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Abstract
Wideband excitation signals are essential in bioimpedance spectroscopy for measurements in a
time ensuring a quasi-stable measurement condition. In particular, for wearable biomedical
systems, due to limited system resources, several aspects regarding measurement time, crest
factor, slew rate requirements, frequency distribution, amplitude spectrum, and energy efficiency
need to be thoroughly investigated. In this paper, we present an investigation of excitation
signals, which includes not only the theoretical aspects but also aspects of real implementation
on microcontroller-based systems. At a fixed number of samples and sampling rate, we
investigate the implementability of signal frequencies and the resulting spectral efficiency. We
focus on sources of signal distortion due to timer and amplitude deviations. The results show
that for 4096 samples and a sampling frequency of 1MHz, wideband signals are 2.76 times
faster than a stepped frequency sweep. The multisine signal provides a better energy efficiency
and has a lower slew rate requirement on hardware (around 0.3 Vµs−1), but has a relatively
high crest factor, even after optimization. An exemplary investigation of the distortion of the
time/frequency and amplitudes following implementation on a standard industrial advanced
RISC machines microcontroller has shown that a sampling rate compensation is required to
overcome timer inaccuracies. Furthermore, non-return-to-zero binary signals are more sensitive
to distortion due to hardware-related issues and have a lower signal-to-distortion-and-noise
(SINAD) ratio than 24 dB, which is lower than the multisine signal, having a SINAD of 31 dB.

Keywords: bioimpedance spectroscopy, excitation signal, spectral energy efficiency, crest factor,
embedded systems, real implementation, timer
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1. Introduction

Bioimpedance spectroscopy is increasingly gaining import-
ance as it provides information about biological tissues and
organs as well as whole-body composition in a non-invasive
way and without exposure to radiation [1]. In recent years,
a pronounced trend toward the integration of bioimpedance
spectroscopy in implants and wearable systems has been
observed for several emerging medical applications, such as
non-invasive clinical monitoring [2], cardiovascular monitor-
ing [3], blood glucose monitoring [4], and urinary bladder
filling rate and dysfunction [5].

Bioimpedance spectroscopy is typically done using an AC
excitation signal [6], but can also be done using voltage signals
[7, 8]. The excitation signal needs to support the fulfillment
of the requirements for impedance spectroscopy with respect
to linearity, stability, and causality. In a wearable device,
the stimulus signal is typically generated using an arbitrary
waveform generator or a microcontroller, which could be
interfaced to a voltage-controlled current source. To achieve
a good measurement quality, despite limited resources, the
excitation signal should meet a compromise between several
requirements (see figure 1). The amplitude needs to be high
and stable to achieve a high signal-to-noise-and-distortion
(SINAD) ratio and ensure an accurate measurement while
maintaining patient safety by adopting a secure current level
below a given threshold. The signal should also have a low
crest factor to ensure that when several frequencies are com-
bined into one signal, it still remains below the amplitude
threshold that satisfies the linearity condition but has a suf-
ficient signal power at the excited frequencies [9]. Some sig-
nals require fast hardware with a high slew rate to avoid sig-
nal distortion. The signal duration needs to be short enough
to avoid body state changes during the measurement process,
but it must be long enough to provide a reliable measurement.
According to Parseval’s theorem, the signal energy in the time
domain is equal to the signal energy in the frequency domain.
This means that the energy carried by the signal in the time
domain, which corresponds to the square value of the signal
amplitude, is preserved after Fourier transform into the fre-
quency domain. Energy losses due to harmonics and distor-
tion therefore reduce the effective excitation energy and must
be avoided by using signals with a high energy efficiency.

In fact, this leads to two main challenges. The first is
to identify the appropriate signal fulfilling the requirements
detailed above, and the second is to identify the appropriate
signal parameters to ensure a sufficiently good implementation
on systems with limited resources and processing perform-
ance. Several excitation signal surveys exist in the literature,
yet they target expensive and/or bulky systems with resource-
ful peripherals and large storage capability, such as peripheral
components interconnect extensions for instrumentation [6],
field-programmable gate array systems [10], and application-
specific integrated circuits [11, 12], or implement a chirp-
ready solution with limited adaptability [13].

In addition, microcontrollers have significantly low
memory storage capability, limited sampling rate, and a
slower processing speed. It can therefore be expected that the

frequency resolution is limited as the clock frequency for the
signal generation is not as fast and as accurate as reference sys-
tems. Although the D/A converter (DAC) resolution in micro-
controllers is improving, a few quantization-related errors are
expected. It is important to investigate further memory and
processing aspects, such as the number of samples, frequency
resolution, spectral amplitude, energy efficiency, crest factor,
and slew rate hardware requirements. All of these aspects
determine the quality of the excitation signal in the imple-
mentation and need to be carefully considered to enable a
suitable choice of excitation signal.

In this paper, we study potential wideband excitation sig-
nals for bioimpedance spectroscopy for wearable portable
devices based on cost-effective, resource-limited microcon-
trollers, to identify the most favored signal in embedded solu-
tions. Afterward, we study the influence of the limitations of
the embedded solutions on the signals themselves. The study is
carried out on an industry-standard advanced RISC machines
microcontroller, the STM32, with a maximum signal length
of 4096, but could be generalized to other microcontrollers.
In section 2, the potential signals for bioimpedance spectro-
scopy are described together with the implementation details.
Section 3 contains a comparison of the signal on the basis of
relevant key metrics in the time domain (signal duration, crest
factor, and slew rate) and in the frequency domain (frequency
distribution, count, amplitude value, and energy efficiency).
Section 4 describes some possible distortions encountered fol-
lowing a signal implementation in STM32H743Zi. These dis-
tortions attack both the frequencies and the amplitude within
the spectrum of the measurement.

