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A Multiobjective Discrete Grey Wolf Optimization Approach 
for Transactional and QoS-driven Web Services 
Composition
Sunita Jalal a and Dharmendra Kumar Yadavb

aDepartment of Computer Engineering, College of Technology, Pantnagar, Uttarakhand, India; 
bDepartment of Computer Science and Engineering, MNNIT Allahabad, Prayagraj, Uttar Pradesh, India

ABSTRACT
Web services facilitate reusability that allows cost-effective 
development of business applications using web services com-
position. Due to the proliferation of web services, different 
service providers are providing similar functionality web ser-
vices. But these web services can have different values for QoS 
attributes and transactional properties. Thus, it is difficult to 
build a transactional and QoS optimal composite web service. 
Most of the existing works used the scalarization-based method 
for selecting optimal composite web service. In the scalariza-
tion-based method, the service user should have a priori knowl-
edge of its preferences about the nonfunctional requirements of 
desired solutions. This paper proposes a Multiobjective Discrete 
Grey Wolf Optimization (MDGWO)-based approach for 
Transactional and QoS-driven Web Services Composition. The 
Pareto dominance concept is used to select optimal composite 
web service. Generational Distance (GD), Inverse Generational 
Distance (IGD), and Spread measures are used to evaluate the 
performance of the proposed approach. Experimental results 
indicate that the proposed approach performs well.
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Introduction

Web services are self-descriptive, loosely coupled, and platform-independent 
software components that can be published and accessed over a network using 
open standards (Alonso et al. 2004). Service providers publish descriptions of 
their services on the service registry. The service user sends a query to the 
service registry, which discovers services on request through a query. A web 
service is developed to perform a specific function such as Flight Booking 
Service, Payment Service, etc. Due to the adoption of cloud computing and 
service-oriented architecture, web services are playing a significant role in 
software development. Organizations use web services composition to develop 
business applications cost-effectively. Web services composition promotes 
code reusability since the developer has no need to rewrite the code for a 
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function from scratch. Web services composition combines and coordinates 
existing value-added web services with different functionalities to develop a 
composite web service. A composite web service represents a complete busi-
ness application that consists of different activities. Web services are building 
blocks for business application as they perform these activities that can involve 
long-running transactions. An example of composite service is Online Trip 
Management Service, which can be developed by aggregating web services for 
hotel booking, flight booking, and payment.

Design time specification of a composite web service is depicted by a 
workflow model that consists of a set of abstract component services inter-
connected using different workflow patterns. The description of different 
workflow patterns is explained in Van der Aalst et al. (2003). A web service 
discovery approach is used to find a set of candidate web services for each 
abstract component service based on its functionality. Figure1 shows an 
example of a workflow model of composite service CS. The workflow in 
Figure 1 consists of six abstract component services that are interconnected 
using workflow patterns. Suppose that each abstract component service has 
n number of candidate web services to perform its function. Then, the 
number of possible web services compositions for composite service CS 
is n6.

