maximization 
of soil moisture use is a crucial component of 
drought resistance (avoidance), which is 
generally expressed in lower WUE [41]. It is now 
well documented that high yield potential and 
high yield under water-limited conditions is 
generally associated with reduced WUE mainly 
because of high water use [25].    
 

3.6 Osmotic Adjustment  
 
Osmotic adjustment (OA) has been considered 
as an important physiological adaptation 
associated with drought tolerance and has drawn 
substantial attention during the past years. 
Osmotic adjustment is defined as the active 
accumulation of organic solutes in the plant 
tissue in response to an increasing water deficit. 
By means of osmotic adjustment, the organelles 
and cytoplasmic activities take place at about a 
normal pace and help plants to perform better in 
terms of growth, photosynthesis and assimilate 
partitioning [4,16]. It is considered as a useful 
process for maintaining cell turgor when tissue 
water potential declines. OA has been shown to 
maintain stomatal conductance and 
photosynthesis at lower water potentials, delayed 
leaf senescence and death, reduced flower 
abortion, improved root growth and increased 
water extraction from the soil as water deficit 
develops [42]. OA involves the net accumulation 
of solutes in a cell in response to fall in water 
potential of the cell’s environment. As a 
consequence, the cell’s osmotic potential is 
diminished which in turn attracts water into the 
cell by tending to maintain turgor pressure. 
According to Martinez-Ballesta et al. [43] 
compatible solutes like sugars, glycerol, amino 
acids such as proline or glycinebetaine, polyols, 
sugar alcohols (like mannitol and other low 
molecular weight metabolites) would also 

contribute to this process. In addition, Hessini et 
al. [44] argued that these compounds benefit 
stressed cells in two ways: either by acting as 
cytoplasmic osmolytes, thereby facilitating water 
uptake and retention and or by protecting and 
stabilizing macromolecules and structures (i.e. 
proteins, membranes, chloroplasts, and 
liposomes) from damage induced by stress 
conditions. Physiological indices such as leaf 
water potential, solute potential, relative water 
content, turgor potential, osmotic adjustment, leaf 
diffusive conductance (Kl), difference between 
canopy and air temperature and water loss from 
excised leaves can be used as a screening tools. 
Improved tissue water status may be achieved 
through osmotic adjustment and/or changes in 
cell wall elasticity. This is essential for 
maintaining physiological activity for extended 
periods of drought

 
[45]. Wild melon plant 

survived drought by maintaining its water content 
without wilting of leaves even under severe 
drought. Drought stress in combination with 
strong light led to an accumulation of high 
concentrations of citrulline, glutamate and 
arginine in leaves of wild watermelon. The 
accumulation of citrulline and arginine may be 
related to the induction of dopamine receptor 
interacting protein gene-1, a homologue of the 
acetyl ornithine deacetylase gene in Escherichia 
coli, where it functions to incorporate the carbon 
skeleton of glutamate into the urea cycle [46]. It 
has identified that among various mechanisms, 
osmotic adjustment, synthesis abscisic acid and 
induction of dehydrins may confer tolerance 
against drought injuries by maintaining high 
tissue water potential. The osmotic adjustment 
also facilitates a better translocation of pre-
anthesis carbohydrate partitioning during grain 
filling, while high turgor maintenance leads to 
higher photosynthetic rate and growth [47].  
 
3.7 Proline 
 

Proline is generally considered as a good 
indicator of environmental stress and there are 
many reports describing an increase in proline 
content in response to water stress [17,18]. 
Ghorbanli et al. [18] suggested that Proline is 
one of the protective molecules that can unite 
oxygen and free radicals caused by stress. 
Therefore, a significant role of proline is probably 
reacting against drought stress [48]. Since 
proline plays a role as an osmotic factor, low 
water stress increased the proline content in 
plant. A relatively recent study on tomato found 
that use of brasinoestroid in two stress levels 
(mild and severe) increased the amount of 
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proline (3 and 4 respectively) in comparison with 
control. The effect of drought stress was also 
investigated on ABA (abcisic acid) and proline in 
different Zea mays species and a close 
correlation was established between proline 
accumulation and ABA with drought stress [49].  
 

