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Abstract
Multi-band insulating Bloch Hamiltonians with internal or spatial symmetries, such as
particle-hole or inversion, may have topologically disconnected sectors of trivial atomic-limit
(momentum-independent) Hamiltonians. We present a neural-network-based protocol for finding
topologically relevant indices that are invariant under transformations between such trivial
atomic-limit Hamiltonians, thus corresponding to the standard classification of band insulators.
The work extends the method of ‘topological data augmentation’ for unsupervised learning
introduced (2020 Phys. Rev. Res. 2 013354) by also generalizing and simplifying the data generation
scheme and by introducing a special ‘mod’ layer of the neural network appropriate for Zn

classification. Ensembles of training data are generated by deforming seed objects in a way that
preserves a discrete representation of continuity. In order to focus the learning on the topologically
relevant indices, prior to the deformation procedure we stack the seed Bloch Hamiltonians with a
complete set of symmetry-respecting trivial atomic bands. The obtained datasets are then used for
training an interpretable neural network specially designed to capture the topological properties by
learning physically relevant momentum space quantities, even in crystalline symmetry classes.

1. Introduction

To find and classify exotic phases of quantum matter is of key importance in modern science. These phases
often point to materials with unique properties and high scientific impact. A particular type of quantum
matter, the so-called topologically non-trivial quantum phases, are especially at the frontier of current
research [2–4]. Topological phase transitions lie outside the standard Landau paradigm of symmetry
breaking and highlight topological non-triviality of the underlying state spaces. Despite of all the progress
made and understanding gained over the years, the field is still very far from being complete.

Although still in its infancy as applied to topological matter, the use of machine learning (ML),
specialized in big data pattern recognition, has the potential to revolutionize the field by circumventing the
need for explicit analytic representations of topological markers (indices). Ideally, identifying topology using
ML can subsequently guide further theoretical developments. In many areas of quantum physics,
applications of ML has become a major research area [5, 6], for example to represent many-body states
[7–16], identifying both symmetry breaking and topological phase transitions [17–44], for quantum state
tomography [45–47], quantum control [48–50] and quantum error correction [51–56].

The use of artificial neural networks (NNs) or deep learning, in particular, stand out as the premier ML
tool, with the power both to find complex patterns in data and to generalize this knowledge to previously
unseen data. The capabilities and limitations of NNs applied to the task of classifying phases of topological
quantum matter are currently under active research [17–25, 42, 44]. A potential limitation to using NNs is
that common protocols are based on supervised learning which requires labeled data (object and
corresponding topological marker) from an explicit model. This limits the prospectives for using ML to
explore unknown topological structures. To begin to address this issue several unsupervised protocols for
doing topological classifications have recently been developed [1, 36–40]. The method presented by us in
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Figure 1. Protocol for generating the training data: Step I. The parent Hamiltonians Hi(k) with i= 0, 1 are extended to
Hi(k)⊕ Fi,j(k), where Fi,j(k) are randomly generated trivial atomic-limit Bloch Hamiltonians. Step II. The stacked parents are
augmented via continuous deformations. Step III. The obtained datasets, labeled ‘0’ and ‘1’, are used for training a neural network
specifically designed for capturing topological indices.

reference [1] is based on ‘topological data augmentation’, where datasets of topologically equivalent children
states are created from single parent states. The created data is then used for training a NN, using the
unsupervised ‘learning by confusion’ concept introduced in [36]: only datasets that have some distinguishing
feature can be functionally classified by the network. Thus, any two a priori unknown datasets can be used
for training the network with dummy label targets, with successful training outcome only if the two sets are
topologically distinct. The procedure also used interpretable neural networks, designed to learn an
intermediate momentum space output which is closely related to integral expressions over the local
curvature. A crucial and challenging requirement for the procedure to work is that the data is sufficiently
randomized to erase any non-topological information related to the specific parent states. In order to
accomplish this randomization without destroying the topological information we construct in reference [1]
explicit topology preserving transformations, valid in the discretized Brillouin zone. However, to construct
such transformations, one might argue, requires a good understanding of the topological structure. Thus to
relax the specificity of the topology preserving deformations would be a step forward in the spirit of the
outlined objective.