The web services composition can have two types of requirements: Quality 
of Service (QoS) requirements and Transactional requirements (Abbassi et al. 
2015). Quality of Service (QoS) attributes of a web service describes how the 
service carries out its function. QoS has a significant impact on web service 
selection to meet the QoS needs of the service requester. Some of the quality of 
service (QoS) attributes of web services are response time, cost, throughput, 
availability, and reliability. The lower value of some QoS attributes, such as 
cost and response time, indicates good quality. For some QoS attributes, such 
as throughput and reliability, a higher value indicates good quality. 
Specifications of QoS requirements are defined in Service Level Agreement 
(SLA), a contract between the service requester and the service provider 
(Statovci- Halimi and Halimi, 2004). An example of QoS requirement is 
given as follows: the reliability value of the composite service CS shall be 
greater than 95%. SLA assures the service requester to get the service as per the 
specification. Failing to meet specifications defined in SLA could create severe 
consequences for a service provider. Transactional requirements emphasize 
correct execution of the service to get a consistent outcome. The application 
designer defines transactional requirements as a set of transactional properties 
of the composite service. A transactional property of a web service specifies its 
behavior in the case of failure. For example, the effect of service having a 
compensatable transaction property can be compensated after its successful 
execution. A composite service instance should satisfy the specified QoS and 
transactional requirements.
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With the wider acceptance of cloud computing, IOT, and web-based tech-
nologies, more and more functionally equivalent web services having different 
QoS attributes and transactional properties are available in the service registry. 
Thus, many composition solutions are possible for a user request with varying 
values of QoS and transactional properties. Finding a composition solution 
that satisfies QoS requirements specified in SLA is the NP-hard multiobjective 
optimization problem (Wada et al. 2011). Thus, finding an optimal composi-
tion solution that satisfies both quality of service constraints defined in SLA 
and transactional requirements defined by the composition designer is also the 
NP-hard multiobjective optimization problem.

Metaheuristic algorithms can find a near-optimal solution in a reasonable 
time. Many researchers have focused separately on the web services composi-
tion either from the QoS aspect (Canfora et al. 2005; Da Silva, Ma, and Zhang 
2016; Karimi, Isazadeh, and Rahmani 2017; Wang, Huang, and Xie 2014; Yao 
and Chen 2009) or from the transactional aspect (Bhiri, Perrin, and Godart 
2005, 2006; Li, Liu, and Wang 2007; Liu et al. 2009). Some researchers have 
also studied both QoS and transactional aspects in the web services composi-
tion (Ding et al. 2015; El Hadad, Manouvrier, and Rukoz 2010; Graiet et al. 
2016; Imed and Graiet 2017; Wu and Zhu 2013). Most of the existing works 
solve the transaction and QoS-based multiobjective web services composition 
problem using the scalarization-based method by converting it into a single 
objective problem. They considered the weighted average of all objectives 
(QoS attributes). With this approach, it is difficult to give proper weights to 
all QoS attributes when they are conflicting. It produces only one optimal 
solution that may be nondominated. It is not useful when a service composer 
requires nondominated solutions to take decision according to the importance 
of each QoS attribute.

By considering the drawback of the scalarization-based method, this 
paper proposes a Multiobjective Discrete Grey Wolf Optimization 
(MDGWO)-based approach for transactional and QoS-driven web services 
composition. The contributions of the proposed approach can be presented 
as follows:

(1) Derivation rules are described for determining the transactional proper-
ties of the composition of two web services under different workflow patterns.

(2) A tree representation of composition workflow is discussed to compute 
QoS values of web services composition and to determine transactional prop-
erties of composite service using automaton.

(3) The Multiobjective Discrete Grey Wolf Optimization (MDGWO) 
approach is explained to find nondominated solutions for transactional and 
QoS-driven web services composition problems.

The rest of this paper is organized as follows. Section 2 describes QoS 
computation and transactional properties of composite service and defines 
the problem statement. Section 3 reviews the related work. Section 4 discusses 
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the proposed composition approach based on the tree model of workflow and 
multiobjective discrete gray wolf optimization. Section 5 demonstrates experi-
mental results, and section 6 presents the conclusion of this paper.

Composite Service Description and Problem Statement

In this section, workflow patterns of composite web service are described and 
QoS attributes and transactional properties of composite service are explored. 
Then, the problem statement is specified.