According to Abdalla and El-Khoshiban [9] free 
proline may be acting as a storage compound for 
carbon and nitrogen during drought stress when 
both starch and protein synthesis are inhibited. 
Such a storage compound might be utilized for 
growth upon rewatering, and after rewatering the 
enhanced level of proline decreases rapidly [50]. 
It is possible that both proline accumulation and 
antioxidative enzyme activities could be used as 
an index of drought tolerance [5,10]. The higher 
proline accumulation accompanied by higher 
enzyme activities of SOD, APX and CAT could 
suggest that the antioxidative defense 
mechanism is activated by increased proline 
production [5,10]. Proline acts as an osmolite 
beside enzymes and other macromolecules, and 
therefore, protects the plant against low water 
potential and causes osmotic regulation in plant 
organs [18,48]. Also proline can act as an 
electron receptor preventing photosystem injuries 
in dealing with ROS function. Proline 
accumulation facilitates the permanent synthesis 
of soluble substances in closing stomata. 
 

3.8 Soluble Sugars 
 

The accumulation of soluble sugars (sucrose, 
glucose and fructose) is strongly correlated to the 
acquisition of drought tolerance in plants [51]. It 
is well known that sugars protect the cells during 
drought by two mechanisms. First, the hydroxyl 
groups of sugars may substitute for water to 
maintain hydrophilic interactions in membranes 
and proteins during dehydration. Hence, sugars 
interact with proteins and membranes through 
hydrogen-bonding, thus preventing protein 
denaturation. Secondly, sugars are a major 
contributing factor to vitrification, which is the 
formation of a biological glass in the cytoplasm of 
dehydrated cells. These intracellular glasses, by 
virtue of their high viscosity, drastically reduce 
molecular movement, impede the diffusion of 
reactive compounds in the cell, and may 
maintain the structural and functional integrity of 
macromolecules. It is by this property that 
glasses are thought to prolong the longevity of 
desiccated tissues by slowing down degradation 
processes during storage [17]. Mutava et al. [52] 
reported that fructose accounted for much of the 
significant increase in leaf total sugars under 
drought stress. Some studies have pointed out 

that soluble sugar changes do not follow a static 
model and may vary with the genotype and the 
stress factor [53]. Gupta and Kaur [54] suggested 
that sucrose and glucose either act as substrates 
for cellular respiration or osmolytes to maintain 
cell homeostasis while fructose is involved in the 
synthesis of secondary metabolites as well as 
erythrose-4-P, which act’s as a substrate in lignin 
and phenolic compound synthesis [55]. This 
suggests that under stress conditions the 
metabolism of soluble sugars is a dynamic 
proces involving simultaneously degradation and 
synthetic reactions [17,52]. Soluble sugars, 
especially sucrose, accumulate in seeds, pollen 
and in drought-tolerant vegetative tissues. In 
many higher plants under dehydration stress, 
carbohydrate metabolism is shifted to favour the 
conversion of other sugars to sucrose. 
Trehalose, a non-reducing sugar, is also a 
potential organic osmoticum which has a 
substantial role in the protection of plants against 
drought stresses [56].  
 
3.9 Reactive Oxygen Species (ROS) 
 
ROS are partially reduced forms of atmospheric 
oxygen. They typically result from the excitation 
of O2 to form singlet oxygen (O2