2. Investigated signals

Excitation signals in impedance spectroscopy are divided into
two main groups: the stepped frequency sweep and the wide-
band signals. The frequency sweep group includes single or
limited frequency signals whose frequencies are swept step-
wise as a function of time. The stepped sine frequency sweep
[14] is considered to date as a reference in impedance spectro-
scopy. However, it suffers from a very long measurement time
[6]. The calculation of the amplitude and phase of the signal
is done before moving to the next frequency. This could be
done typically using the lock-in amplifier or bridge method,
and rarely discrete Fourier transform (DFT). The second cat-
egory includes wideband signals, also called broadband and
multifrequency signals. They are designed to contain mul-
tiple fundamental frequencies during one measurement cycle.
Examples of this are chirp, multisine, pseudo-random bin-
ary sequences (PRBS), and ternary signals [15]. As micro-
controllers can only generate either analog or binary signals,
multisine, chirp, multifrequency non-return-to-zero (NRZ)
binary, binary chirp, and maximum-length binary sequence
(MLBS) are taken into consideration. The signal analysis is
performed mainly at the end of the measurement, for all fre-
quencies simultaneously, by means of time-frequency trans-
formation. For this, DFT and its fast derivative, fast Fourier
transform (FFT) are typically used. In this paper, we focus
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Figure 1. Key metrics of excitation signals in wearable bioimpedance measurement systems.

primarily on the comparison of wideband signals, in reference
to the sine stepped frequency sweep. For a uniform com-
parison, all the signals are generated as normalized signals
with a 1 V peak-to-peak amplitude, corresponding to −0.5 to
0.5 V voltage dynamic range, and have a common sampling
frequency Fs = 1MHz. The frequencies are, if applicable, in
the frequency range 1–100 kHz, ensuring at least 80 logarith-
mically distributed measurement points for a smooth imped-
ance spectrum. As the implementation is intended for wear-
able embedded solutions, where the energy consumption is an
important issue, the number of samples is set to 4096. In this
section, all the signals are simulated usingMATLAB to invest-
igate the aforementioned parameters.

2.1. Chirp signals

Chirp signals consist of periodic signals whose frequency is
continuously swept as a function of time f (t). Unlike the fre-
quency sweep, where the frequency sweep is stepwise, the fre-
quency function in chirp signals is continuous. This frequency
function defines the type of chirp as linear, exponential, logar-
ithmic, etc [16, 17]. Among the aforementioned signals, only
linear chirp signals keep the amplitude spectrum quasi-flat,
and therefore two of its variants are studied: the linear sine
chirp and the linear signum chirp.

2.1.1. Linear sine chirp. The linear sine chirp uses a sine-
wave as the signal base, with a linear function frequency.
Its mathematical expression xchirp(t) is shown in (1). In
this equation, A and φ, respectively, describe the amplitude
and phase of the base signal (sine), and are typically set
as constants. t describes the time vector characterized by
(k.∆Ts)k∈{0,...,N−1} and tmax = (N− 1)∆Ts, where∆Ts is the
sampling period of the signal:

xsin chirp(t) = A(t)sin(2πf(t)t+φ(t)), (1)

where f (t) describes the frequency as it varies linearly as a
function of time between a minimum frequency fmin and a
maximum frequency fmax, for a duration of Tstab:

Figure 2. Excerpt of a linear sine chirp.

f(t) =
fmax − fmin

Tstab
t+ fmin. (2)

In figure 2, an excerpt of a 1 V peak-to-peak linear sine
chirp is depicted. The frequency changes linearly until Tstab =
2tmax. Its spectrum is shown in figure 3. Due to the lim-
ited time-bandwidth product in the embedded systems, which
is (tmax.( fmax − fmin)≈ 405, Fresnel ripples are visible at the
edges of the quasi-constant 10–100 kHz spectrum region.
Here, the bandwidth is approximated to fmax − fmin. The quasi-
constant region has a normalized single-sided Fourier amp-
litude spectrum of |X( f)|/N = |XN( f)| ≈ A√

Nuseful
, where A is the

amplitude of the chirp, Nuseful is the number of frequency bins
in the useful region ( fmin − fmax), and N is the total number
of samples. In this case, the amplitude is set to A= 0.5 V and
out of the 4096 frequency bins, only 404 frequency bins fall
into the useful spectrum. The amplitude of the quasi-constant
region is evaluated to |XN( f)|= 0.0249 V.

2.1.2. Linear signum chirp. The linear signum chirp uses a
rectangular pulsewave signal as a signal base, with the same
frequency function formula as the linear sine chirp f (t) defined
in (2). The term ‘signum’ comes from a possible interpretation
of this signal as a sign of the linear sine chirp [16]. The math-
ematical equation of this signal can be described as in (3):

xbin chirp(t) = sign(xsin chirp(t)). (3)
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Figure 3. Single-sided spectrum of a linear sine chirp, with useful
spectrum in red.