Workflow Patterns in Web Services Composition

Sequential, parallel, conditional, and loop are the four most commonly used 
workflow patterns considered in web services composition (Cremene et al. 
2016). In the sequential pattern (! ), services are executed in sequential 
order. In the parallel pattern (+), services are executed independently and 
the next service will not start execution until all parallel services have finished 
their execution. In the conditional or choice pattern (x), one of the services is 
executed based on the condition. The service within a loop pattern (*) is 
executed repeatedly, provided that the loop condition is met. In the workflow 
model shown in Figure 1, service S2 and service S3 are parallel after success-
fully executing service S1. Service S4 will start execution after the completion 
of both S2 and S3. After successful execution of S4, either service S5 or service 
S6 is executed according to the condition. Suppose that the workflow model 
shown in Figure 1 represents Online Trip Management Service (OTMS). 
Service S1 is the Customer Request Service (CRS) that receives details for a 
trip from the customer. Services S2 and S3 are the Hotel Booking Service 
(HBS) and Flight Booking Service (FBS), respectively. Service S4 is a Payment 
Service (PS) that processes payment of the trip. Services S5 and S6 are the Trip 
Document E-Mail Service (TDES) and Trip Document Message Service 
(TDMS), respectively. Business Process Execution Language (BPEL) (Jordan 
et al. 2007) is an example of composition languages. It composes different web 
services using sequential, choice, parallel, and loop workflow patterns.

Figure 1. Workflow model.

APPLIED ARTIFICIAL INTELLIGENCE 1649



Quality of Service (QoS) Computation of Composition

Vector Q = {q1, q2, . . ., qm} denotes the different QoS attributes, where qi 
represents the ith QoS attribute and m is the total number of considered QoS 
attributes. QoS attributes can be categorized into two groups: Qhigh and Qlow. 
For Qhigh, a larger value of an attribute indicates better quality, such as 
reliability and availability. But for Qlow, a lower value of an attribute indicates 
better quality, such as response time and service cost. Some of the quality of 
service attributes are response time, cost, relaibility, and availability. The 
aggregated value of each QoS attribute of a composite web service depends 
on the workflow pattern of composition and QoS attribute value of each 
component web service. Table 1 shows the computation of four QoS attributes 
under sequential, parallel, choice, and loop workflow patterns.

In the sequential composition pattern, response time and cost are additive, 
while reliability and availability of composition are multiplicative. In the 
parallel composition, the cost of composition is additive, while reliability 
and availability of composition are multiplicative. The response time of par-
allel composition is the highest response time among all component services. 
In the choice composition pattern, n component services S1, S2,., Sn are 
invoked with probabilities p1, p2, . . ., pn such that 

Pn
i¼1 pi ¼ 1.

Transactional Properties of Composition

Web services involved in the composition can fail due to several reasons like 
machine failure, dynamic changes in the execution environment, and net-
working issues. Transaction support is required to ensure reliability in web 
service composition. The main transactional properties of a web service are 
pivot (p), retriable (r), and compensatable (c) (Mehrotra et al. 1992). A web 
service can have a combination of transactional properties such as compensa-
table and retriable (cr) and pivot and retriable (pr). The complete set of 
transactional properties for a web service is {p, r, c, cr, pr}. The description 
of properties is given as follows:

• Retriable Service: A web service is said to be retriable (r) if it is guaranteed 
to be complete successfully after a finite number of invocations.

• Compensatable Service: A web service is said to be compensatable (c) if it 
is able to provide compensation policies to undo its effect semantically.

Table 1. Quality of Service (QoS) computation.
QoS attribute Sequential Parallel Choice Loop

Response time (T)
Pn

i¼1 Ti max
i2ð1;nÞ

fTig
Pn

i¼1 pi:Ti k.T

Cost (C)
Pn

i¼1 Ci
Pn

i¼1 Ci
Pn

i¼1 pi:Ci k.C
Availability (A)

Qn
i¼1 Ai

Qn
i¼1 Ai

Pn
i¼1 pi:Ai Ak

Reliability (R)
Qn

i¼1 Ri
Qn

i¼1 Ri
Pn

i¼1 pi:Ri Rk
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• Pivot Service: A web service has the pivot (p) transactional property if it is 
neither retriable nor compensatable. It means that once the pivot web service 
performs successfully, we cannot semantically undo its effects. Failure of a 
pivot web service makes no effect at all.
Compensatable and retriable services support backward recovery (i.e., undo) 
and forward recovery (i.e., redo), respectively. Component web services sup-
porting backward and forward recoveries are useful in maintaining composite 
web services as failure-atomic. The partial order among transactional proper-
ties is as follows: p < c and pr < r < cr