1
) or from the 

transfer of 1, 2 or 3 electrons to O2, for 
superoxide radical, hydrogen peroxide H2O2 or a 
hydroxyl radical (OH), respectively. The cells 
are normally protected against ROS by the 
operation of the antioxidant defense system 
comprising enzymatic and non-enzymic 
components. The activities of enzymes of the 
antioxidant system in plants under stress are 
usually regarded as an indicator of the tolerance 
of genotypes against stress conditions. Overall, 
the involvement of ROS in various metabolic 
processes in plant cells might have general 
implications. Drought stress enhances the 
production of ROS in cellular compartments such 
as chloroplasts, peroxisome and mitochondria. 
ROS causes the peroxidation of membrane 
lipids, the denaturation of proteins and damage 
to nucleic acids [57]. If drought stress is 
prolonged, ROS productions will un-date the 
scavenging action of the antioxidant system, 
resulting in extensive cellular damage and 
eventual death. ROS are highly deleterious by-
products of stress, and are likely to be important 
secondary messengers that trigger adaptation 
responses to the changing environment [58]. 
Drought stress induces the formation of active 
oxygen species by misdirection of electrons in 
the true photosystem. 
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3.10 Antioxidant 
 

The antioxidant defense system in the plant cell 
constitutes both enzymatic and non-enzymatic 
components. Non-enzymatic components include 
β-carotene, ascorbate (ASC), α-tocopherol, 
reduced glutathione (GSH), carotenoid, enzymes 
include superoxide dismutase (SOD), peroxidase 
(POD), ascorbate peroxid (APX), catalase (CAT), 
polyphenol oxidase (PPO) and glutathione 
reductase (GR) [59]. In environmental stress 
tolerance, such as drought, high activities of 
antioxidant enzymes and high content of non-
enzymatic constituents are important. The 
reactive oxygen species in plants are removed 
by a variety of antioxidant enzymes and lipid-
soluble and water soluble scavenging molecules, 
the antioxidant enzymes being the most efficient 
mechanism against oxidative stress [35]. Apart 
from catalase, various peroxidases and 
peroxiredoxins, four enzymes are involved in the 
ascorbate-glutathione cycle, a pathway that 
allows the scavenging of superoxide radicals and 
H2O2. These include ascorbate peroxidase, 
dehydroascorbate reductase (DHAC), 
monodehydroascorbate reductase and 
glutathione reductase [60]. The ascorbate 
glutathione cycle enzymes are located in the 
cytosol, stroma of chloroplasts, mitochondria and 
peroxisomes. Ascorbate peroxidase is the key 
antioxidant enzyme in plants whilst glutathione 
reductase has a central role in maintaining the 
reduced glutathione pool during stress [61]. Two 
glutathione reductase complementary 
deoxyribonucleic acids have been isolated; type 
one encoding the cytosolic isoforms [62] and the 
other encoding glutathione reductase proteins 
dual-targeted to both chloroplasts and 
mitochondria in different plants [63]. The 
capability of antioxidant enzymes to scavenge 
ROS and reduce the damaging effects may 
correlate with the drought resistance of plants [4]. 
The transcript of some of the antioxidant genes 
such as glutathione reductase or ascorbate 
peroxidase was higher during recovery from a 
water deficit period and appeared to play a role 
in the protection of cellular machinery against 
damage by reactive oxygen species [16]. 
 

3.11 Carotenoids 
 

Carotenoids a tetra-terpenoids are pigments with 
several functions in plants, besides their direct 
role in photosynthesis, they are actively involved 
in the mechanisms of oxidative stress tolerance. 
Carotenoids are a large class of isoprenoid 
molecules, which are synthesized by all 
photosynthetic and many non-photosynthetic 

