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Abstract
The global navigation satellite systems (GNSS) carrier phase measurements form the basis of
high-precision satellite positioning. These measurements are often accompanied by their code
counterparts to enable one to compute single-epoch ambiguity-resolved positioning solutions.
To avoid unwanted code modelling errors, such as code multipath, one may opt for a phase-only
solution and take recourse to carrier phase measurements of two successive epochs. In this
paper we study the ambiguity resolution performance of a dual-epoch phase-only model, upon
which the unknown positioning parameters are assumed to be completely unlinked in time. With
the aid of closed-form analytical results, it is investigated how ambiguity resolution performs
when dealing with high-rate phase data. It is thereby shown that multi-GNSS integration makes
near real-time centimetre-level phase-only positioning possible. Our analytical analysis is
supported by means of numerical results.

Keywords: global navigation satellite systems (GNSS), carrier phase measurements, integer
ambiguity resolution (IAR), ambiguity dilution of precision (ADOP), high-rate data

(Some figures may appear in colour only in the online journal)

1. Introduction

Global navigation satellite systems (GNSS) have been widely
used as an effective means of delivering ubiquitous position-
ing and navigation services. While the pseudo-range (code)
measurements form the basis of GNSS standard positioning,
it is the provision of their carrier phase counterparts that leads
to ultra precise positioning solutions, see e.g. Blewitt (1989),
Remondi (1989), Teunissen (1995), Tiberius and de Jonge
(1995), Jonkman et al (2000), Hauschild et al (2008), Gunther
and Henkel (2012), and Odolinski et al (2015). This is because
the GNSS carrier phase measurements are, approximately, two
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orders ofmagnitudemore precise than the codemeasurements.
The starring role of carrier phase measurements in GNSS pos-
itioning is particularly pronounced when their unknown ambi-
guities are successfully resolved to their integer values using
methods of integer ambiguity resolution (Teunissen 1995, Han
1997, Hassibi and Boyd 1998, Xu et al 2012, Khodabandeh
and Teunissen 2018). Once the ambiguities are resolved, the
carrier phase measurements will act as ultra precise code
measurements, thus making fast and precise positioning and
navigation possible. Integer ambiguity resolution is therefore
considered to be the key to fast and precise GNSS parameter
estimation. Next to GNSS, integer ambiguity resolution has
also found a widespread usage in other interferometric tech-
niques, such as very long baseline interferometry (Hobiger
et al 2009), interferometric synthetic aperture radar (Kampes
and Hanssen 2004), or underwater acoustic carrier phase pos-
itioning (Viegas and Cunha 2007).

In real-time positioning applications where only a single
epoch of GNSS data is utilised, carrier phase measurements
have to be accompanied by code measurements to make the
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underlying model solvable for the to-be-resolved phase ambi-
guities. However, if data of multiple epochs are considered,
one can exploit the change in the satellite geometry and deliver
phase-only solutions (Teunissen 1997a). The main advantage
of phase-only positioning over its phase-and-code version is
that unwanted code modelling errors, such as code multipath,
can be avoided (Remondi and Brown 2000, Codol and Monin
2011). In (ibid), ambiguity resolution was not considered and
phase-only models were only used to compute positioning
solutions. As a consequence, a rather long observation time-
span (∼1 h) is required to obtain centimetre-level solutions. To
shorten the stated time-span, Teunissen et al (1997) introduced
the principle of phase-only ambiguity resolution. Recent con-
tributions have demonstrated that relatively fast phase-only
ambiguity-resolved positioning (∼10–30 s) is indeed feas-
ible (Huisman et al 2010, Wang et al 2018).

To realise fast phase-only positioning, Wang et al (2018)
studied the ambiguity-resolution performance of GPS triple-
frequency for short baselines. It was shown that millimetre-
level positioning can be achieved by using only two success-
ive epochs of phase data. In the aforementioned contributions,
phase-only positioning is based on a rather stringent assump-
tion in that the baseline parameters are assumed to behave
unchanged in time. It is therefore the goal of the present con-
tribution to address whether such assumption is really needed,
particularly, for a multi-GNSS setup where GNSS receivers
track a large number of satellites, collecting large amounts of
phase data on multiple frequencies. To this end, we study the
ambiguity resolution performance of a dual-epoch phase-only
model upon which the unknown baselines are treated as fully
unlinked-in-time parameters. It is investigated how ambiguity
resolution performs when dealing with high-ratemulti-GNSS
data, e.g. with 5 Hz or 1 Hz sampling-rates.

The remainder of this paper is organised as follows.
Section 2 is devoted to the GNSS short-baseline model on
which our analysis is based. Closed-form expressions for
the variance matrices of the model’s parameter solutions are
derived and the prominent role of multi-GNSS integration in
achieving successful ambiguity-resolution is highlighted. In
section 3, we study the phase-only ambiguity resolution per-
formance using the concept of ambiguity dilution of precision
(ADOP) (Teunissen 1997a), thereby quantifying the impact
the measurement sampling-rate has on the model’s ambigu-
ity resolution strength. In section 4, real-world multi-GNSS
data-sets, of different sampling-rates, are analysed to provide
numerical insights into the positioning performance of the
proposed dual-epoch phase-only model. Finally, concluding
remarks are provided in section 5.