Atomic composite web service: To ensure that composite web service is 
failure-atomic(a), the effects of previously successfully executed component 
web services have to be semantically undone in the case of unsuccessful 
execution of one of its component web services. Once a failure-atomic com-
posite web service executes successfully, its effect remains everlasting. The 
nonatomic transactional property is denoted by (a’). The composite service 
will be nonatomic (a’) for every composition workflow pattern if even one of 
its component services is nonatomic (a’).

A transactional score (t_score) is assigned to each transactional property 
according to partial order. We assign a t_score value of 1 for either cr web service 
or failure-atomic (a) web service. Both compensatable and retriable web services 
are desirable in web services composition, and pivot web service is least desirable. 
Thus, a t_score value of 0.25 is assigned for pivot web service. Both the compen-
satable web service and the retriable web service are assigned a t_score value of 
0.75. Pivot and retriable(pr) web services are assigned a t_score value of 0.5.

The transactional property of the composite web service is derived by 
considering workflow patterns and the transactional properties of component 
web services. El Hadad, Manouvrier, and Rukoz (2010) describe the derivation 
of transactional properties of composite service under sequential and parallel 
workflow patterns. Wu and Zhu (2013) also define the derivation of transac-
tional properties of composite service under choice and loop workflow pat-
terns. In a sequential pattern, services are processed from left to right to derive 
the transactional property of the composition. In parallel and choice patterns, 
services are processed from top to bottom to derive the transactional property 
of composition. There must be a guarantee of failure atomicity during the 
execution of composite web service.

Composition of two component services: The derivation of transactional 
properties for composite web service under sequential, parallel, choice, and 
loop workflow patterns is illustrated in Table 2. We are considering only two 
component services at a time in a workflow pattern.

In a sequential workflow pattern, if the transactional property assigned to 
the first component web service is p and the second component web service is 
c, then the transactional property of the composite web service will be nona-
tomic (a’). In this case, if the first component service executes successfully and 
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the second component service fails, then effects of the first component service 
cannot be semantically undone. If the transactional property of the first 
component service is c and the transactional property of the second compo-
nent service is from set {p, r, pr}, then the composite service will be failure- 
atomic. If the second component service fails, then the effects of the first 
component service can be semantically undone.

In a parallel workflow pattern, the composite web service will be atomic if it 
is created by the parallel composition of p web service and cr web service. If cr 
service fails after successful completion of p service, then cr service can be 
retried to complete successfully. The composite web service created by the 
parallel composition of r web service and p web service will be nonatomic 
because the effects of r service cannot be undone on the failure of p service. In 
the choice composition pattern, only one of the web services is executed. For 
example, choice composition of c web service and p web service will be pivot 
(p) because if first service fails, then its effects can be compensated and second 
service will execute to perform the task. If pr web service and r web service are 
composed using a choice pattern, then the resulting composite service will 
be r.

Composition of component service and atomic service: Transactional 
properties of the composition of two services are shown in Table 3, where 
one service is a component web service and the other is a composite web service. 
The sequential composition of pivot (p) component web service and atomic (a) 

Table 2. Transactional property of composition of two component services.
Web service 1 Web service 2 Sequential Parallel Choice

