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Abstract 

 
In the last decades cloud computing has been the focus of a lot of research in both academic 

and industrial fields, however, implementation-related issues have been developed and have 

received more attention than performance analysis which is an important aspect of cloud 

computing and it is of crucial interest for both cloud providers and cloud users. Successful 

development of cloud computing paradigm necessitates accurate performance evaluation of 

cloud data centers. Because of the nature of cloud centers and the diversity of user requests, an 

exact modeling of cloud centers is not practicable; in this work we report an approximate 

analytical model based on an approximate Markov chain model for performance evaluation of a 

cloud computing center. Due to the nature of the cloud environment, we considered, based on 

queuing theory, a MMPP task arrivals, a general service time for requests as well as large 

number of physical servers and a finite capacity. This makes our model more flexible in terms 

of scalability and diversity of service time. We used this model in order to evaluate the 

performance analysis of cloud server farms and we solved it to obtain accurate estimation of the 

complete probability distribution of the request response time and other important performance 

indicators such as: the Mean number of Tasks in the System, the distribution of Waiting Time, 

the Probability of Immediate Service, the Blocking Probability and Buffer Size… 

Keywords:   Cloud computing, performance analysis, waiting and response times, queuing theory, 

embedded Markov chain, MMPP processes. 

 

1 Introduction 

 
In 1969, Leonard Kleinrock said: “As of now, computer networks are still in their infancy, but as 

they grow up and become sophisticated, we will probably see the spread of ‘computer utilities’ 

which, like present electric and telephone utilities, will service individual homes and offices 

across the country” [1]. Innovations are necessary to ride the inevitable tide of change. Most of 

enterprises are striving to reduce their computing cost through the means of virtualization. This 

demand of reducing the computing cost has led to the innovation of Cloud Computing.  
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Cloud computing is a technology that uses the internet and central remote servers to maintain data 

and applications. This technology allows consumers and businesses to use applications without 

installation and access their personal files at any computer with internet access. It allows for much 

more efficient computing by centralizing storage, memory, processing and bandwidth. 

 

The analogy of cloud computing is, “If you need milk, would you buy a cow?” All the users or 

consumers need is to get the benefits of using the software or hardware of the computer like 

sending emails etc. Just to get this benefit (milk) why should a consumer buy a (cow) software 

and/or hardware? [2]. 

 

There is no single definition for cloud computing. The US National Institute of Standards and 

Technology (NIST) defines cloud computing as “a model for user convenience, on-demand 

network access contributes the computing resources (e.g. networks, storage, applications, servers, 

and services) that can be rapidly implemented with minimal management effort or service 

provider interference” [3].  We can also define the cloud, or a "computing on demand" as a "new" 

computer model which provides IT services on-demand, affordable and accessible from anywhere 

at any time and by any user. Cloud Computing offers better computing through improved 

utilization and reduced administration and infrastructure costs.  

 

Cloud Computing has become one of the most talked about technologies in recent times and has 

got lots of attention from media as well as analysts because of the opportunities it is offering. 

Cloud Computing encompasses different types of services. The cloud has a service-oriented 

architecture, and there are three classes of technology capabilities that are being offered as a 

service: Infrastructure -as-a -Service (IaaS), where equipment such as hardware, storage, servers 

and network components are accessible via the Internet, the platform -as-a -Service (PaaS), which 

is a central component of the Cloud: the PaaS is responsible for developing applications for the 

cloud. It includes hardware with operating systems, virtualized servers, etc; and finally the 

Software-as- a-Service (SaaS) (resources software), which includes applications and other hosted 

services [4].  

 

Due to benefits offered by Cloud computing, Quality of Service (QoS) is a broad topic in this 

technology and is most often referred as the mechanisms in place to guarantee a certain level of 

performance and availability of a service [5]. QoS includes availability, throughput, reliability, 

security, and many other parameters, but also performance indicators such as response time, task 

blocking probability, probability of immediate service, and mean number of tasks in the system 

[6]. To model networks and estimate its QoS parameters, the queuing theory models are classic 

and powerful tools [7]. 