organisms. They are divided into the 
hydrocarbon carotenes, such as lycopene, α-
carotene and β-carotene, and xanthophylls, 
typified by lutein. Carotenes form a key part of 
the plant antioxidant defense system, but they 
are very susceptible to oxidative destruction. β-
carotene, present in the chloroplasts of all green 
plants is exclusively bound to the core 
complexes of PSI and PSII. Protection against 
damaging effects of ROS at this site is essential 
for chloroplast functioning. In addition to the 
function at an accessory pigment, β-carotene 
acts as an effective antioxidant and plays a 
unique role in protecting photochemical 
processes and sustaining them. A major 
protective role of β -carotene in photosynthetic 
tissue may be through direct quenching of triplet 
chlorophyll, which prevents the generation of 
singlet oxygen and protects from oxidative 
damage [16]. Unyayar et al. [64] observed 
decreased chlorophyll a/b ratio in drought 
tolerant Lycopersicon peruvianum and concluded 
that this trait indicates better protection of PSII 
against drought stress. An increase in 
carotenoid/chlorophyll ratio might be of a 
protective value as carotenoids are known to be 
potent quenchers of ROS, particularly singlet 
oxygen. Carotenoids and other compounds, such 
as abietane diterpene, have received little 
attention despite their capacity to scavenge 
singlet oxygen and lipid peroxy-radicals, as well 
as to inhibit lipid peroxidation and superoxide 
generation under dehydrative forces [65]. 
 

3.12 Tocopherols 
 

Tocopherol, a lipid soluble antioxidant is 
considered as a potential scavenger of ROS and 
lipid radicals [66]. Tocopherols are considered as 
major antioxidant in biomembranes, where they 
play both antioxidant and non-antioxidant 
functions. Tocopherols are considered general 
antioxidants for protection of membrane stability, 
including quenching or scavenging ROS [67]. 
They are localized in plants in the thylakoid 
membrane of chloroplasts. Out of four isomers of 
tocopherols found in plants, α-tocopherol has the 
highest antioxidative activity due to the presence 
of three methyl groups in its molecular structure. 
Increased levels of α-tocopherol and ASH have 
been found in tomato following trizole treatment 
which may help in protecting membranes from 
oxidative damage [68]. 
 

3.13 Glutathione (GSH) 
 

Glutathione (GSH, g-glutamyl-cysteinyl-glycine) 
is a low molecular weight thiol-metabolite and a 
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major antioxidant in plant cells. Glutathione is 
present in most eukaryotic organisms, where it 
performs multiple functions. These include 
storage and transport of sulphur and control of 
the redox status. GSH is a strong reductant that 
can scavenge ROS directly or in cooperation with 
other antioxidants and ROS processing 
enzymes. It seems likely that GSH levels are 
used as a cue in the coordination of mechanisms 
for the supply of cysteine and the maintenance of 
the cellular NADPH pool. Coordination of these 
responses, merely by lowering the GSH pool, 
provides plants with a simple mechanism to 
respond defensively to a wide range of stresses 
through a coordinated up-regulation of the 
capacity for GSH biosynthesis and its redox 
cycling [5]. 
 

3.14 Catalase 
 
Plant catalases are tetrameric iron porphyrins 
and play a role in stress tolerance against 
oxidative stress. Catalases are produced in 
peroxisomes and glyoxysomes. These are 
involved in eliminating hydrogen peroxide 
generated by different environmental stresses 
[69,70]. Catalase decomposes hydrogen 
peroxide to water and molecular oxygen without 
consuming reductants and thus may provide 
plant cells with an energy efficient mechanism to 
remove hydrogen peroxide [70]. The enzyme is 
abundant in the glyoxysomes of lipid-storing 
tissues in germinating barley, where it 
decomposes H2O2 formed during the oxidation of 
fatty acids and in the peroxisomes of the leaves 
of C3 plants, where it removes H2O2 generated 
during photorespiration by the conversion of 
glycolate into glyoxylate. This is also due to the 
fact that there is a proliferation of peroxisomes 
during stress, which might help in scavenging 
H2O2 [71]. 
 