We make use of the following notation. The n-dimensional
space of real numbers is denoted by Rn, while the
n-dimensional space of integers is denoted by Zn. The identity
matrix and vector of ones are denoted by I and e, respectively.
E(·) denotes the mathematical expectation operator. The cap-
ital Q is reserved for (co)variance matrices, with Qxy being
the n× p covariance matrix of two random vectors x ∈ Rn and
y ∈ Rp. ThusQxx indicates the variance matrix of x. The trans-
pose of a matrix is shown by the superscript T, i.e. (·)T . To
express closed-form analytical results in a compact manner,

the Kronecker matrix product⊗ is employed (Henderson et al
1983).

2. The dual-epoch kinematic phase-only model

In this section we discuss the GNSS short-baseline model on
which our analysis is based. The precision of the parameter
solutions, obtained by such model, is quantified and the prom-
inent role taken by the multi-GNSS integration in increasing
the model’s ambiguity success-rate is pointed out.

2.1. Double-differenced observation equations

Let ∆ϕi ∈ Rf(m−1) denote the vector of double-differenced
(DD) observed-minus-computed carrier phase measurements
that are collected by two GNSS receivers tracking m com-
mon satellites, on f frequencies, at epoch i (i= 1, 2). The dis-
tance between the two receivers is assumed short enough so
that the DD atmospheric delays can be neglected. With these
in mind, the corresponding linearised observation equations
read (Teunissen 1997b, Khodabandeh and Teunissen 2018)

E(∆ϕi) = [Λ⊗ I]a+ [e⊗Gi]∆bi (1)

where the unknown DD ambiguities a ∈ Zf(m−1) are linked
to the measurements through the f × f diagonal matrix
Λ = diag(λ1, . . . ,λf), with λj being the wavelength of the
phase data on frequency j (j= 1,…, f ). The 3-vector ∆bi
contains the unknown increments of the three-dimensional
baseline bi at epoch i. The corresponding (m− 1)× 3 coef-
ficient matrix is indicated by Gi = DT

mAi and is assumed full-
rank, where the m× 3 matrix Ai contains the receiver-satellite
direction vectors. The m× (m− 1) matrix Dm forms between-
satellite differences. The orbital corrections are assumed
applied to the observed-minus-computed measurements. In
the above equations and in the following, the epoch subscript
i is used to emphasise the time dependency of the quantities.
In the case of the DD ambiguities a however, the subscript i is
omitted. This is because the phase ambiguities are constant in
time if no cycle slips occur. It is also important to remark that
code data are used to compute the approximate values needed
for linearising the observation equations.
Why two epochs: If we stick to only one single epoch of

phase data, the system of equations (1) would then be under-
determined as there are f (m− 1) equations in f (m− 1)+3
unknowns, i.e. f (m− 1) ambiguities plus three baseline com-
ponents. The rank-defect is 3. Assuming that the augmented
matrix [G1,G2] is of full column rank, at least two epochs
of phase data are required to have the model (1) solvable for
the unknowns a and∆bi(i= 1, 2). Under such assumption, the
solvability condition of (1) is given by

m≥ 7. (2)

Thus phase data of a minimum number of seven satellites is
needed. Although phase data of more than two epochs can
also be considered, here we confine our study to a two-epoch
scenario as it has the potential to realise near real-time phase-
only positioning when dealing with high-rate GNSS data, e.g.
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with 5 Hz or 1 Hz sampling-rates. It should be remarked, for a
single-GNSS setup and under unfavourable measurement con-
ditions like urban canyons, that the solvability condition (2)
may not always hold (Montenbruck et al 2017).
Why kinematic: In the literature, the phase-only model (1)

has been studied under the assumption that the baseline para-
meters are static over time, i.e. b1 = b2, see e.g. (Tiberius and
de Jonge 1995, Huisman et al 2010, Wang et al 2018). In
the present contribution, we relax this stringent assumption
and treat the baselines as fully unlinked-in-time parameters.
In other words, no restriction is placed on the temporal beha-
viour of the two baseline vectors bi(i= 1, 2). The strength of
such ‘kinematic’ model is less than that of its ‘static’ coun-
terpart in the sense that it has three more unknowns (i.e. the
baseline vector of the second epoch). Our goal is therefore
to verify whether or not the stated weakness of the kinematic
model (1) is of practical relevance for a multi-GNSS landscape
where positioning users can track a large number of satel-
lites (∼20), collecting large amounts of phase data on multiple
frequencies.