 

In this paper, and in order to analyze QoS in cloud computing, we model a cloud center as a 

MMPP/G/m/m+r queuing system which indicates that the arrival process is a Markov Modulated 

Poisson Process (MMPP), while task service times are independent and identically distributed 

random variables that follow a general distribution. The system under consideration contains m 

servers which render service in a first in first out (FIFO) manner. Because of the nature of the 

cloud environment, our mathematical assumptions make the proposed model more flexible in 

terms of conformance with reality, scalability and diversity of service time. Due to the 

introduction of the finite capacity, the system may experience blocking of task requests. In other 

words, the necessary assumptions that are required for a true performance model of a center of 

cloud computing are integrated. 

 

We used this model in order to evaluate the performance analysis of cloud server farms in order to 

get the complete probability distribution of the request response time and other important 

performance indicators such as: the mean number of tasks in the system, the distribution of 

waiting time, the probability of immediate service, the blocking probability and buffer size. 
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The remainder of the paper is organized as follows: In section 2 we give a brief overview of 

related work on cloud performance evaluation and performance characterization of queuing 

systems. Section 3 discusses our analytical model in details. In Section 4, we solve our model      

in order to obtain analytically desired performance metrics. Our findings are summarized in 

Section 5. 

 

2 Related Work 

 
Cloud computing is the subject of several researches, but only few are the works that are 

interested in QoS problems in this technology, and rigorous analytical approach has been adopted 

by only a handful among them. 

 

Xiong et al. [8] suggest a queuing network based model for analyzing the working level and 

throughput of cloud resources, and Laplace transform is used to determine the response time 

distribution with particular reference to resource utilization in a cloud. 

 

Yang et al. [9] modeled the cloud center as a M/M/m/m+r queuing system from which the 

distribution of response time was determined. Inter-arrival and service times were both assumed 

to be exponentially distributed, and the system had a finite buffer of size m+r. The response time 

was decomposed into three independent periods: waiting period, service period, and execution 

period. 

 

A large queuing system (number of servers is large, e.g., more than 100) that is assumed to have 

Poisson arrival process and generally distributed service time can be a proper model for 

performance evaluation of a cloud center. However analyzing queuing system with generally 

distributed service time is not an easy task.  

 

Theoretical analyses have mostly relied on extensive research in performance evaluation of 

M/G/m queuing systems, as outlined in [10-15]. As solutions for mean response time and queue 

length in M/G/m systems cannot be obtained in closed form, suitable approximations were 

sought.  

 

However, most of the studies using M/G/m queuing system provide reasonably accurate 

estimations of the performances only when number of servers is comparatively small, (say, less 

than ten or so), but fail for large number of servers [16-19]. 

 

An approximate solution for steady-state queue length distribution in a M/G/m system with finite 

waiting space was described in [20].  

 

A similar approach in the context of M/G/m queues, but extended so as to approximate the 

blocking probability and, thus, to determine the smallest buffer capacity such that the rate of lost 

tasks remains under predefined level, was described in [21]. An interesting finding is that the 

optimal buffer size depends on the order of convexity for the service time; the higher this order is, 

the larger the buffer size should be. 

 

An approximation for the average queuing delay in a M/G/m/m+r queue, based on the 

relationship of joint distribution of remaining service time to the equilibrium service distribution, 

was proposed in [13].  

 

Recently Khazaei et al. [22] modeled the cloud center as a M/G/m/m+r queuing system with 

single task arrivals and a task buffer of finite capacity. They evaluated its performance using a 

combination of a transform-based analytical model and an approximate Markov chain model, 
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which allows them to obtain a complete probability distribution of response time and number of 

tasks in the system. They also discussed the probability of immediate service (i.e., no waiting in 

the input buffer) and blocking probability, and determine the size of the buffer needed for the 

blocking probability to remain below a predefined value. Analytical results are validated through 

discrete-event simulation. 

 

However, in cloud computing and because of the diversity of cloud users, analysis in the case 

where inter-arrival is not exponential is a more relevant model, but its analysis is more complex. 

In [23] authors developed and employed a cloud computing model for allocation of resources to 

the jobs that enter into the cloud by using queuing models. They considered that arrival of jobs 

follows non-homogeneous Poisson process; the service time is assumed to be exponential. They 

studied the transient analysis of the model by using various performance measures such as Mean 

number of job requests, Utilization, Throughput and Mean Delay.  