With this in mind, in this paper we significantly advance the protocol from [1] and reveal new horizons
of its applicability. As before, the protocol is split into two main stages, data generation and training of the
network. The training data is generated from two parent states via random topology-preserving
deformations. Here we always require the states to change slowly with momentum, in this way automatically
ensuring continuity of the applied deformations. The procedure to do this while at the same time ensuring
sufficient exploration of the space in order to obscure any non-topological features is one of the main
methodological points. This also allows us to consider more general quantum systems without requiring any
external knowledge on the topological structure of the underlying state space. We also modified the
network’s layout, cf. figure 3, allowing the net to generically represent a much broader class of topological
indices, including such that are sensitive to high symmetry points, lines, and surfaces in the Brillouin zone.
Importantly, as in [1], our net’s layout ensures interpretable output of the learned topological quantity: The
weighted output of the last convolutional layer corresponds to the relevant momentum resolved topological
measure, as exemplified in figures 4, 5, and 7. By studying this intermediate output we can establish for
example a direct connection between the topological indices and high symmetry points; cf. figures 5 and 7.

An additional limitation of the original protocol of topological data augmentation is that network may
learn momentum space local invariants that are irrelevant for establishing non-trivial topological features. As
an example, consider Hamiltonians with inversion symmetry, where in the atomic limit the individual
orbitals may be odd or even under inversion. A half-filled 4-band Hamiltonian in the atomic limit may have
two occupied bands either both with even parity, both with odd parity, or one band with even and one with
odd. These three sectors of atomic Hamiltonians are topologically trivial, have no edge states [57], but

2



Mach. Learn.: Sci. Technol. 2 (2021) 025008 O Balabanov and M Granath

nevertheless cannot be connected by continuous non gap-closing deformations. Thus, a network trained on
dataset based on deformations of single seed objects from one of these three sectors may learn to distinguish
different trivial band insulators based on a local index (such as the parity at the Brillouin zone center) rather
than trivial from non-trivial, depending on the specifics of the two training datasets.

In order to address this issue we extend the Hilbert space and corresponding matrix dimensions of the
Bloch Hamiltonians that we want to classify from n to 2n bands, by stacking them with n atomic bands as
sketched in figure 1. The children states are produced by first stacking the parents with a number of trivial
atomic bands and only then deforming them employing random topology-preserving deformations. The
created data is then used for training an interpretable NN allowing us to extract the learned topological
quantities. Trivial atomic bands here mean bands that respect the symmetries of the corresponding
symmetry class but do not vary in momentum, they represent the intrinsically trivial atomic limit where
individual atomic bands do not hybridize. Thus, within the new procedure we purposely assign the same
labels to any Bloch Hamiltonians differing by trivial atomic bands, in this way penalizing the NN for
outputting topologically irrelevant indices that differentiate between a priori trivial objects. This approach is
inspired by the commonly employed K-theoretic analytic classification schemes [4, 58, 59], where the
topological equivalence between two band insulators is defined up to stacking of trivial bands. All trivial
Hamiltonians here constitute a trivial monoid element and any Hamiltonian can then be stacked with atomic
bands without changing the topological class.

The paper is organized as follows. The protocol is described in details in section 2, including how to
generate parent states that vary sufficiently slowly on the scale of discretized momentum, how these are
stacked with atomic bands and subsequently deformed in a manner that conserves the discrete measure of
continuity of the Bloch Hamiltonians. The protocol is exemplified on one-dimensional (1d) 4-band
insulators from three different symmetry classes in section 3. This includes examples with particle-hole
symmetry and inversion symmetry where the network learns to single out the high symmetry points in the
Brillouin zone and combine these in the appropriate way to produce the topological index. A summary and
outlook is given in section 4.