This signal, as shown in figure 4 has the same periodicity
as the linear sine chirp. The obtained spectrum in figure 5
looks distorted due to the proximity of the harmonics-to-
fundamental frequencies to each other. In fact, the NRZ bin-
arization, i.e. through the sign function, of the signal leads
to an amplitude gain factor of 4/π at each fundamental fre-
quency ( ffund), in addition to the generation of a few harmon-
ics defined by their frequencies fharmonics,n = (2n+ 1).ffund,
and their amplitudes of |XN( fharmonics,n)|= 4

π.(2n+1) , which are
decaying proportionally to the frequency. The Fourier approx-
imation of the NRZ binarization of a sine with a fundamental
frequency ffund is mathematically described in equation (4):

F(xsine, ffund(t))≈ 4/π

(
Xsine,N( ffund)

+
1
3
Xsine,N( ffund).δ( f− 3ffund)

+
1
5
Xsine,N( ffund).δ( f− 5.ffund)+ ...

)
. (4)

The fundamental frequencies ffund in the case of the lin-
ear signum chirp are exactly the same as the frequencies of
the peak values of the linear sine chirp, depicted in figure 3.
Due to the limited samples, each fundamental frequency’s har-
monics overlay the other fundamental frequencies as well as
the other harmonics from the other fundamental frequencies,
causing a disturbance in the spectrum of the signum chirp sig-
nal. This effect becomes more visible proportionally to the fre-
quencies, as the last frequencies tend to be affected by all the
previous frequencies. In figure 5, the ideal signal (in green)
is shown compared to the binarized signal (in red and blue).
The main interest lies in the fundamental frequencies whose
ideal non-overlapping single-sided amplitude spectrum has the
value |XN( ffund)| ≈ 4A√

Nusefulπ
, where A is the global amplitude

of the signal and Nuseful is the number of frequency bins in the
useful spectrum in the signal base, i.e. the linear sine chirp.
This is evaluated to be 0.0316 V in this signal.

2.2. Multisine

A multisine is obtained by summing elementary sine signals
as shown in equation (5). Each sinewave is indexed by k and
characterized by its amplitude Ak, a distinct frequency f k, and
initial phase φk. t is the time vector:

Figure 4. Excerpt of a linear signum chirp.

0
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Threshold
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Figure 5. Single-sided spectrum of a linear signum chirp, with
useful spectrum in red.

xmultisine(t) =
N∑
k=1

Ak sin(2πfkt+φk). (5)

In practice, summing multiple arbitrary sinewaves without
any optimization leads to some problems. One problem is the
high spectral leakage that can occur due to the spectral period-
icity of the FFTwhen the frequencies are chosen arbitrarily. To
avoid this, each elementary sinewavemust complete an integer
number of periods. The measurement time should therefore
preferably be around the smallest common multiplier of all
the periods, when the measurement time is flexible. When the
measurement time is fixed, the frequencies of the elementary
sinewave need to be aligned with the nearest frequency bin of
the full signal, which is defined as fbin[k] =

Fs
N , where N is the

total number of samples and Fs is the sampling frequency. In
this case, a sufficient condition is to choose a frequency res-

olution of fres = exp
(
log(fmax/ fmin )

n

)
, where n is the number of

elementary sinewaves. When this frequency resolution con-
dition is not satisfied due to limited number of samples, as in
this case, two or more frequencies of the desired signals can be
rounded into a single frequency bin during the spectrum ana-
lysis. To target ∼80 frequencies, 100 initial frequencies were
used and were eventually rounded to 82 quasi-logarithmic
distributions between 1 and 100 kHz. These frequencies are
obtained with an error to the exact logarithmic distribution
ranging between −7.32% and 2.34%, and the absolute value
of relative error value averages 0.77% (standard deviation of
1.36%). The lost frequencies are in the first kHz range.

A further challenge is the high crest factor (see section 3.2)
that results from the sum of several spectral shares. An
optimization procedure can be adopted, aiming at minimizing
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Figure 6. Full multisine signal with a crest factor of 1.77.

Table 1. Comparison between the output of the different crest factor
optimization algorithms.

Method [18] [19] [20] [21]

CF 6.163 1.777 2.971 3.047

Figure 7. Single-sided spectrum of a multisine, with the useful
spectrum in red.

the crest factor by changing the phase of the elementary
sinewaves. Several methods have been proposed, categorized
as analytical methods, such as that of Schroeder [18], numer-
ical methods, such as those of Van der Ouderaa (VDO) [19],
Chebyschev polynomials [20], or a combination of these two
methods, such as the Schroeder-VDO-logclip documented in
[21, 22]. By using the VDO algorithm and around 18k iter-
ations, a crest factor of 1.77 is obtained, which is the lowest
obtained crest factor among the previously mentioned meth-
ods, as shown in table 1. As a final step, the signal is normal-
ized to the dynamic range −0.5/+0.5 V (see figure 6).

The normalized single-sided amplitude of a multisine,
revealed in figure 7, shows a relatively spectrally sparse con-
stant amplitude spectrum [23]. The amplitude of the peaks is
|XN( f)|= A√

Nuseful.m
, where A is the global amplitude of the sig-

nal andm is the normalization ratio, which is the ratio between
the obtained crest factor CFobtained and the ideal crest factor
of a non-distorted sinewave CFideal, and is defined as m=
CFobtained
CFideal

= CFobtained√
2

. Nuseful is the number of elementary sine-
waves. In this case, A= 0.5 V, m= 1.254, Nuseful = 82 gives
a normalized single-sided spectral amplitude of the peaks of
0.0440 V.