 

In this work we report an approximate analytical model based on an approximate Markov chain 

model for performance evaluation of a cloud computing center. Due to the nature of the cloud 

environment, especially the nature of arrivals, we consider, based on queuing theory, a MMPP 

task arrivals which is more realistic in modeling networks, a general service time for requests as 

well as large number of physical servers and a finite capacity. This makes our model more 

flexible in term of depiction of cloud computing reality. 

 

3 Proposed Analytical Model 

 
3.1 Arrivals and Service Time in a MMPP/G/m/m+r Queuing System 

 
Cloud computing technology is designed to support a wide range of users. One major feature is 

that the arrivals are usually highly bursty, and there is usually a correlation between arrivals. 

Thus, the traditional Poisson traffic arrival model cannot be applied because the presence of 

correlation between arrivals violates the independence assumption associated with the Poisson 

processes. Markov modulated Poisson Process (MMPP), that is a subclass of the doubly 

stochastic Poisson processes, can be used to model time-varying arrival rates and important 

correlations between inter-arrival times [24]. Despite these abilities MMPP processes are still 

tractable by analytical methods [25]. Hence the opportunities using of MMPP processes for the 

modeling of arrivals in cloud computing is considered in this paper. 

 

In MMPP model, the arrivals follow a Poisson process with an arrival rate [ ]( )J tλ  where ( )J t  

is an irreducible Markov process with finite states. In other words, the intensity of the Poisson 

process depends only of the Markov process state. When the Markov chain is in state i the arrival 

rate is iλ [26]. 

 

In general, a m-state MMPP (MMPP-m) process is parameterized by the infinitesimal generator 

Q of the Markov process and the m Poisson arrival rates: 
1 2,, ...

m
λ λ λ , with: 

 

1 1

1

1

m m

i ij

j

m m

Q where

σ σ

σ σ

σ σ
=

− 
 = = 
 − 

∑
K

M O M
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ij

i

σ

σ
 represents the rate of the transition between the states i and j for the Markov process. 

The steady-state probability distribution π can be gained by the solution of the linear equation 

0t
Qπ =  when the additional normalization condition 

1

( ) 1
m

i

iπ
=

=∑  is imposed. 

In this work, we model a center of cloud computing using MMPP G m m r+  queuing system 

in which the time of arrival follows a MMPP process, service time generally distributed with a 

mean value µ , the system contains m servers and had a finite capacity of size m + r ( buffer size 

is r).  

 

We can analyze this queue by exploiting the embedded Markov chain technique discussed in the 

next.  

The task arrival in the system follows a MMPP process, the distribution function of the inter-

arrival time A is given by: ( ) [ ]A x p A x= < , its density function is denoted by ( )a x and its 

Laplace transform is:    

 

( ) ( )
0

sxA s e a x dx
∞

∗ −= ∫  

 

The service time of tasks B is identically and independently distributed according to a general 

distribution with an average service time
1

b
µ

= , its distribution function is given 

by ( ) [ ]B x p B x= < , its density function is denoted by: ( )b x and the Laplace transform of 

the service time is  

 

( ) ( )
0

sxB s e b x dx
∞

∗ −= ∫ . 

 

Residual task service time is the time from a random point in task execution until task completion. 

We will denote it as B+. This time is necessary for our model since it represents time distribution 

between a MMPP task arrival and departure of the task which was in service when MMPP task 

arrival occurred. For a Poisson process it can be shown that the probability distribution of residual 

and elapsed service times have the same probability distribution (where elapsed service time B- is 

the time between start of the task execution and next arrival of task request) [27]. The probability 

distribution of Laplace transform of residual and elapsed task service times is calculated in [27] 

as:  

( ) ( )
( )1 B s

B s B s
sb

∗

∗ ∗

+ −

−
= = . 

 

3.2 Embedded Markov Chain 

 
MMPP/G/m/m+r queuing system may be considered as a non-Markov process which can be 

analyzed by applying the embedded Markov chain technique which requires selection of Markov 

points in which the state of the system is observed. Therefore we model the number of the tasks in 

the system (both in service and queued) at the moments immediately before the task request 

arrival. This Markov chain is ergodic because it is irreducible (that is to say all states 
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communicate with each other) and has a finite number of states, so the chain is recurrent non-nil, 

hence it is ergodic; thus, this chain admits a steady state probability. To get the latter we need to 

calculate the departure probabilities in the system:  

 

,,
x y z k

p p and p . 