2.2. Precision of the baseline solutions

In order to evaluate the variance matrices of the para-
meter solutions obtained by (1), the stochastic model of the
DD phase measurements ∆ϕi (i= 1, 2) is assumed given
as (Khodabandeh and Teunissen 2015a)

Qϕiϕi = 2σ2
ϕ [I⊗W−1

i ], i= 1,2

Qϕ1ϕ2 = 0 (3)

where Wi = (DT
mCDm)

−1, with the m×m diagonal co-factor
matrix C= diag(w−1

1 , . . . ,w−1
m ) whose positive elements ws

(s= 1,…,m) are the satellite elevation-dependent weights.
The zenith-referenced standard deviation of the undifferenced
phase measurements is denoted by σϕ. The factor ‘2’ in
(3) indicates that the variance of the phase measurements is
doubled by forming between-receiver differences. According
to the second expression of (3), time correlation between the
phase measurements ∆ϕi (i= 1, 2) is assumed to be absent.

We first present the variance matrix of the parameters of
interest, i.e. the baseline parameters, for which we distinguish
the following two cases:

• Ambiguity-float: the case that the DD ambiguities are
unknown;

• Ambiguity-fixed: the case that the DD ambiguities are suc-
cessfully resolved as integers.

Lemma 1 (Lemma.). (Phase-only baseline precision) Let b̂i
and b̌i, respectively, be the least-squares ambiguity-float and
-fixed solutions of the baseline parameters bi as given in (1).
Their respective variance matrices can be given as

Qb̂ib̂i
= Qb̌ib̌i +

2σ2
ϕ

f
G+
i Qρ̂ρ̂G

+T
i , i= 1,2

Qb̌ib̌i =
2σ2

ϕ

f
(GT

iWiGi)
−1, i= 1,2 (4)

where Qρ̂ρ̂ = (
2∑
i=1

WiP⊥
Gi
)−1, with the projector P⊥

Gi
= I−

GiG
+
i . The least-squares inverse of Gi is given by G+

i =
(GT

iWiGi)
−1GT

iWi.

Proof. The proof is given in the appendix.

From the expressions (4), one can infer the precision of the
baseline solutions obtained by the phase-only model (1). Let
us first consider the second expression in which the DD ambi-
guities are assumed to be fixed to their integers. The vari-
ance matrix Qb̌ib̌i is driven by the precision of the phase data
σϕ, the number of frequencies f and the receiver-satellite
geometry through the co-factor matrix (GT

iWiGi)
−1. The lat-

ter is identical to the co-factor of the code-based baseline
positioning (Teunissen 1997a), meaning that Qb̌ib̌i is just a
downscaled version of its code-based counterpart. Consider-
ing that the precision of code-based short-baseline position-
ing is at the metre-level and that the phase data are almost
two orders of magnitude more precise than the code data,
the precision of the phase-only ambiguity-fixed solutions b̌i
(i= 1, 2) is at the millimetre to centimetre level. Achieving
such high-precision solutions relies on the assumption that one
successfully maps the unknown ambiguities a to their correct
integers, thus requiring an application of ambiguity resolution
(Teunissen 1995).

Before applying ambiguity resolution, one should, how-
ever, first investigate whether it is worthwhile to do so as the
phase-only ambiguity-float solutions b̂imay already inherit the
high-precision of their ambiguity-fixed versions b̌i. In the first
expression of (4), the ambiguity-float variance matrix Qb̂ib̂i

is
written as the sum of its ambiguity-fixed counterpart Qb̌ib̌i and
the positive-definite matrix (2σ2

ϕ/f)G
+
i Qρ̂ρ̂G

+T
i . The latter, in

its turn, is driven by the co-factor matrix Qρ̂ρ̂. The inverse of
the co-factor matrix Qρ̂ρ̂ is formed as a ‘weighted sum’ of the
projectors P⊥

Gi
(i= 1, 2). This implies, when G2 ≈ G1, that the

inverse-matrix Q−1
ρ̂ρ̂ is near rank defect (near singular). This is

because the projectors are singular matrices (Teunissen et al
2005). In such cases, the entries of Qρ̂ρ̂ are rather large, indic-
ating that the ambiguity-float solutions b̂i are poorly estimable.
Unfortunately, the approximationG2 ≈ G1 holds true for high-
rate GNSS data as the receiver-satellite geometries change
rather slowly in time. This is due to the high-altitude orbits of
the GNSS satellites. The higher the sampling rate, the closer
the approximation G2 ≈ G1, thereby the poorer the precision
of the solutions b̂i becomes.

To address to what extent the precision of the ambiguity-
float baseline solutions is poorer than their fixed versions,
we use the concept of gain numbers (Teunissen 1997a). The
gain numbers tell us how many times the variance of a func-
tion of the baseline solution b̂i gets smaller after ambiguity-
fixing. Since different functions of the baseline can have dis-
tinct responses to ambiguity resolution, we employ the average
precision gain γ̄ defined as follows

γ̄ =

( |Qb̂ib̂i
|

|Qb̌ib̌i |

)1/3

(5)
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Figure 1. Time-series of the positive scalars
√
α (top) and

√
δ

(middle) as given in (6), together with the corresponding number of
satellites (bottom) for a GPS+Galileo data-set, cf. figure 3. The
black solid lines correspond to the elevation weights ws= 1, while
the grey dashed lines correspond to the elevation-dependent weights
given in (18).

in which | · | denotes the determinant of a matrix. The follow-
ing lemma shows the dependency of γ̄ on the sampling-rate of
the phase measurements.