0

0.02

0.04

0.06

0.08

0.1

102 103 104 105 106

Sign (Wasted Spectrum)
Sign (Useful Spectrum)

-  (Wasted Spectrum)
-  (Useful Spectrum)

Figure 8. Single-sided amplitude spectrum comparison of
sign-based and Σ∆-based multifrequency binary signal.

2.3. Multifrequency NRZ binary signal

The multifrequency NRZ binary signal [24] or discrete-
interval binary sequences [6] describe the NRZ binary signals,
whose spectrum can be used as an excitation signal. Typically,
these signals are obtained via the binarization of a multisine
signal, via Walsh functions [6, 25], which are limited to 2N

frequencies, or more efficiently via the sign (signum) function
[23, 26]. However, other 1-bit modulation techniques could be
interesting, such as sigma-delta (Σ∆) modulation [27]. Theor-
etically, the signum-basedmethod provides a higher amplitude
spectrum than the multisine’s due to the binarization factor 4/π
(see (4)). However, the spectrum becomes distorted due to the
limited number of samples in the time domain and the limited
bins in the frequency domain. Meanwhile, Σ∆ modulation
tries to simulate the behavior of the sinewave through an NRZ
binary sequence {−A,+A}. In this case, it is important to have
a high oversampling rate corresponding to the ratio between
the sampling rate and the maximum frequency. A major side
effect of using this modulation is the artifacts at very high fre-
quencies, in which a lot of signal energy is wasted. Aside from
the high frequencies, the single-sided amplitude spectrum of
the obtained signal resembles that of the multisine signal.

In figure 8, a comparison between the single-sided amp-
litude spectrum of sign-based and Σ∆-based multifrequency
binary signals is shown. Due to the flatness and stability of the
Σ∆ modulation technique, it was chosen over the sign-based
multifrequency signal. A section of the Σ∆-based multifre-
quency NRZ binary signal in the time domain is depicted in
figure 9. The useful amplitude spectrum of the single-sided
power spectrum of the multifrequency binary signal is shown
in figure 8 in orange, side-by-side with the waste spectrum in
navy blue. Due to its imitation of the multisine signal, the amp-
litude spectrum is spectrally sparse and is the same as that of
the multisine signal |XN( f)|= A√

Nuseful.m
.

2.4. Maximum-length binary sequence

The maximum-length binary sequence (MLS or MLBS)
belongs to the class of PRBS [28]. It is composed of a sequence
of {+A,−A} (see figure 10) whose spectrum is eventually flat
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Figure 9. Excerpt of a multifrequency NRZ binary signal.

Figure 10. Excerpt of an MLBS.

Algorithm 1: 12-bit MLBS generation algorithm

Result: y: Vector of NRZ MLBS of 12-bit (4095 points)
Seq←Random binary vector (0,1) of 12 elements
y←Vector of zeros of 4095 elements
for k← 1 to 4095 do
S← Seq[12]⊕ Seq[6]⊕ Seq[4]⊕ Seq[1] // ⊕ is XOR
operator
Shift Seq to right
Seq[1]← S
y[4096− k]← nrzQuantize(S) // returns -A if S = 0 or
+A if S = 1

end

and can be generated using a linear feedback shift register. A
major constraint is the number of samples, which is restricted
to a 2Nb − 1, where Nb is the resolution of the linear feedback
shift register. Since the selected number of samples is 4095, a
12-bit linear feedback shift register was used for signal gener-
ation, as shown in algorithm 1.

As previously mentioned, the spectrum is flat and is shown
in figure 11. The amplitude of the spectrum is defined as
|XN( f)|= 2A/

√
N, where A is the signal amplitude and N is

the length of the corresponding signal. |XN( f)| is evaluated to
be 0.0156 V in this case.

3. Comparative study of the digitalized excitation
signals

In this section, the aim is to compare wideband signals to sine
stepped frequency sweep as a reference signal, and to compare
wideband signals to each other using relevant key metrics. The

Figure 11. Single-sided spectrum of an MLBS, with useful
spectrum in red.

signals and their parameters described in the previous section
are generated and compared with the help of MATLAB.
The generated signals will be implemented and proofed on
a real microcontroller with limited resources in the next
section.

3.1. Signal duration

The signal duration is directly related to the measurement time
and should be minimized to fulfill the conditions of stabil-
ity and causality. Signals utilizing stepped frequency sweep
must finish at least an integer count Nrepeat of period(s) before
data processing. The total measurement time is, therefore,
defined as Tmeas,sweep = Nrepeat.

∑N
k=1

1/f [k]. The signal dura-
tion of wideband signals, on the other hand, is related to the
frequency bins of interest. These signals are processed using
DFT or its fast alternative FFT. The relationship between the
signal duration/measurement time tmax, number of samples N,
and frequency resolution f res is defined in (6):

fres =
Fs

N
=

1
tmax

. (6)

For all wideband signals, this number N can be arbitrar-
ily chosen, with MLBS imposing 2n−1 measurement points
(n ∈ N). The selected number of samples (4096) allows both
sufficient measurement time for data acquisition for at least 82
logarithmically distributed frequencies, but also compatibility
with the Radix-2 and Radix-4 FFT algorithms [29].

Comparing both signal families shows that for application
in wearable bioimpedance devices, the frequency sweep sig-
nals require 11.33 ms to accomplish a full measurement cycle
with one period according to (6). Wideband signals, on the
other hand, require only 4.09 ms to get an equivalent signal,
with 82 or more useful frequency bins. In table 2, the signal
duration of the different signals is depicted.