 

The arrival times of tasks are selected as points of Markov Fig. 1. Note that the number of 

departures may be anywhere between 0 and ∞. When the system is in the steady state, there will 

be on the average a single departure between every two successive arrivals. 

 

Let An and An+1 be the moments of nth and (n+1)th arrivals to the system respectively, while qn 

and qn+1 indicate the number of tasks found in the system immediately before these arrivals. If vn+1 

indicates the number of tasks which depart from the system between An and An+1, then we need to 

calculate the transition probabilities associated with the embedded Markov chain defined as: 

1 1 1n n nq q v+ += − + . We need to calculate the transition probabilities associated with the 

embedded Markov chain defined as: [ ]1
|s

ij n n
p p q j q i+= = = which is the probability that i 

+1- j tasks are served during the inter-arrival time between the arrivals of two successive tasks. It 

is obvious that for 1, 0.s

ij
j i p> + =  

 

Since the Markov chain is ergodic, a steady state probability distribution exists 

0 1 2
, , ,......,s s s s s

m r
π π π π π +

 =    with [ ]lim
n

s

k np q kπ
→+∞

= = , 0 k m r≤ ≤ +  which is the 

probability that k tasks exist in the system immediately before the new arrival. To obtain this 

distribution it is required to solve the equation
s s s

Pπ π= , where s
P is the matrix whose elements 

are the transition probabilities
s

ijp . 

 

To find the elements of the transition probability matrix s
P , we need to count the number of tasks 

departing from the system between two successive arrivals, as shown in Fig.2. 

 

 
Fig. 1.  Embedded Markov chain 
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Fig. 2. System behavior between two MMPP arrivals 

 

3.3 Departure Probabilities 

 
First consider the case of a two-state process MMPP (MMPP-2), P is the transition matrix of the 

Markov chain associated with the MMPP-2 defined as follows: 

 

11 12

21 22

p p
P

p p

 
=  
 

 

λ is the arrival rate of the MMPP-2: ( )1 2
,λ λ λ= . For a task to be served and leaves the system 

during the inter-arrival time, its remaining duration (residual service time B+) must be shorter 

than the task inter-arrival time, which results in the probability
x

p . This probability can be 

calculated as: 

 

Let tn= An and tn+1= An+1 
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In the stationary state [ ]( )n kp J t λ= will be time independent and it is equal to kπ : the k
th

 

component of MMPP-2 steady-state probability is defined by:  

 

21
1

21 12

12
2

21 12

P

P P

P

P P

π

π


= +


 =

+

 

 

Hence:  

 

1 2 1 2

11 1 12 1 21 2 22 2

0 0 0 0
* * * *

11 1 1 12 1 2 21 2 1 22 2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x x x x

x
p p e dB x p e dB x p e dB x p e dB x

p B p B p B p B

λ λ λ λπ π π π

π λ π λ π λ π λ

+∞ +∞ +∞ +∞
− − − −

+ + + +

+ + + +

= + + +

= + + +

∫ ∫ ∫ ∫  

 

Fig. 3 and Fig. 4 show the evolution of 
xp  and 

yp as a function of λ1 and λ2. The two figures 

illustrate the decrease of 
xp  and 

yp when λ1 and λ2 increase. 

[ ] *

1 1

( )
N N

N

x ij i j

i j

p p B A p Bπ λ+ +
= =

= < =∑∑ Where 
Nπ is the steady-state probability of 

MMPP-N 

 

Physically this result presents the probability of no task arrivals during residual task service time. 
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In the case when arriving task can be accommodated immediately by an idle server (and therefore 

queue length is zero) we have to evaluate the probability that such task will depart before next 

task arrival.  
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Fig. 3. Tridimensional view of the evolution of 
xp  as a function of 1λ and 2λ  

 

We will denote this probability as 
yp and it is defined for MMPP-2, as follows:  

 

[ ]y
p p B A= <  

 

Using the same analysis in computing xp  we can show that:  

 

* * * *

11 1 1 12 1 2 21 2 1 22 2 2( ) ( ) ( ) ( )yp p B p B p B p Bπ λ π λ π λ π λ= + + +  

 

 Similarly, we can give the general expression for MMPP-N as follows: 
 

[ ] *

1 1

( )
N N

N

y i ij j

i j

p p B A p Bπ λ
= =

= < =∑∑  
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Fig. 4. Tridimensional view of the evolution of 
yp  as a function of 

1λ and 
2λ  

For the case of a MMPP-N we can generalize this probability in the following. 