Lemma 2 (Lemma.). (Average precision gain) Let τ be the
measurement sampling period, i.e. the reciprocal of the
sampling rate. Also let the m× 3 matrix Ȧ contain the time-
derivatives of the entries of (1/2)

∑2
i=1Ai in (1), with W2 ≈

W1 =W. Using the first-order approximation A2 −A1 ≈ τ Ȧ
for small values of τ , the average precision gain of the phase-
only baseline solutions can be approximated by

γ̄ ≈

(
3∏

k=1

[
1+

4
αk τ 2

])1/3

×

(
3∏

k=1

[
1+

αk τ
2

4

])1/3

(
3∏

k=1
[1−βk]

)1/3

≈ 4
αδ τ 2

(6)

with α=

(
3∏

k=1
αk

)1/3

and δ =

(
3∏

k=1
[1−βk]

)1/3

, where the

eigenvalues αk and βk are, respectively, the roots of the char-
acteristic equations

|(ĠTWĠ)−αk (G
TWG)|= 0, k= 1,2,3

|(GTWPĠG)−βk (G
TWG)|= 0, k= 1,2,3

(7)

with G= (1/2)
∑2

i=1Gi, Ġ= DT
mȦ, and the projector PĠ =

Ġ(ĠTWĠ)−1ĠTW.

Proof. The proof is given in appendix.

Thus the average precision again γ̄ is almost inversely pro-
portional to the squared sampling period τ 2 and the positive
scalars α and δ. To get some insight into (6), we present time-
series of

√
α and

√
δ in figure 1. While the scalar

√
α is of the

order of 10−4 Hz, the scalar
√
δ varies between 0.6 to 1. This

implies, for small values of τ , that

√
γ̄ ∝ 1

τ
104 (8)

in which τ is in seconds and the symbol ∝ means ‘is of the
order of’. The square-root gain

√
γ̄ indicates how many times

the standard deviation of the ambiguity-float baseline solu-
tions is roughly larger than its fixed version. Accordingly,
when 1 Hz phase measurements are considered (τ = 1 s),
the precision of the phase-only ambiguity-float solutions b̂i is
expected to be about tens of metres, i.e. 104 times millimetres.
By increasing the sampling period to 10 s (i.e. τ = 10 s), the
stated precision improves to several metres which is still way
poorer than the sub-centimetre precision of the phase-only
fixed solutions b̌i.

2.3. Role of the multi-GNSS integration

That the phase-only model (1) delivers poorly estimable
ambiguity-float baseline solutions may make one inclined to
conclude that the model is not applicable to fast precise posi-
tioning. This would indeed be the case if successful ambiguity
resolution is not realised. The decision whether or not ambi-
guity resolution is successful is determined by the probability
of correct integer estimation, the so-called ambiguity success-
rate (Teunissen 1999). The maximum possible success-rate,
i.e. the integer least-squares (ILS) success-rate, is governed
by the ambiguity variance matrix Qââ. Assuming normally-
distributed phase measurements, the ILS success-rate is given
by the multivariate integral (ibid)

success-rate=
ˆ
S0

1√
|2πQââ|

exp

(
−1

2
||x||2Qâ̂a

)
dx (9)

in which the ILS pull-in region S0 is characterised as

S0 = {x ∈ Rf(m−1)| ||x||2Qâ̂a
≤ ||x− z||2Qâ̂a

, ∀z ∈ Zf(m−1)} (10)

with the notation || · ||2Qâ̂a
= (·)TQ−1

ââ (·). According to (9), one
only needs the ambiguity variance matrix Qââ as input to eval-
uate the ILS success-rate. We therefore present a closed-form
expression of Qââ for the phase-only model (1).

Lemma 3 (Lemma.). (Phase-only ambiguity precision) Let â
be the least-squares solution of the ambiguity parameters a as
given in (1). Then, the ambiguity variance matrix can be given
as

Qââ = σ2
ϕ[Λ

−1P⊥
e Λ−1 ⊗W−1] + 2σ2

ϕ[Λ
−1PeΛ

−1 ⊗Qρ̂ρ̂]

(11)

with W=(1/2)
∑2

i=1Wi and the projectors Pe=(1/f )eeT and
P⊥
e = I−Pe.

Proof. The proof is given in appendix.