3.2. Crest factor and slew rate

The crest factor defines the ratio between the peak of the
signal and its root-mean-square (RMS) value, by the follow-

ing equation: CF=
maxk∈{1,..,N}|x[k]|√

1
N

∑N
k=1 (x[k])

2
. The crest factor provides

information on the signal compactness. Prior to signal gener-
ation in hardware, a normalization process to the voltage level

6
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Table 2. Comparison between the signal duration’s equation, customizability, and calculated signal duration of the selected signals.

Signal family Signal type Signal name Signal duration equation Signal duration

Frequency sweep Sinewave tmax =
∑N

k=1
Nrepeat

f [k] 11.33 ms
Wideband signals Linear chirp Sine tmax =

N
Fs

4.09 ms
NRZ binary

Multisine-based Multisine
NRZ binary

PRBS MLBS tmax =
2n−1
Fs

4.09 ms

Table 3. Crest factor and slew rate for the optimized wideband signals.

Signal family Signal type Signal name Crest factor Slew rate (Vµs−1)

Frequency sweep Sinewave ≈
√
2 0.309

Wideband signals Linear chirp Sine 1.147 0.304
NRZ binary 1.000 >>1.000

Multisine-based Multisine 1.773 0.205
NRZ binary 1.000 >>1.000

PRBS MLBS 1.000 >>1.000

of the system may be required. In this case, a compact signal
will submit a lower normalization factor than a signal with a
high crest factor. Second, for a compacter signal, the slew rate
requirement for the hardware will be less demanding.

Table 3 shows the crest factor of the selected signals. The-
oretically, the crest factor of an NRZ binary signal is 1.0 (i.e.
the maximum and RMS are the same), which is also affirmed
by the simulation results. The crest factor of an undistorted
sinewave is

√
2. Distorted sinewaves can be higher (e.g. tri-

angulation of the signal) or lower (e.g. binarization of the sig-
nal) depending on the distortion factor. This is why the linear
sine chirp and frequency-swept sinewave have a crest factor of
around

√
2.

The multisine is a special case, in which the crest factor
should match the undistorted or distorted sinewaves depend-
ing on the parameters. Currently, no optimization algorithm is
capable of returning a signal optimization with a reasonable
number of iterations, and the issue remains to this day a chal-
lenge [22]. In this case, the crest factor of the multisine was
optimized to 1.77.

For a lower distortion, the slew rate of the target hardware
of both generation and measurement must match or be higher
than the requirements shown in table 3. By definition, the max-
imum value of the differential of the voltage over the time
dV/dt defines this slew rate. The NRZ binary signals require
at least 2A/Fs slew rate in all cases but are rather linked to
the fall/rise time during signal generation. The other signals
are related to the waveform of the signals and are determined
numerically as shown in table 3.

3.3. Frequency distribution and frequency component count

Frequency-swept signals and multisine-based signals allow
the customization of the frequency selection, range, and count.
For multisine-based signals, this freedom is limited, as the
choice of frequencies is linked to the measurement time, itself
restricted by the frequency bins, as discussed in the previous

section. Nonetheless, a logarithmic distribution of the frequen-
cies within the frequency bins is possible, as described in
section 2.2. The linear chirp and MLBS have a lower degree
of freedom in the frequency selection. The linear chirp signals
allow the parameterization of the frequency range, and the dis-
tribution is always linear regardless of the chosen frequency-
time formula. On the other hand, the number of frequency bins
in MLBS is restricted to 2n−1, and it yields an equidistant flat
spectrum. Table 4 shows a summary of the frequency distribu-
tion of the selected signals as well as the obtained frequency
components within the frequency range of interest. Consider-
ing the prerequisites of this study, the single-sided spectrum
analysis of the multisine and multifrequency NRZ binary sig-
nal results in 82 logarithmically distributed frequencies within
the frequency range of interest. The MLBS and linear chirp
operate on 447 linearly distributed frequency bins within the
same range as the 447 frequencies; 404 are proven to be useful,
as detailed in section 3.4.

3.4. Amplitude spectrum

The single-sided spectrum catalyzes the signal into a sum of
elementary cosines. A spectrum with higher amplitudes indic-
ates a better power distribution since the power spectrum dens-
ity is estimated as follows: Sxx ≈ |XN( f)|2 [30]. As discussed
in section 2 and further mentioned in table 5, this amplitude
is directly related to the total number of frequencies, and,
more importantly, the useful frequency components within the
frequency range of interest. Table 5 shows the average amp-
litude peak value within the amplitude spectrum and, if applic-
able, the standard deviation of these peaks, which is negli-
gible if not mentioned. The sine stepped frequency sweep has
a very high amplitude, as only one sinewave is generated at a
time. The multisine and multifrequency binary signals share
an amplitude of 0.04 V (−91.2% compared to the sinewave
frequency sweep). Hence, they outperform all the other wide-
band signals due to their discrete concentrated energy within
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Table 4. Comparison between the frequency distribution and number of useful frequency components of the selected signals.

Signal family Signal type Signal name Frequency distribution Number of useful frequency components

Frequency sweep Sinewave Log 82
Wideband signals Linear chirp Sine Linear 447 (404)

NRZ binary 447
Multisine-based Multisine Log 82

NRZ binary 82
PRBS MLBS Linear 447

Table 5. Comparison between the equations and the value of the amplitude of the useful spectrum of the different signals.