 

The probability that k tasks depart from a server before the arrival of a new task is derived from 

the two previous expressions
xp and

yp . 

 

Let A and B be two events such as: 

 

A: "The task in service is complete and leaves the system during the inter-arrival" 

B: "The task which is waiting enters the service, completes its service and leaves the system 

during the inter-arrival" 

 

( 1)

,

( 1)

( 1)

* * * *
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( 1)
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−
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−

 = ∩ 
= ×
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 = + + + × 

 + + + 

 

 

The general expression for this probability is given by: 

 
( 1)

* *

,

1 1 1 1

( ) ( )

k
N N N N

N N

z k ij i j i ij j

i j i j

p p B p Bπ λ π λ

−

+
= = = =

   
= ×   
   
∑∑ ∑∑  with 

,1z x
p p= . 

 

Using these values we can compute the transition probabilities matrix. 

 

Fig. 5 shows the evolution of ,z kp  as a function of 1λ and 2λ . This figure shows the decrease 

of ,z kp  when increasing 1λ and 2λ . 
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Fig. 5. Evolution of 
,z kp  (for k =3) as a function of 1λ and 2λ  

 

3.4 Transition Matrix 
 

After calculating the departure probabilities
,,x y z kp p and p , in the embedded Markov chain, 

we may identify four different regions of operation for which different conditions hold; these 

regions are schematically shown in Fig. 6, where the numbers on horizontal and vertical axes 

correspond to the number of tasks in the system immediately before a task request arrival (i) and 

immediately upon the next task request arrival (j), respectively.  

 

 
 

Fig. 6. Range of validity for 
s

ijp  

1 – For 1 , 0s

ij
i j p+ < =  

 

2 – For i m<  and j m≤  (no waiting), between two successive arrivals the probability that 

1i j− + tasks are served is: 

 
1 1

1
(1 ) (1 ) (1 )s i i j j i i j j

ij i j x x y i j x x y
p C p p p C p p p− + − −

− + −= − + − −  

 

3 – For i m and j m≥ ≥ , i.e. all servers are busy during the inter-arrival time. Let 1w i j= + −  

represents the number of tasks that leave the system between two successive Markov points. This 

number can be between 0 and infinity, but it is often close to 1. In this model it is assumed that w 

does not exceed 3 i.e. there are no more than three tasks served between two successive arrivals. 

 
1 1

1 1 1 2 2 1 2 1 2 1 2 2 1

1 2

1 2 1

min( , )min( , )
2

,2 ,2 ,3 ,3

min( ,1) min( ,1)

(1 ) [ (1 ) (1 ) ]
w s sw m

s s m s s s s s w s s w s s s w ss

ij m x x s z z s z z

s w s w s

p C p p C p p C p p
−

− − − − − − − +

= = −

= − × − × −∑ ∑  
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4 - Finally for i m and j m≥ < , i.e. all the servers are busy at the time of first arrival and 

i m−  tasks are in the queue, while after the arrival of the next task, there are exactly j tasks in 

the system, no one will be in the queue. The transition probability is expressed by: 

 
1 1

1 1 1 2 2 1 2 1 2 1 2 2 1

1 2

1 2 1

min( , )min( , )
2

,2 ,2 ,3 ,3

m min( , )

(1 ) [ (1 ) (1 ) ]
w s sw m

s s m s s s s s w s s w s s s w ss

ij m x x s z z s z z

s j s w s m j

p C p p C p p C p p
−

− − − − − − − +

= − = − −

= − × − × −∑ ∑  

 

 

 

4 Analytical Performances Evaluation at Steady State 

 
4.1 Equilibrium Balance Equations 

 
Once we find the matrix P , the steady state probabilities can be computed by solving the system 

of the balance equations (the average flow outgoing of each state is equal to the average flow go 

into this state) and adding the normalization equation (the sum of all state probabilities equal to 

1). 