As with the float baseline variance matrices (4), the ambi-
guity variance matrix Qââ, in (11), also contains the near
rank defect co-factor matrix Qρ̂ρ̂. Does this indicate that
successful ambiguity resolution is not feasible? To answer
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Table 1. Formal integer least-squares success-rates (%), delivered by the phase-only model (1), as function of the sampling period τ and the
number of visible satellites m for single-frequency (SF) and dual-frequency (DF) scenarios of a GPS+Galileo data-set. The bold values
indicate successful ambiguity resolution.

m= 7 m= 10 m= 15 m= 20
SF/DF SF/DF SF/DF SF/DF

τ = 0.2 s (5 Hz) 0.00/0.94 0.00/97.35 30.52/99.99 95.61/100
τ = 1.0 s (1 Hz) 0.00/16.36 0.52/99.91 83.28/100 99.74/100
τ = 10.0 s (0.1 Hz) 0.00/88.95 37.80/99.99 99.85/100 100/100
τ = 30.0 s (0.03 Hz) 0.03/99.26 84.86/100 99.99/100 100/100
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Figure 2. ADOPs corresponding to the phase-and-code RTK model (black lines), and of the phase-only kinematic (grey solid lines) and
static (grey dashed lines) models as functions of the number of satellites m for different sampling periods τ .

this question, we use the Ps-LAMBDA software (Verhagen
et al 2013) to numerically evaluate the multivariate integ-
ral (9) for a GPS-plus-Galileo scenario. The corresponding
ILS success-rates are presented in table 1. The results are
shown for different sampling periods τ and numbers of satel-
lites m. The single- and dual-frequency cases refer to the
L1(E1) and L1/L5(E1/E5a) signal frequencies, respectively.

When a minimum number of satellites (m= 7) is considered,
the single-frequency success-rates are almost zero, while the
dual-frequency success-rates can be larger than 99% only for
the low-rate scenario of τ = 30 s. Upon increasing the num-
ber of tracked satellites tom= 20 however, the dual-frequency
success-rates can become almost 100% for even high-rate
scenarios of τ = 0.2 and 1 s. This highlights the important
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UWA0

CUT0

~ 8km

Figure 3. Baseline CUT0–UWA0 located in Perth, Australia: [Left]
UWA0 station; [Middle] baseline configuration (Map data @ 2020
Google); [Right] CUT0 station.

role played by the number of satellites, and therefore by the
multi-GNSS integration, in delivering successful ambiguity-
resolved solutions using the phase-only model (1). This notion
will be made precise in the following section.

3. ADOP-analysis

So far we have learned that an increase in the number of
tracked satellites can lead to almost 100% ambiguity success-
rate for the dual-epoch phase-only model (1). Interestingly,
this even holds true for high-rate phase data. In this section
we further study the ambiguity resolution strength of (1) and
provide explicit links between the model’s ambiguity resolu-
tion performance and the measurement sampling rate. To this
end, we make use of the ADOP. The ADOP is defined as
(Teunissen 1997a)

ADOP=
√
|Qââ|

1
f(m−1) (cycle). (12)

From the ADOP, one can infer an upper bound for the boot-
strapped ambiguity success-rate (Teunissen 2000). The smal-
ler the ADOP, the higher the upper bound of the success-rate
becomes. For ADOP smaller than 0.14 cycles, the stated upper
bound remains always higher than 99%.

3.1. Single-epoch RTK ADOP as reference

For the sake of comparison, we take the phase-and-codemodel
of single-epoch real-time kinematic (RTK) as reference to ana-
lyse the ADOP of the phase-only short-baseline model (1).
The corresponding observation equations follow from (1) by
sticking to the first epoch i= 1 and including the DD observed-
minus-computed code measurements ∆p1 ∈ Rf(m−1), that is

{
E(∆ϕ1) = [Λ⊗ I]a+ [e⊗G1]∆b1
E(∆p1) = +[e⊗G1]∆b1

. (13)

Compare (1) with (13). With the single-epoch model (13), an
ambiguity-float baseline solution can be obtained through the
second set of the equations, i.e. the code observation equations.

The phase-and-code RTK model (13) has been widely used
in the literature and its ambiguity resolution performance has
been studied for several multi-GNSS scenarios (Odolinski
et al 2015, Brack 2017, Paziewski et al 2018). It is therefore
important to address how much our phase-only ADOP differs
from its rather well-studied RTK counterpart.

Let the positive scalar ε be the phase-to-code variance ratio.
The variance matrix of the DD code measurements ∆p1 fol-
lows then by dividing the entries of Qϕ1ϕ1 , in (3), by ε. The
ADOP of the RTK model (13) can be expressed as (Odijk and
Teunissen 2008)

ADOPRTK =
√
2wo

σϕ

λ̄
(1+

1
ϵ
)

3
2f(m−1) (14)

with λ̄=
∏f

j=1λ
1
f

j and wo =
(∑m

s=1 ws∏m
s=1 ws

) 1
2(m−1)

. To provide

insight into (14), let us first make some approximation. The
term

√
2wo is bounded from above by 2 for equal elevation-

dependent weights ws= 1 (s= 1,…,m). The precision of cur-
rent GNSS phase data is also about 1% of their wavelength.
Thus (σϕ/λ̄)≈ 0.01. Since the code data are almost two
orders of magnitude less precise than the phase data (i.e.
ε≈ 10−4), the term (1+ 1/ε) is about 104. We therefore arrive
at the following approximation

ADOPRTK ≈ 0.02× 100
3

f(m−1) . (15)

When seven satellites (m= 7) are tracked, the dual-frequency
RTK ADOP is about 0.02× 100

1
4 ≈ 0.06 cycles which is way

smaller than 0.14 cycles. This shows, in the absence of code
multipath, that single-GNSS, single-epoch ambiguity resol-
ution is possible with the dual-frequency RTK model (13).
By switching to the single-frequency case however, the RTK
ADOP is about 0.02× 100

1
2 ≈ 0.20 cycles, when m= 7. The

single-frequency ADOP reduces to about 0.06 cycles if the
number of satellites increases to m= 13. That is why one has
to use multi-GNSS data to achieve successful single-epoch
ambiguity resolution with the single-frequency RTK model
(Odolinski et al 2015).