2. Methods

To set the stage, we describe our protocol in general terms and provide the details applicable for all examples
to follow. Any one-dimensional (1d) gaped n-band system can be represented using a n by nHermitian
Bloch Hamiltonian H(k) that is a periodic continuous function of momentum k. Two Bloch Hamiltonians
are said to be topologically equivalent if the occupied spaces can be continuously deformed into each other.
Any Bloch Hamiltonian can therefore be continuously transformed to have energies−1 and 1 for occupied
and empty bands respectively, and we consider the space of normalized Bloch Hamiltonians only. The aim is
then to find a topological index, call it ν, labeling the Bloch Hamiltonians H(k) by their topological
equivalence classes. It is known that the space of all Bloch Hamiltonians in 1d is topologically trivial but the
classification becomes nontrivial after imposing various symmetries on the systems, in this way restricting
the allowed deformations. In this paper, we always assume the systems to be half filled and explicitly
normalize the Bloch Hamiltonians to have equal number of positive and negative bands.

2.1. Prerequisites
For our protocol to be functional we need to choose a distance measure between any Hermitian matrices H1

and H2 to later establish a notion of continuity for discretized Bloch Hamiltonians. The distance is here
defined through relation:

d(H1,H2) = 1− 1

No.b.

∑
i,j∈o.b.

|⟨ψ1,i|ψ2,j⟩)|2, (1)

where |ψ1/2,i⟩ are the normalized eigenstates of H1/2, with i running over the No.b. occupied bands of H1/2(k).
Note that the distance d(H1(k),H2(k)) = 0 for every momentum k if and only if the (normalized) Bloch
Hamiltonians H1(k) and H2(k) are identical.

We also need an efficient algorithm to numerically move between the matrices and for this purpose we
employ a numeric method introduced by Scheurer et al [38]. The idea is to gradually change matrix H1

towards H2 via minimizing the distance d(H1,H2) employing the gradient descent algorithm. Explicitly, in
each numeric step we perform a unitary rotation H1 → UjH1U

†
j using different unitary generators

Uj = exp(iϕjΛj), where Λj is a basis of Hermitian matrices. The phase constants ϕj are computed using the
gradient descent rule [38]:
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Figure 2. One recursive iteration: The goal is to move the given Hamiltonian H(k) at momentum site ki towards the target. First,
we compute H ′(k) obtained from H(k) by doing one gradient descent step at site ki. There are now two scenarios: (a) H ′(k) is
continuous with respect to the continuity measure δ. Then, we update H(k) = H ′(k). (b) H ′(k) is discontinuous. Then, we
choose any discontinuity neighboring point, say k ′i , and do one recursive iteration at k

′
i . Next, one recursive iteration at ki is

performed again.
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Figure 3. A generic class of neural networks designed for interpretably classifying 1d band insulators. The input is fed in format
2× (Nk + 1)× 4n2, where Nk and n are the numbers of momentum points and internal bands, respectively. The net consists of a
Conv2D layer with receptive field of size (2,2) (over neighboring k-points and real and imaginary part of matrix entry, with 64
channel depth corresponding to each matrix entry), several Conv2D layers with receptive field of size (1,1), a Dense layer, and an
optional Modulo layer. The Modulo layer applies a predefined continuous function coinciding with the modulo operation in
some key integer points: An example of such function mimicking mod 2 operation is depicted as well.

ϕj =−η
∂ d(UjH1U

†
j ,H2)

∂ϕj

∣∣∣
ϕj=0

, (2)

with some small learning rate η. To avoid rapid changes possibly leading to discontinuous deformations we
also restrict ϕj to not exceed some upper bound value ϕmax. The symmetries are maintained by doing the
unitary rotations in pairs bonded by the symmetries, in this way forbidding the deformed Hamiltonian to go
outside the considered symmetry class. In contrast to [38], where the matrix distance gradient descent
formalism is used to cluster topologically equivalent data points, we use it to implement topological data
augmentation, i.e. to generate new data points; see section 2.4.