Signal family Signal type Signal name Useful spectrum’s amplitude Spec. amp. (in V)

Frequency sweep Sinewave A 0.500
Wideband signals Linear chirp Sine ≈ A√

Nuseful
0.025 (σ= 1.56 mV)

NRZ binary ≈ 4A√
Nusefulπ

0.030 (σ= 8.54 mV)

Multisine-based Multisine A√
Nusefulm

0.044

NRZ binary ≈ A√
Nusefulm

0.044 (σ= 0.19 mV)

PRBS MLBS 2A√
Nsignal

0.016

the spectrum, as only 82 are considered as useful frequency
components. The multifrequency binary signal exhibits small
oscillations (0.19 mV) compared to the steady multisine one.
The chirp signals have lower amplitude and more oscillations
due to Fresnel ripples, aggravated by harmonics in the linear
signum chirp. Finally, although the MLBS shows a flat spec-
trum, it suffers from very low amplitudes as its energy is dis-
persed throughout the spectrum with a spectrum amplitude of
just 0.016 V.

3.5. Useful spectrum and energy efficiency

Although many frequency and amplitude components can be
found in the spectrum, only a few can then be used for the
impedance spectroscopy-based analysis. These components
are defined using two main conditions: the frequency is in
the frequency range of interest, and the amplitude is high,
preferably matching the peak values in the amplitude spec-
trum defined in section 3.4, or at worst separable from the
signal artifacts and noise. Mathematically, this amplitude can
be defined within an inter-class variance maximization prob-
lem, where a threshold |XN,th| is used to separate the peaks
from the artifacts within an amplitude spectrum. Combining
the condition of the frequency and amplitude, a useful com-
ponent within a spectrum for bioimpedance analysis should
satisfy the equation defined in equation (7):

fbin,useful[k] = ( fbin[k] ∈ [1 kHz,100 kHz])∩ (|XN[k]|> |XN,th|) .
(7)

The threshold value may be defined subjectively, or by
using an algorithm to maximize the variance between the use-
ful signal and signal artifacts, such as the Otsu threshold [31].
An Otsu-based threshold was applied to the (1–100 kHz) part
of the normalized-to-1 spectrum, with a bias toward lower val-
ues for full compatibility with all the signals. In figure 12,
the application of the threshold value to separate the useful
spectrum from the waste on an example multifrequency NRZ

Figure 12. Visualization of the useful spectrum and wasted signal
energy in the case of a multifrequency NRZ binary signal.

signal is shown. The useful spectrum of all the signals is iden-
tified in orange (compared to the waste signal in blue) in the
following figures 3, 5, 7, 8, and 11 using equation (7).

By setting the useful energy threshold and therein the use-
ful spectrum, the energy efficiency can be calculated using
equation (8) for a spectrum X(f ) of N samples:

η =

∑
k;f [k]satisfies equation (7) |X( f [k])|2∑N

k=1 |X( f [k])|2
. (8)

This equation cognates with the energy efficiency in [16]
and power efficiency in [32], and is used as a metric to eval-
uate the energy of the waste signal during signal generation,
compared to the signal energy to be used in impedance spec-
troscopy. In table 6, a comparison between the signals based
on the energy efficiency for the full spectrum and the energy
efficiency within the frequency range of interest (1–100 kHz)
is depicted. The sine-based signals produce less waste energy
than NRZ binary signals, as the latter suffer from energy loss
due to the harmonics. The sine signals compared show that the
sine frequency sweep andmultisine are tailored signals and are
therefore energy-efficient. The linear chirp is second to them,
as Fresnel ripples and a slight energy loss of 1.15% in the total
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Table 6. Comparison of the useful energy spectrum and signal energy efficiency of the selected signals.

Signal family Signal type Signal name
Energy efficiency (full
spectrum) (%)

Energy efficiency (frequency
region of interest) (%)

Frequency sweep Sinewave 100 100
Wideband signals Linear chirp Sine 98.85 99.33

NRZ binary 85.57 100
Multisine-based Multisine 100 100

NRZ binary 31.79 96.35
PRBS MLBS 21.84 100
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Figure 13. Spectrogram of the selected wideband signals.

spectrum and 0.67% in the frequencies of interest are notice-
able. Following a comparison between the binary signals, it is
shown that the linear signum chirp has a 14.53% energy loss
across the spectrum but maintains 100% efficiency in the fre-
quencies of interest. The multifrequency binary signals show
a 31.79% energy efficiency due to the oversampling through
Σ∆ modulation. These losses are minimal in the frequency
range of interest, as the loss is only 3.85%. Finally, the MLBS
has the lowest efficiency as most of the spectrum is outside
the frequency range of interest, but there is no loss in the fre-
quency range of interest. If the MLBS had been driven by a
sampling frequency of 200 kHz or less, it would have suffered
less loss.

3.6. Discussion

The compared wideband signals are 63% faster than
stepped frequency sweep signals and have useful frequency

components, crest factor, and energy efficiency that match the
latter. Their amplitude spectrum is very small and is related
to the number of useful frequency components Ncomponents,
making them lower by a factor of 1/

√
Ncomponents compared

to the frequency sweep. For 82 frequency components and
multisine, being the best of the selected signals, this was eval-
uated to have an amplitude spectrum that is 92% smaller than
that of the sine frequency sweep.