3.2. Dual-epoch phase-only ADOP compared

We now compare the ADOP corresponding to the phase-only
model (1) with that of the RTKmodel (13). The following two
phase-only cases are considered:

• Kinematic: the case that the unknown baseline vectors bi
(i= 1, 2) are assumed fully unlinked in time.

• Static: the case that the unknown baseline vector is assumed
constant in time, i.e. b1 = b2;

Lemma 4 (Lemma.). (Phase-only ADOP compared) Let
ADOPKIN and ADOPSTA be the ADOPs corresponding to the
kinematic and static phase-only models, respectively. These
ADOPs can be linked to ADOPRTK in (14) as follows

6
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Table 2. Information on the GNSS data-sets of the short baseline CUT0–UWA0 as used in the experiment. GPST means ‘GPS time’.

Data (carrier frequencies) Date Time σϕ

10 s data Galileo(E1/E5a), GPS(L1/L5) 07/Dec/2020 05:40–15:40 GPST 2 mm
1 Hz data Galileo(E1/E5a), GPS(L1/L5) 07/Dec/2020 05:40–07:20 GPST 2 mm
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Figure 4. (10 s data-set): East-North position scatter and corresponding Up time-series. At the bottom are shown the ADOP (magenta lines)
and number of tracked satellites (black lines) over time. The empirical success-rates, from left to right, are 69.3%, 92.8% and 99.9%,
respectively.

ADOPKIN

ADOPRTK
≈ 1√

2
(ϵ̃ γ̄)

3
2f(m−1)

ADOPSTA

ADOPRTK
≈ 1√

2

(
3∏

k=1

ϵ̃

[
1+

4
αk τ 2

]) 1
2f(m−1)

ADOPKIN

ADOPSTA
≈ (

1
δ
)

3
2f(m−1) (16)

with ϵ̃= ϵ/(1+ ϵ).

Proof. The proof is given in appendix.

As the first expression of (16) shows, the ADOP and the
baseline’s average precision gain (5) are closely intertwined.
The smaller the average precision gain γ̄, the smaller the
ADOP becomes (Teunissen 1997a). Also note the presence of
the factor 1/

√
2 in the first two expressions. The factor indic-

ates that the use of two epochs of phase data ∆ϕi (i= 1, 2),
in the phase-only model (1), can decrease the corresponding
ADOP. We now focus our attention on the second expression,
i.e. the ADOP of the static phase-only model. With αk being
of the order of 10−8 Hz2 (figure 1), the second expression can
be further approximated for small values of τ as

ADOPSTA

ADOPRTK ≈ 1√
2

(
2
τ

√
ϵ̃

α

) 3
f(m−1)

. (17)

With the approximation
√
ϵ̃/α≈ 100, the above ADOP-ratio

is about 10 for the single-frequency case, with a minimum
number of seven satellites, when τ = 1 s. This ratio reduces

to about 2.7 for the dual-frequency case and can be further
decreased to only 1.1 when the number of satellite increases
to m= 20.

The last expression of (16) enables us to quantify the extent
to which the ADOP-performance of the phase-only model (1)
improves by switching from kinematic to static mode. Recall,
fromfigure 1, that the scalar

√
δ varies between 0.6 and 1. Thus

the last expression approaches its maximum value 1, the larger
the numbers of frequencies f and satellites m. Figure 2 shows
ADOPs corresponding to models (1) and (13) as functions of
the number of satellites m for different sampling periods τ .
For both the single- and dual-frequency cases, the gap between
the ADOPs of the phase-only kinematic and static models gets
smaller whenmore than eight satellites are tracked. The phase-
only ADOPs approach their single-epoch RTK versions, the
larger the number of satellites. For the low-rate cases (i.e. 10
and 30 s cases), the dual-frequency phase-only ADOPs gets
even smaller than their RTK versions when over 15 satellites
are tracked. As with the success-rate results in table 1, our
ADOP analysis highlights the capability of the dual-epoch
phase-only model (1) for delivering high-precision ambiguity-
resolved positioning solutions.

4. Results and discussions

To provide numerical insights into the positioning per-
formance of the dual-epoch phase-only model (1), GPS-
plus-Galileo data-sets of a short-baseline, located in Perth,
Australia, are analysed. The baseline configuration is shown
in figure 3. The underlying carrier signals considered are on
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Figure 5. (1 s data-set): East-North position scatter and corresponding Up time-series. At the bottom are shown the ADOP (magenta lines)
and number of tracked satellites (black lines) over time. The empirical success-rates, from left to right, are 14.7%, 48.5% and 100%,
respectively.
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Figure 6. Estimated values of the square-root precision gain
√
γ̄

(cf. (5)) for the 1 Hz (top) and 10 s (middle) data-sets, along with
the corresponding ratio (bottom).