2.2. Generating parent states
The training data is generated from two n by n parent states H0(k) and H1(k) defined on a grid of Nk

momentum points. The baseline trivial state H0(k) is taken to be any trivial atomic-limit Bloch Hamiltonian
satisfying the symmetries. It is produced by repeating a random properly symmetrized n by nHermitian
matrix. The parent H1(k) is generated by symmetrizing a Bloch Hamiltonian

H(k) =
m∑

p=0

An sin(pk)+Bn cos(pk), (3)
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with Ap and Bp random n by nHermitian matrices. With this procedure we can efficiently sample the
symmetry classes and control state’s continuity by choosingm≪ Nk. The continuity here is realized by
requiring all neighbor to neighbor distances d(H(k),H(k+∆k)) (with∆k= 2π/Nk) to be below some small
threshold δ. Thus, the parent H1(k) is suggested to be randomly generated via equation (3). Note, however,
that in general we are mainly interested in picking H1(k) that is topologically nontrivial and therefore can
facilitate the protocol by applying all available external intuition for purposely choosing a promising
candidate for H1(k). Completely random guessing, however, is also anticipated to eventually lead to the same
results according to learning by confusion ideology but one will need to make several attempts until reaching
success in training.

2.3. Stacking parents with trivial atomic bands
Within our protocol of topological classification, figure 1, the parents Hi(k) with i= 0, 1 are first extended to
Hi(k)⊕ Fi,j(k) using random trivial atomic-limit Bloch Hamiltonians Fi,j(k), and only then the stacked
parents are deformed. The extension of the parents is not generally necessary within our protocol, however,
the datasets generated in this way facilitate the NN to only look at topologically relevant indices that do not
distinguish between different trivial atomic-limit Hamiltonians. We therefore develop a procedure for
randomly generating trivial atomic-limit Bloch Hamiltonians F(k) respecting the relevant symmetries. Each
trivial Bloch Hamiltonian F(k) is constructed by repeating some base n by nmatrix F̃. The matrix F̃ has to
respect the relevant symmetries, and within our protocol it is generated by filling the matrix entries with
random complex numbers (a+ ib) with a, b∈ [−1, 1] (with real numbers c∈ [−1, 1] for diagonal entries),
symmetrizing the obtained matrix to respect the given symmetries, and then normalizing it to have
eigenvalues±1. Depending on symmetry class the space of all symmetry-respecting matrices can be
composed of multiple topologically disconnected sectors and these sectors can in general be non-uniformly
represented in our randomly created data. Note that trivial Hamiltonians F(k) corresponding to F̃ from
disconnected sectors generically cannot be connected using continuous symmetry-preserving deformations.
This may mislead our NN to find topologically relevant quantities because some connected parts of trivial
atomic-limit Hamiltonians might be underrepresented. For avoiding our algorithm giving preference to a
particular disconnected matrix sector we put the generated matrices into datasets, each composed of 103

continuously connected random matrices. The connectivity is established by checking if they can be
connected via the gradient descent algorithm described in section 2.1 without breaking the symmetries, and
the number of obtained disconnected sectors of trivial Hamiltonians depends on the symmetry class. We
then pick a base matrix F̄i,j defining Fi,j(k) with equal probability from the created datasets of matrices F̃. In
this way all the disconnected sectors are represented equally within the process. Using this approach we
produce j= 1,…,Np stacked parent states Hi(k)⊕ Fi,j(k) corresponding to two parents H0(k) and H1(k). By
using these trivially stacked parents we hint the network to learn only quantities that cannot differentiate
between two trivial atomic states even if they cannot be continuously connected.

2.4. Topological data augmentation
The stacked parent states are then augmented by performing random deformations while keeping the states
continuous and maintaining the symmetries. The deformations are implemented by doing unitary rotations
of discretized 2n by 2n Bloch Hamiltonians H(k) at distinct momentum points ki towards randomly
generated target matrices H̃. These rotations are done in small steps by minimizing the distance function
d(H(ki),H̃) following gradient descent algorithm with some learning rate η and rotation cutoff ϕmax. We also
perform the steps in symmetry-bonded pairs to always maintain the symmetries. The unitary matrices are
taken to be Uj = exp(iϕjΛj) with Λj a set of basis matrices for 2n by 2nHermitian matrices. Importantly, the
state is kept continuous by recursively moving also matrices at neighboring momentum sites towards the
same target once the distance exceeds the threshold δ, figure 2. In this way any deformation at one
momentum site pulls the neighbors along with it, resulting in efficient augmentation procedure that at all
times maintains continuity of the state. We terminate the deformation algorithm if: the corresponding
matrix reached the target, the state could not be maintained continuous after a number of recursive steps
Mmax, or if we exceeded a maximum number of gradient descent learning steps Nmax. The motivation for this
procedure, which is similar to a string being pulled over a large distance at one point, is to be able to traverse
large distances in the topological sector in an unbiased fashion. This in contrast to making small random
local deformations, just producing a random walk, which in a high dimensional space will provide less
efficient exploration.