Among the wideband signals, signals with sparse spec-
tra, such as multisine and multifrequency NRZ binary sig-
nals, have better amplitude spectra, making them potential
alternatives for frequency sweep. For the other signals, while
having more frequency components and a linear distribution,
the energy is spread linearly, leaving less energy for the fre-
quencies within the frequency range of interest, and especially
among logarithmically distributed frequencies. In figure 13 we
represent the realized spectrum for several types of excitation
signal and different signal durations as a spectrum of colors

9
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Figure 14. Sampling frequency gain error in function of time for a fluctuating ambient temperature.

in a 2D image, where the navy-blue color represents a low
spectrum amplitude and the dark red color represents a high
spectrum amplitude. For example, the square spc–2 ms in
figure 13(a) corresponds to the realized spectrum for a sig-
nal with a duration of 2 ms in the time domain. The results
for different signal types demonstrate the stability and dis-
cretization of the frequency components of the multisine and
multifrequency NRZ binary in the function of time, in which
the power is concentrated in these particular logarithmically
distributed frequencies while being omnipresent throughout
the whole signal duration. The main problem in the multifre-
quency NRZ binary is the excess of wasted energy signals,
although a low crest factor is observable.

As a partial conclusion, spectrally sparse multifrequency
signals have a better performance concerning temporal stabil-
ity, energy concentration in logarithmic frequencies, and a rel-
atively high amplitude spectrum compared to the other wide-
band signals. While the multifrequency NRZ binary signal is
simpler to implement thanks to its binary nature, the major
concern here is the energy efficiency of the signal due to the
harmonics.

4. Comparative study by implementation on
microcontroller

In order to evaluate the performance of the signals in prac-
tice, the signals have been implemented exemplarily on an
STM32H743Zi. With this comparison, we go deep into the
implementation aspects, comparing the realized signal per-
formance with the theoretical results in section 3. The aim here
is to evaluate the excitation signals, considering implementa-
tion in systems with limited resources. Each signal is gener-
ated using a look-up table, with an offset of 1.5 V to avoid
negative voltages that cannot be generated by the microcon-
troller. The DAC is linked with a timer with a sampling clock
Fs,STM32 = 1MHz. A direct memory access configuration is
used to avoid CPU overheads during data transfer.

The data acquisition is performed using a Picoscope 2204A
(PS) with a sampling rate of Fs,PS = 1.5625 MHz. Due to the
sampling rate mismatch, an STM32-driven trigger is used to
synchronize the start and end of the data acquisition. In this
case, the number of samplesNPS collected must fulfill the con-
dition that the frequency resolution is preserved, as shown in
(9):

fres,STM32 = fres,PS =
Fs,STM32

NSTM32
=
Fs,PS

NPS
. (9)

4.1. Sampling frequency and frequency uncertainty

Despite setting a constant sampling rate for the STM32 board
during the configuration, the experimental sampling frequency
of the STM32 kept changing over time. This uncertainty is not
visible at low frequencies and intensifies in the MHz range.
This could be linked to the clock jitter due to the internal
RC oscillator imperfections of STM32. To monitor this beha-
vior, a sinewave with a specific frequency (10 kHz) was used
and monitored via an oscilloscope, which in turn was checked
against possible mismatches using reference signal generators.
While the temperature of the STM32’s processing unit was not
monitored, its ambient temperature rose from 22.9◦C (at 11:55
AM) to 23.2◦C (at 12:21 PM). In figure 14, it can be seen that
the sampling frequency of the STM32 varied between 1.0008
and 1.0019MHz during operation and matches the ambient
temperature evolution.

As the sampling rate changes, the frequencies and fre-
quency bins change in the process, by a factor of Fs,measured

Fs,theoretical
.

For the remainder of this paper, the sampling frequency of
the measurement is estimated as an inverse problem, where
a linear search algorithm, with optimization function RMS
of the error between the spectrum of the measurement and
the spectrum of the theoretical signal, is performed with
a sweeping sampling frequency rate with an accuracy of
0.1 Hz.

10
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Table 7. Comparison of the average residual and SINAD values.

Residual RMS Linear sine chirp Linear sig. chirp Multisine Multifrequency binary MLBS

Average (mV) 1.06 1.71 0.66 2.00 1.50
Record (mV) 0.84–1.20 0.48–4.18 0.31–1.71 0.92–2.81 0.88–2.74
SINAD est. (dB) 27.41 24.84 31.45 23.51 20.56

Figure 15. Spectrum of residual curves of the selected signals.

Figure 16. Time-domain representation and histogram of the residual of the binary NRZ multifrequency signal.

4.2. Amplitude error: signal quantization and noise
uncertainty

The amplitude of the implemented signal is subtle to
many imperfections compared to the desired signal. These
imperfections, also called distortions, could be due to
hardware or system-related components, such as electronic
noise and quantization errors. Others may stem from external
environmental factors, colloquially referred to as ‘external
noise’. The analysis of the residuals in the time x̃(t) and fre-
quency domain Xresidual( f) provides a general overview of the
nature and value of the errors. When these distortions are com-
bined and compared to the ideal signal, it can be seen that the
NRZ binary signals are more affected by these artifacts than

the analog sine-based signals. In table 7, the RMS of the resid-
ual as well as the estimated SINAD according to equation (10)
is shown:

SINAD= 10.log10

(
|XRMS,signal|2

|XRMS,residual|2

)
, (10)

where |XRMS,signal| is the RMS of the spectrum of the signal
and |XRMS,residual| is the RMS of the noise, both in the fre-
quency range of interest. Here, the residual Xresidual is calcu-
lated according to equation (11):

Xresidual( f) = |Xideal( f)| − |Xmeasured( f)|. (11)

11
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Figure 17. Time-domain representation and histogram of the residual of the multisine signal.