L1(E1) and L5(E5a) frequencies. Further information about
the GNSS data-sets are provided in table 2. As shown in
the table, we consider two data-sets of different sampling
rates, one with the sampling period of τ = 10 s and the other
with τ = 1 s. In both cases, the zenith-referenced standard-
deviation of the undifferenced phase measurements is set to be
σϕ = 2 mm (cf. equation (3)). To form the satellite elevation-
dependent weights ws in (3), a sinusoidal elevation-weighting
strategy is applied as

ws = sin2(θs), s= 1, . . . ,m (18)

where θs (s= 1,…,m) are the elevation angles of the satellites
commonly tracked by the two receivers.

In figure 4 we show the positioning errors correspond-
ing to the 10 s data-set. The ambiguity-float, correctly-fixed
and wrongly-fixed baseline solutions are depicted by grey,
green and red dots, respectively. When looking from left to
right of the figure, it can be observed how an increase in the

number of frequencies and satellites reduces the number of
wrongly-fixed solutions. It should be remarked, for the dual-
frequency Galileo case (left), that the solvability condition (2)
does not always hold. This is because, in contrast to GPS, the
Galileo constellation is not yet fully deployed. We therefore
only consider the time-period in whichm≥ 7. Integrating GPS
data, but in a single-frequency mode (middle), the empirical
success-rate increases from 69.3% to 92.8%. When the multi-
GNSS phase data of the second frequency L5 (E5a) are also
used (right), the stated success rate is over 99.9%.

Let us now consider the phase-only positioning perform-
ance for the 1 Hz data-set. The corresponding results are
shown in figure 5. As predicted by the formal results in table 1,
we observe a considerable drop in the ambiguity success-rate
upon decreasing the sampling period from τ = 10 s to τ = 1 s.
Only 14.7% of the dual-frequency Galileo solutions (left) are
correctly fixed. This number increases to 48.5% for the single-
frequency GPS-Galileo case. In case of the dual-frequency
multi-GNSS phase data however, all the solutions are correctly
fixed, leading to cm-level positioning solutions. This is expec-
ted as the corresponding ADOP is well below 0.14 cycles.

To conclude this section, we verify the impact the choice
of the sampling period τ has on the baseline precision gain.
A comparison between the two figures 4 and 5 (right-panels)
reveals that the dispersion of the ambiguity-float solutions gets
considerably larger by decreasing the sampling period from
τ = 10 s to τ = 1 s. The dispersion of the correctly-fixed solu-
tion remains almost unchanged. Using the positioning errors
in the East, North and Up directions, we estimate the float and
fixed baseline variance matrices Qb̂ib̂i

and Qb̌ib̌i for about 500
samples to numerically evaluate the average precision gain γ̄
in (5). The corresponding square-root values are presented in
figure 6. As predicted by the formal result (8), the square-root
gain

√
γ̄ is of the orders of 104 and 103 for the 10 s (τ = 10 s)

and 1 Hz (τ = 1 s) sampling rates, respectively. As illustrated
in the bottom-panel of the figure, the corresponding ratio of
the two stated square-root gains fluctuates around 10 which
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is identical to the ratio of their underlying sampling-rates (i.e.
1 Hz over 0.1 Hz).

5. Concluding remarks and outlook

In this contribution we studied the positioning performance
of the dual-epoch phase-only model (1). Closed-form expres-
sions for the variance matrices of the corresponding parameter
solutions were derived and the extent to which the baseline
precision can be improved by successful ambiguity solution
was quantified. In case of 1HzGNSS phasemeasurements, the
ambiguity-float baseline precision is about tens of metres. The
corresponding standard deviation is inversely proportional to
the measurements’ sampling rate (cf. (8)). Thus by decreas-
ing the sampling rate to 0.1 Hz (10 s), the stated precision
improves to several metres which is still way poorer than the
sub-centimetre precision obtained by its fixed counterpart.

In the proposed phase-only model, the unknown baselines
of the two involved epochs are treated as fully unlinked-in-
time parameters. Such ‘kinematic’ model is therefore weaker
than that of its ‘static’ counterpart in which the baseline is
assumed to behave constant in time. It was, both analytically
and numerically, demonstrated that such model’s weakness
is not of practical relevance for a multi-GNSS landscape (cf
figure 2). A modest increase in the number of tracked satel-
lites, that can be brought by a multi-GNSS integration, makes
the ambiguity-resolution performance of the kinematic phase-
only model almost the same as that of its static version. With
the use of multi-GNSS high-rate phase data of two success-
ive epochs, one can therefore deliver near real-time cm-level
ambiguity-resolved positioning solutions (figure 5).

With the proven positioning capability of model (1), it
is foreseen that the applicability of phase-only positioning
will be extended to observable carrier phase signals that are
broadcast by low earth orbit satellite communication sys-
tems (Khalife et al 2020).