2.5. Neural network structure and training
The two datasets corresponding to topologically augmented stacked parents are then used to train a
neural-network-based classifier specifically designed to represent generic expressions of topological indices.

5



Mach. Learn.: Sci. Technol. 2 (2021) 025008 O Balabanov and M Granath

The NN is trained on the Bloch Hamiltonians H(k) transformed from Nk× 2n× 2n complex-valued format
to 2× (Nk + 1)× 4n2 float format with an extra momentum site added to encode the periodicity. The
classifying network consists of several convolution layers and in the earlier work [1] followed by a
summation layer. The activation functions associated with each convolution layer are rectified linear units
(ReLU) except the last one with linear activation. This network type was designed to perform identical local
operations on each site and then sum the obtained outputs over the whole sample, in this way capturing
topological numbers that are given by an integral over some local curvature. However, in presence of certain
symmetries, high symmetry momentum points, lines or surfaces may be of special importance and the
indices are expected to take a different form. We therefore advance the design of the network to cover a much
broader class of expressions by changing the last summation layer to a fully connected (dense) layer, see
figure 3. To be concrete, we use a dense layer with a single output node, absolute weight values≤ 1, zero bias,
and linear activation. The reason for avoiding non-linear activation and large weights is to constrain the
preceding feature map (the output from last convolution layer) to learn relevant and interpretable
momentum space quantities. Note that this family of networks, the net in figure 3 and its generalizations to
2d and 3d, can adjust to calculate sums of some local functions over arbitrary symmetry-preserving points,
lines, or planes, and then add or subtract them in any order. A coarse grained version of the output before
summation in this single node is what is displayed as the momentum resolved images in figures 4, 5, and 7.
The network thus processes the local information in k-space convoluted over all bands in the first
convolution layer (2 by 2 filters operate on nearest neighbor sites in k-space and real and imaginary part),
which after subsequent non-linear operations outputs the relevant momentum resolved local quantities. This
is thus the essence of the interpretability of the neural network.

To capture an even larger class of indices we also suggest to use an extra layer applying a predefined
operation on the single-valued output to represent a modulo function over some assumed range of integers.
The modulo function itself was found to be not applicable because it is periodic and discontinuous, giving
convergence problems during the training. A way around this problem is to use a continuous function
coinciding with the modulo operation in some key integer points. An example mimicking mod 2 operation
is given inside a box in figure 3. This function outputs 0 for input 0 and−2, and outputs 1 for input−1. The
network illustrated in figure 3 can be generalized to 2d case by analogously modifying the 2d network of
reference [1].

3. Results

Here we present results of the analysis for three examples of 4-band Hamiltonians in 1d, having chiral
symmmetry, inversion symmetry, and particle-hole symmetry respectively. We show how the network
correctly learns to classify trivial from non-trivial datasets in a way that gives interpretable information
corresponding to relevant momentum resolved quantities.

3.1. Hyperparameters
We selected the same hyperparameters throughout all of our examples and they are listed here. The
momentum space was discretized by Nk = 100 points. The gradient descent leaning rate was taken to be
η= 0.1, the rotation cutoff ϕmax = 0.1, and the continuity parameter δ= 0.1. The maximum numbers of
performed learning and recursive steps before terminating the algorithm were Nmax = 20 andMmax = 20,
respectively. The trivial parent H0(k) was generated by picking a random symmetry-respecting matrix and
duplicating it for all Nk points. The second parent H1(k) was randomly generated by symmetrizing the
output of equation (3) withm= 4. The two parents were then stacked with Np = 10 randomly chosen
symmetry-respecting trivial atomic-limit Hamiltonians to create two sets of 2n band Bloch Hamiltonians.
Each of the stacked parents was then used to create 103 children. For doing so, at first we deformed them by
10 independent single-site unitary rotations, and only then saved a child for each new unitary deformation.
In this way we produced two datasets of 104 children Bloch Hamiltonians corresponding to two original
parents.