3.15 Glutathione Reductases (GR) 
 
GR is a flavo-protein oxidoreductase, found in 
both prokaryotes and eukaryotes [72]. It is a 
potential enzyme of the ASH-GSH cycle and 
plays an essential role in defense system against 
ROS by sustaining the reduced status of GSH. It 
is localized predominantly in chloroplasts, but 
small amount of this enzyme has also been 
found in mitochondria and cytosol. GR catalyzes 
the reduction of glutathione (GSH), a molecule 
involved in many metabolic regulatory and 
antioxidative processes in plants, e.g., GR 
catalyses the NADPH dependent reaction of 
disulphide bond of oxidized glutathione (GSSG) 

and is thus, important for maintaining the GSH 
pool

 
[73]. Actually, GSSG consists of two GSH 

molecules linked by a disulphide bridge which 
can be converted back to GSH by GR. GR is 
involved in defense against oxidative stress, 
whereas, GSH plays an important role within the 
cell system including participation in the ASH-
GSH cycle, maintenance of the sulfhydryl (eSH) 
group and a substrate for glutathione 
transferases (GSTs) [74]. It was suggested that 
GR plays an important role in the regeneration of 
GSH and thus protects against oxidative stress 
by maintaining the ASH pool [75].  
 

3.16 Malondialdehyde (MDA) 
 
Accumulation of MDA, mainly produced from the 
ROS induced degradation of membrane lipids, is 
a potential biomarker to assess the severity of 
the abiotic stress, including drought stress [76]. 
Membrane damage is sometimes taken as a 
single parameter to determine the level of lipid 
destruction under various stresses. Now, it has 
been recognized that during lipid peroxidation 
products are formed from polyunsaturated 
precursors that include small hydrocarbon 
fragments such as ketones, MDA, etc and their 
related compounds [77]. MDA is synthesized due 
to degradation of polyunsaturated lipids by ROS. 
The production of this aldehyde is used as a 
biomarker to measure the level of oxidative 
stress. Increased MDA accumulation has been 
correlated with reduction of relative water content 
and photosynthetic pigment content under 
prolonged drought. Lower MDA displays higher 
anti-oxidative ability, reflecting higher resistance 
to drought. These secondary metabolites play 
multiple roles in plants, including scavenging of 
ROS induced under different stress conditions 
and causing oxidative stress [78,79]. A clear 
symptom of oxidative damage is cell membrane 
degradation; therefore, MDA - a product of 
membrane lipid peroxidation is an excellent 
marker of oxidative stress [77]. A significant 
increase of MDA level in tomato leaves upon 
induced drought stress was observed [17]. 
 

4. CONCLUSION 
 
As climate prediction models predict increased 
manifestation of drought, salinity, high and low 
temperature spells during the crop growth 
periods, global food production will continue to 
be challenged.  Ensured sustainable yields under 
changing environmental conditions will therefore 
be imperative. Prolonged soil water deficit  
causing drought, is one of the prevalent abiotic 



 
 
 
 

Meena and Kaur; ARRB, 31(2): 1-13, 2019; Article no.ARRB.37934 
 
 

 
9 
 

stresses  vastly responsible for the production of 
ROS in different cellular compartments like 
chloroplasts, mitochondria, peroxisomes, etc. 
which further attack biomolecules, viz., DNA, 
lipids, proteins, carbohydrates, thereby disturb 
the normal functioning of the cell. Different 
physiological mechanisms including stomatal 
conductance, osmatic adjustment, , water use 
efficiency, cell membrane stability and relative 
water content make it possible for the plant to 
tolerate the damage caused by drought stress. In 
order to withstand oxidative stress, plants are 
equipped with enzymatic and nonenzymatic 
antioxidants. Non-enzymatic (ascorbate, 
carotenoids and tocopherols) and enzymatic 
antioxidants (Catalase, glutathione, gluthione 
reductase, SOD, APX, etc.) have a 
predominantrole in combating oxidative damage 
of the cell. To overcome the deleterious effects of 
abiotic stress, plants accumulate osmolytes and 
osmoprotectants, particularly proline and glycine 
betaine. These compounds are thought to play a 
significant role in osmotic adjustment and 
protectection of subcellular structures thereby 
enhancing drought tolerance of plants. 
Manipulation of traits conferring drought 
tolerance can be exploited for sustaining 
qualitative and quantitative production in the  
conditiond of water scarcity. 
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