In this study, attention was focused on the precision of the
phase-onlymodel’s parameter solutions. A study on the testing
procedures with which one can ensure the model’s integrity
against potential modelling errors, such as phase cycle slips
(Khodabandeh and Teunissen 2015b, Zaminpardaz and Teun-
issen 2019), is the topic of future works.
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Appendix A.

Proof of Lemmas (1) and (3). With the stochastic model (3),
the least-squares normal matrix of (1) follows as

N=

[
Naa Nab
NTab Nbb

]
(A.1)

with

Naa = 1
2σ2

ϕ

Λ2 ⊗ (W1 +W2)

Nab = 1
2σ2

ϕ

2∑
i=1

uTi ⊗Λe⊗WiGi

Nbb = f
2σ2

ϕ

2∑
i=1

uiuTi ⊗GT
iWiGi

(A.2)

where u1 = [1,0]T and u2 = [0,1]T. The ambiguity variance
matrix (11) follows from the inversion of the reduced normal
matrix

Q−1
ââ = Naa−NabN

−1
bb N

T
ab

=
1
σ2
ϕ

{
ΛP⊥

e Λ⊗W+
1
2
ΛPeΛ⊗

2∑
i=1

WiP⊥
Gi

}
, (A.3)

as (W1 +W2) = 2W. The fixed baseline variance matrix in (4)
is directly obtained by the inversion of Nbb, as the ambiguities
(and therefore both Naa and Nab) are absent for the fixed case.
Thus (b̌= [b̌T1 , b̌

T
2 ]
T)

Qb̌b̌ = N−1
bb

=
2σ2

ϕ

f

2∑
i=1

uiuTi ⊗ (GT
iWiGi)

−1.
(A.4)

Finally, the float baseline variance matrix in (4) is obtained
from the following matrix-inversion identity (b̂= [b̂T1 , b̂

T
2 ]
T)

Qb̂b̂ = N−1
bb +N−1

bb N
T
abQââNabN

−1
bb . (A.5)

Proof of Lemma (2). SupposeW2 ≈W1 =W. From (A.2), the
inverse of the float and fixed baseline variance matrices follow
as

Q−1
b̂b̂

=
f

4σ2
ϕ

[
+GT

1WG1, −GT
1WG2

−GT
2WG1, +GT

2WG2

]
Q−1
b̌b̌

=
f

2σ2
ϕ

[
+GT

1WG1, 0
0, +GT

2WG2

]
. (A.6)

Pre- and post-multiplying the above matrices by

L=

[
I, I
−I, I

]
, (A.7)

and its transpose gives
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LQ−1
b̂b̂
LT =

f

4σ2
ϕ

[
GT

12WG12, 2GT
12WG

2GTWG12, 4GTWG

]

LQ−1
b̌b̌
LT =

f

2σ2
ϕ

[ ∑2
i=1G

T
iWGi, GT

2WG2 −GT
1WG1

GT
2WG2 −GT

1WG1,
∑2

i=1G
T
iWGi

]
(A.8)

with 2G= (G1 +G2) and G12 = G2 −G1. Substitution of∑2
i=1G

T
iWGi = 2GTWG+(1/2)GT

12WG12, G12 ≈ τ Ġ and
GT

2WG2 −GT
1WG1 ≈ τ(ĠTWG+GTWĠ) into (A.8), together

with an application of the determinant factorization rule (Koch
1999), gives

|Qb̂b̂|
|Qb̌b̌|

=
|LQ−1

b̌b̌
LT|

|LQ−1
b̂b̂
LT|

=
|GTWG+(τ/2)2ĠTWĠ|

|(τ/2)2ĠTWĠ|

× |GTWG+(τ/2)2ĠTWĠ|
|GTWG−GTWPĠG|

× |I− (τ/2)2X−1Y X−1Y| (A.9)

with X= GTWG+(τ/2)2ĠTWĠ and Y= (ĠTWG+GTWĠ).
From the definition of the generalized eigenvalues (Teunissen
1997a), as given in (7), follows that

|GTWG+(τ/2)2ĠTWĠ|
|(τ/2)2ĠWĠ|

=
3∏

k=1

[
1+

(2/τ)2

αk

]

|GTWG+(τ/2)2ĠTWĠ|
|GTWG−GTWPĠG|

=

3∏
k=1

[1+(τ/2)2αk]

3∏
k=1

[1−βk]

. (A.10)

In case of GNSS, the entries of X−1Y are of the order of
10−4, meaning that the last term in (A.9) is almost equal to
1. For small values of τ , we have |Qb̂b̂|/|Qb̌b̌| ≈ |Qb̂ib̂i

|/|Qb̌ib̌i |.
Thus the first expression of (6) follows by substituting (A.10)
into (A.9), while the second expression follows by neglect-
ing the presence of quantities compared to the terms (1/αk)
(k= 1, 2, 3).

Proof of Lemma (4). The proof follows from the determinant
rule (Odijk and Teunissen 2008):

|Qââ|= |N−1
aa |

|Qb̂b̂|
|Qb̌b̌|

, (A.11)

together with (A.9) and (A.10), and ADOP-results in
Teunissen (1997a).
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