3.2. Multiband 1d insulators with chiral symmetry
As our first illustration, we implement the protocol for topological classification of 4-band insulators in 1d
with chiral symmetry. It is well known that all gapped systems within this symmetry class are distinguished
by a Z topological invariant, the so-called winding number [4]. Here we train a NN to fit into a
representation of the winding number without using any externally labeled data: The training data is entirely
produced via the topological data augmentation procedure described in section 2.2. This symmetry class was
also explored for 2-band systems in reference [1], using a different protocol for generating the training data,
but with similar results.
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Figure 4. Topological classification of 1d Bloch Hamiltonians with chiral symmetry. (a) The net’s output (y) evaluated on a test
dataset of 103 samples. The data corresponding to the trivial reference (randomly selected) parent is depicted in blue (red).
(b)–(e) Local quantities and corresponding to them outputs exemplified on four randomly selected systems.

Figure 5. Topological classification of 1d Bloch Hamiltonians respecting inversion. (a) The output (y) of the network tested on a
dataset of 103 children systems. The data corresponding to the trivial reference and randomly selected parents is pictured in blue
and red, respectively. (b)–(e) Local quantities and corresponding to them outputs associated with four distinct random systems.

Bloch Hamiltonians satisfying chiral symmetry must obey H(k) =−U†
SH(k)US, with a unitary matrix

US chosen to be a diagonal matrix with first half of entries+1 and last half of entries−1, thus consisting of
off-diagonal blocks. In order to symmetrize randomly generated Hermitian matrices A and Bloch
Hamiltonians H(k) we then performed the following operations on them:

A→ A−USAU
†
S (4)

H(k)→H(k)−USH(k)U
†
S. (5)

It was found that all generated symmetrized matrices A could be connected via the gradient descent
algorithm described in section 2.1, creating a single dataset of interconnected matrices, in agreement with
our anticipation. The base matrices defining the chiral atomic-limit Bloch Hamiltonians were therefore
uniformly picked from that single dataset, taken to be sampled by 103 matrices. (Note that, because there is
only a single trivial atomic sector, the stacking procedure is not strictly necessary for this class of systems.) All
other specifications needed for topological data augmentation are listed in section 3.1.

At the training stage we employed a NN with a layout thoroughly described in section 2.5 and depicted in
figure 3. The convolutional part of the network was explicitly taken to consist of one 2d convolution layer of
512 filters with (2, 2) receptive fields and three 2d convolution layers of 256, 128, 1 filters with (1, 1) receptive
fields. The network was successfully trained without any modulo layer in this case, confirming that the
learned topological number is a Z invariant. In total our network has 296 038 trainable parameters.

The training was done on 2 · 9500 and tested on 2 · 500 samples using absolute mean error cost and Adam
optimizer. We trained over 2000 epochs with learning rate η= 10−4. Importantly, we also effectively
augmented the training dataset: Before each epoch every Bloch Hamiltonian was translated by a random
number of momentum sites and uniformly rotated using a random symmetry-respecting unitary operator.

The results are presented in figure 4. The network has successfully learned to distinguish the datasets
corresponding to two ensembles of topologically equivalent children, figure 4(a): the classification accuracy
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Figure 6. Topological classification of 1d Bloch Hamiltonians with particle-hole symmetry: The network’s (a) final output and (b)
intermediate output obtained before applying the predefined (mod 2) operation. The test data associated with the trivial reference
(randomly chosen) parent is depicted in blue (red).

evaluated on the test set is 100%. Importantly, the NN layout allows us to interpret the obtained classification
and find a local quantity corresponding to the learned topological index. In figures 4(b)–(e) we exemplified
the learned local quantity on four representative systems from the test dataset.