Figure 18. Expected quantization error of the selected signals.

12



Meas. Sci. Technol. 32 (2021) 084011 A Y Kallel et al

It is shown that the multifrequency binary has the highest
error mean at 2 mV owing to the higher spectrum and bin-
ary nature. Altogether, the NRZ binary signals have a lower
SINAD in the range of 20–24 dB within the frequency range
of interest. The linear sine chirp has a higher SINAD of
27.41 dB and a lower residual RMS contribution of 1.06 mV
to the ideal spectrum. Finally, multisine exhibits the highest
SINAD of 31.45 dB and the lowest RMS error of 0.66 mV on
average.

As mentioned earlier, these distortions are the result of
many sources. Although the separation according to the
distortion origin is complex and requires fine equipment, it is
still possible to split them into systematic residuals, in which
the distortion exhibits a specific pattern for a particular sig-
nal status or behavior, and non-systematic residuals, which
include distortions uncorrelated to the signal. The applica-
tion of the Savitzky–Golay filter [33] shows a pattern that
resembles the spectrum of the signal in question for all the
considered signals, presumably of the systematic error. This
spectrum also overlaps with high-frequency oscillations for
the NRZ binary sequences, as shown in figure 15.

For the NRZ binary signals, the main source of system-
atic distortion originates from the switching time errors. For
example, the residual curve of the multifrequency NRZ bin-
ary residual in the time domain in figure 16 (left) shows
recurring impulses that match the amplitude and frequency
of the signal. Unlike the sine-based signals where the voltage
changes at a rate of less than 0.3 Vµs−1, binary signals
change at a constant rate much higher than 1 Vµs−1, and
this sudden voltage change may not be tracked or timed cor-
rectly during the generation, as well as the measurement.
This is also confirmed in figure 16 (right), where the resid-
ual histogram almost follows a normal distribution, except
for small peaks related to quantization uncertainties with val-
ues between 0.5 V and −0.5 V. For this, the residual graph
in the frequency domain is mainly affected by this timing
mismatch, as can be seen in figure 15. Another major prob-
lem with NRZ binary-based signals is the overlapping high-
frequency oscillations. These are due to the high quantiza-
tion noise in the frequency domain. In figure 18, the spectrum
of the expected quantization noise matches the overlap sig-
nal pattern of the residual spectrum of NRZ binary signals in
figure 15.

For the sine-based signals, the comparison of the filtered
spectrum of the residual in figure 15, together with the spec-
trum of sine-based signals (figures 3 and 7) and the spec-
trum of the quantization error in figure 18, shows that the
final spectrum of the residual could be an equal contribu-
tion between quantization noise and time-mismatching error.
For the multisine, for example, and in figure 17 (right), the
graph shows that the quantization affects the histogram of
the residual, which is otherwise normally distributed. How-
ever, in figure 17, just like the binary-based signals, the error
shows up periodically but with a much lower amplitude and
is shaped similarly to white noise. This is why the resid-
ual spectrum is not as affected by these impulses as the

spectrum of the NRZ binary. This means, in practice, that
it is crucial to measure the excitation signal to get feedback
information about the generation and measurement-related
distortions.

5. Conclusions

In this paper, we investigate potential excitation signals for
bioimpedance spectroscopy in wearable devices. Several sig-
nals are compared with each other and with the sine stepped
frequency sweep as a reference using several key metrics,
including signal duration, crest factor, slew rate requirement,
frequency distribution, amplitude spectrum, and energy effi-
ciency. Thereby we go beyond the theoretical aspects to
consider implementation aspects on systems with limited
resources. The results show that wideband signals are 2.76
times faster than frequency sweep signals. Theoretically and
by design, the NRZ binary signals show a very low crest
factor but a high slew rate requirement compared to the sine-
wave. This translates to signal compactness during imple-
mentation, but the higher slew rate requirement demands that
both the generation and the measurement hardware be cap-
able of processing high signal changes. In the spectrum com-
parison, the multisine, being a spectrally sparse signal, con-
centrates the energy into fewer logarithmically distributed
frequency components and therefore has the highest spec-
trum amplitude in wideband signals and is one of the most
energy-efficient signals. Second to the multisine is the mul-
tifrequency NRZ binary signal, which should have match-
ing properties but has an excess of waste energy due to
oversampling.

The signal implementation in a cost-effective embedded
system shows two main shortcomings, which are the time and
frequency mismatch, and the amplitude imperfections. Exper-
iments revealed a maximum error of 1.9% where the sampling
frequency and the frequencies were deviated and accelerated
by this rate. Therefore, it is important to retrieve the correct
sampling rate before data processing or to compensate for this
error before signal generation.

NRZ binary signals exhibit a very high distortion dur-
ing implementation with a SINAD around 20–24 dB. These
problems are related to the limited hardware capability, in
terms of bandwidth, slew rate, and quantization, during sig-
nal generation and eventually measurement capability, caus-
ing recurring spikes. However, they remain easier to imple-
ment when compared to analog signals. Therefore, with a good
signal processing system, they could replace the all-round
multisine, which is otherwise the recommended solution. The
question that remains open for the perspective work is the
degree of generalization of the concrete results on the meas-
urement deviation of impedance spectra. Whereas the meth-
odology remains general, the concrete results and values are
relative to STM32H743Zi. For other microcontrollers, a sim-
ilar investigation needs to be carried out to deliver the corres-
ponding values.
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