 

The balance equations are: 

 

0

0
m r

s s s

i j ji

j

p i m rπ π
+

=

= ≤ ≤ +∑   to which we add the normalization equation 

0

1
m r

s

i

i

π
+

=

=∑ . 

 

But it is still difficult to solve the equation of balance of the steady state and therefore a numerical 

solution is required. 

 

4.2 Distribution of the Number of Tasks in the System 

 
Once the steady-state probabilities are found, we can establish the generating function of the 

number of tasks

0

( )
m r

s k

k

k

z zπ
+

=

∏ = ∑ , and therefore we can deduce the average number of tasks in 

the system by deriving the above expression, we thus find '(1)p = ∏  

 

4.3 Distribution of Waiting and Response Times 

 
Using Little's Law, the response time average is given by:  

 

( * )(1 )(1 )
T ss

m rm r

p p
t

π λ πλ π ++

= =
−−

 Where λ  is the intensity average of the MMPP 

process. 

 

Let W denotes the waiting time in the steady state, W(x) the distribution function and W*(x) its 

Laplace transform. It has been demonstrated in [28] that the length of the queue Q has the same 

distribution as W and therefore the number of tasks that arrive during the waiting time is 

expressed as:  
*( ) ( (1 ))Q z W zλ= − . 
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For MMPP-2 process we can calculate the distribution Q as a function of W distribution as 

follows. 

 

Let 
1nU + denotes the number of task arrivals during the waiting time, we have: 
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We can easily generalize this expression for MMPP-N as follows: 
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Q(z) could also be written as follows: 
1

0

( )
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s s k m

k k
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Q z zπ π
− +

−

= =

= +∑ ∑  

Proof : 

 

Let qw the number of waiting tasks in the system. 
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As we have a finite capacity system (i.e., there may exist blocking), we shall use effective arrival 

rate as: 

. (1 )t s

e m r
λ λ π π += −  

Hence we have: 

*

1
( ) ( ) | (1 ) Q(1 )

. (1 )
e
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z
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Moreover, the Laplace transform of response time is: 
* * *( ) ( ) ( )T s W s B s= , in which the W*(s) 

and B*(s) are the Laplace transform of waiting time and the service time, respectively. 

 

Proof: 
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The ith central moment, t(i), of the response time distribution is given by: 

 

*

0

*

*( )

*( )

( ) ( )

( )

Then : '( ) ( )

This leads to : ( ) ( 1) ( )

( ) ( 1) (0)

zt

T

zT

zT

i i i zT

i i i

T z e f t dt

E e

T z E Te

T z E T e

E T T

+∞
−

−

−

−

=

=

= −

= −

= −

∫

 

 

 

 

 



 
 
 
 
 
 

British Journal of Mathematics & Computer Science 4(10), 1301-1317, 2014 

 

 

1315 
 

4.4 Probability of Immediate Service 

 
Here we are interested in the probability that tasks will get into service immediately upon arrival, 

without any queuing, so there is at least an idle server and thus the response time would be equal 

to the service time:  
1

0

m
s

nq i

i

P π
−

=

=∑  

4.5 Blocking Probability 

 
Since MMPP arrivals are independent of buffer state and the distribution of number of tasks in the 

system was obtained, we are able to directly calculate the blocking probability of a system with 

buffer size r: 
s

r m rPb π +=  

4 Conclusion 

 
In this paper, we proposed an approximate model based on a Markov chain to evaluate the 

performance of a center of cloud computing using the queue MMPP/G/m/m+r. Due to the nature 

of the environment of cloud computing and the diverse needs and demands of users, we 

considered a MMPP arrival process that reflects the nature of arrivals in the cloud, a general 

service time, a number of servers and a finite buffer capacity. We described this new analytical 

approximation for performance evaluation of a center of cloud computing and resolved it to get a 

very decent estimate. In this proposed model we calculated analytically the performance 

indicators such as the average number of tasks in the system, blocking probability, probability of 

immediate service and the average of response time. 
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