3.3. Multiband 1D insulators with inversion symmetry
In our second example we focus on 4-band systems with inversion symmetry and implement our protocol
for classifying them. The topological phases within this symmetry class are characterized by a Z invariant
νIS = n0 − nπ with n0/π counting a number of negative parity eigenstates at high-symmetry points k= 0 and
k=π [60, 57].

The inversion relation reads as H(k) = U†
ISH(−k)UIS, where U IS is some unitary matrix and it is here

chosen to be the same as US, i.e. a diagonal matrix with+1 and−1 entries. The symmetrization of randomly
generated Hermitian matrices A and Bloch Hamiltonians H(k) is done via

A→ A+UISAU
†
IS (6)

H(k)→H(k)+UISH(−k)U†
IS. (7)

The generated symmetrized matrices A were found to create three distinct blocks of matrices, with all
matrices connected via the gradient descent algorithm within each block. Analytically, as discussed in the
introduction, the disconnected blocks correspond to three different combinations of inversion-symmetric
eigenvalues±1 of the occupied eigenstates. Thus, for producing inversion-symmetric trivial atomic-limit
Hamiltonians we uniformly picked matrices from these three blocks. Each block was taken to consist of 103

generated matrices. Other details of data generation are given in section 3.1.
We then trained a NN with a layout described in section 2.5 and illustrated in figure 3. The convolution

layers of the net were chosen to have 128 filters for the first layer with (2, 2) receptive field, and 64, 32, 1
filters for the other ones with (1, 1) receptive field. The same as in section 3.2, the network was successfully
trained without any modulo layer. In total there are 43 366 trainable parameters. The network was trained on
2 · 9500 states and tested on 2 · 500 states employing absolute mean error cost and Adam optimizer. The
training was done over 103 epochs with learning rate η= 10−3. Before every epoch we performed a uniform
symmetry-respecting rotation of each training state and by this effectively augmented the dataset.

The outcome of our protocol is depicted in figure 5. The network has learned to differentiate between
two ensembles of topologically equivalent children with precision 100%, figure 5(a). By looking at the
network’s intermediate output we could also retrieve the local quantity corresponding to the learned
topological index, as shown in figure 5(b)–(e). Strikingly, the network learned the importance of
high-symmetric k= 0,π and simply avoids all other momentum points. Important to note that this property
was not built-in into the network by hand and it highlights the flexibility of our NN layout, figures 3: The last
dense layer in the network allows it to find important points, lines and/or surfaces in momentum space
without any external supervision.

3.4. Multiband 1D insulators with particle-hole symmetry
For our last example we implement the protocol for 1d topological classification in symmetry class D
composed of systems exhibiting a particle-hole symmetry. It is well known that the topological number
distinguishing the phases within this symmetry class is a Z2 number. The topologically nontrivial phase
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(a) y = 0.00  (c) y = -0.99 (b) y = -1.99  (d) y = -1.00 
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Figure 7. The learned local quantities (y) corresponding to particle-hole symmetric systems illustrated on four different
examples, showing the (coarse grained) momentum resolved output before performing the modulo operation.

within this symmetry class exhibits very rich physics and opens up a road for realization of robust Majorana
end modes [61].

In first quantization the particle-hole symmetry is antiunitary anticommuting symmetry explicitly
described by relation H(k) =−U†

CH
∗(−k)UC for some unitary operator UC. Here we use the conventional

representation of particle-hole symmetry that is basic within the BCS theory of superconductivity: We take
UC = I⊗ τx with a Pauli matrix τ x and identity I. To symmetrize Hermitian matrices A and Bloch
Hamiltonians H(k) the following transformations are performed:

A→ A−UCA
∗U†

C (8)

H(k)→H(k)−UCH
∗(−k)U†

C. (9)

By applying the gradient descent algorithm from section 2.1, it was found that the generated
symmetrized matrices A clustered into two blocks of matrices and we uniformly picked matrices from them
for producing trivial atomic-limit Bloch Hamiltonians respecting the particle-hole symmetry. These two
blocks of trivial Hamiltonians would in the Majorana basis correspond to the Pfaffian at k= 0 and k=π
being±1 [4, 62]. In total there were 2× 103 matrices generated. All the details on other aspects of the data
generation are provided in section 3.1.

Again, in the training stage we employed a neural net layout shown in figure 3 with convolution layers of
256, 128, 64, 1 filters. The first convolution layer operates with (2, 2) receptive field and all other ones with
(1, 1) receptive field. There are 107 110 adjustable parameters in total. Without a modulo layer the network
has failed to adjust to separate the classes of the training data, but with the modulo layer depicted in figure 3
it has succeeded. We trained the network on 2 · 9500 and tested on 2 · 500 samples using Adam optimizer and
absolute mean error cost function. The training was done over 103 epochs with learning rate η= 10−4. The
same as in all previous cases we effectively augmented the training dataset by doing a uniform
symmetry-respecting rotation of every Bloch Hamiltonian before each epoch.

The network’s output evaluated on a test dataset is shown in figure 6: Two ensembles of topologically
equivalent children are successfully differentiated by the network with high precision, figure 6(a). In
figure 6(b) we show the intermediate output produced by the network before applying the mod 2 operation:
Interestingly, we see the data corresponding to topologically trivial ensemble clustered around two different
values,−2 and 0, confirming the Z2 nature of the topological index. In figure 7 four examples of test states
show the local quantity corresponding to the learned topological number. Again, the network has adjusted to
look at only high-symmetric k= 0,π and neglect other momentum points.

These results demonstrate that the network without explicit guidance learns to focus on the pertinent
information. In fact, it is known that these Hamiltonians can be classified by product of the sign of the
Pfaffian at the high symmetry points k= 0 and π. Without extending the datasets with different sectors of
trivial atomic bands the network would only learn to pick up one of the high symmetry points, and it would
fail to classify all Hamiltonians properly. One might train two networks to learn to separately classify the two
symmetry points, but the corresponding topological indices will be a composition of topologically irrelevant
and relevant invariants. Another alternative to the mod layer for this problem would be to use an additional
dense layer with non-linear activation functions to effectuate an xor classification of the output from the last
convolution layer. However, the drawback of this is that it would allow for a drift of the last feature map
output, with a corresponding loss of the interpretability of the results.

4. Conclusion and outlook

We present a novel protocol for using NNs to learn topological indices of Bloch Hamiltonians, extending
previous work on ‘topological data augmentation’. The protocol is characterized by the following features. (i)
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It is unsupervised, i.e. training data is generated by randomly deforming parents states while ensuring the
topological integrity of the data sets, without using any prior knowledge or specific models except a specific
representation of the symmetry class to constrain the data. (ii) The NNs are specifically designed to be
interpretable, in the sense that the single feature map of the last convolution layer gives momentum resolved
information about the learned quantities. In this way the network can for example learn to single out
relevant high symmetry momentum points. Note that, as demonstrated in detail in [1], our net’s layout
implicitly guarantees the network to generalize to systems with values of topological index lying outside of
the training regime. This is because the network is trained to represent the topological index via a
momentum resolved quantity, and given sufficient exploration all possible local data configurations are
represented within the training dataset. (iii) By extending the training data samples with a complete set of
symmetry respecting atomic insulators (specifically here, stacking 4 bands on 4 bands) the network learns to
pick up only relevant topological invariants that do not discriminate between topologically disconnected but
trivial atomic-limit Hamiltonians.

The protocol takes a next step towards the goal of using machine learning and NNs to identify unknown
topological invariants that go beyond the already well established non-interacting and translationally
invariant systems with spatial or internal symmetries. Areas to explore could be periodically-driven (Floquet)
topological phases [63, 64], non-Hermitian topological matter [48, 65], interacting systems [66], and others.
The NNs used in this work are very small compared to state of the art deep learning networks which opens
up for extending the protocol to systems with less symmetry (e.g. disordered systems) that would require
dense matrix input which is not in a block diagonal form. A nice ingredient of the network structure for the
examples presented in this work and in [1] is the interpretability that follows from the construction where
the network has local operations in momentum space, until the very last layers. It remains to be explored if
and how this can be extended to problems where local measures may not be sufficient. Nevertheless, the
interpretability is a bonus which is not strictly necessary for the general topological data augmentation
procedure and network classification.
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