(! ) (+) (x)

p p a’ a’ p
p c a’ a’ p
p r p a’ p
p pr a a’ p
p cr a a p
c p a a’ p
c c c c c
c r a a’ p
c pr a a’ p
c cr c c c
r p a’ a’ p
r c a’ a’ a’
r r r r r
r pr r r r
r cr r r r
pr p a’ a’ p
pr c a’ a’ p
pr r r r r
pr pr pr pr pr
pr cr a a pr
cr p a a p
cr c c c c
cr r r r r
cr pr pr pr pr
cr cr cr cr cr
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composite web service will be nonatomic. If the pivot (p) service completes and 
the atomic (a) service fails, then the effects of the pivot (p) service cannot be 
semantically undone. The sequential composition of compensatable (c) compo-
nent web service and atomic (a) composite web service will be atomic. The 
effects of compensatable service can be semantically undone in case atomic 
service fails. The parallel composition of compensatable and retriable (cr) 
component web service and atomic (a) composite web service will be atomic. 
If the cr service fails, then it can be retried for its successful completion. If cr 
service completes and atomic service fails, then the effects of cr service can be 
semantically undone. The choice composition between any web service and 
atomic composite service will result in atomic composite service.

Composition of two composite services: Transactional properties of the 
composition of two composite services are presented in Table 4. The sequen-
tial composition of two atomic composite web services will be nonatomic. If 
the first atomic service completes and the second atomic service fails, then the 
effects of first atomic service cannot be semantically undone. The sequential 
composition of atomic (a) service and retriable (r) service will be atomic. If 
atomic service completes and retriable service fails, then retriable service can 
be re-executed for its successful completion. The parallel composition of 
atomic (a) service and retriable (r) service will be nonatomic. If atomic service 
fails, then the effects of retriable service cannot be semantically undone.

Table 4. Transactional property of composition of two composite services.
Composite Composite Sequential Parallel Choice
Web service 1 Web service 2 (! ) (+) (x)

a p a’ a’ a
a c a’ a’ a
a r a a’ a
a pr a a’ a
a cr a a a
a a a’ a’ a

Table 3. Transactional property of composition of component service and compo-
site service.

Web service Composite Sequential Parallel Choice
Web service (! ) (+) (x)

p a a’ a’ a
c a a a’ a
r a a’ a’ a
pr a a’ a’ a
cr a a a a
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Composition under the loop pattern: A web service in the loop pattern is 
executed several times in sequence. If a web service with the transactional 
property from the set {c, r, cr}, is executed in a loop pattern, its final transac-
tional property will be the same as initial. However, execution of a pivot (p) 
web service in the loop pattern will be nonatomic. The transactional property 
under the loop pattern is given in Table 5.

The above rules of transactional properties can be used to obtain the 
transactional property of a composite web service that contains a number of 
component web services in complex composition patterns. Figure 2 depicts 
the automation of composite service according to the transactional rules 
presented in Table 2, Table 3, Table 4, and Table 5. The automaton consists 
of seven states. State I represents the initial state. Final states are p, c, cr, r, pr, 
and a. The alphabets of the language accepted by the automaton are 
{’p’,’pr’,’c’,’r’,’cr’,’a’,’! p’,’! pr’,’! c’,’! r’,’! cr’,’! a’,’+p’,’+pr’,’+-
c’,’+r’,’+cr’,’+a’,’xp’,’xpr’,’xc’,’xr’,’xcr’,’xa’}.

For example, we consider the workflow shown in Figure 1. Suppose that 
service S1 (CRS) is compensatable retriable (cr), S2 (HBS) and S3 (FBS) are 
compensatable (c), S4 (PS) is pivot (p), and S5 (TDES) and S6 (TDMS) are 
retriable (r). In this workflow, first, we process parallel composition, then 
choice composition, and finally sequential composition using automaton. 
The transactional property of the composition is as follows: 

cr ! ðcþ cÞ ! p! ðrxrÞ ¼ cr! c! p! r ¼ c! p! r ¼ a! r ¼ a:

Table 5. Transactional property of composition under the loop 
pattern.

Web service p c r pr cr

loop(*) a’ c r a’ cr

Figure 2. Automaton of Composite Service for transactional properties
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Problem Statement

The main objective of web services composition is to build a reliable and 
efficient application, i.e., composite web service for a given workflow that 
satisfies transactional and QoS requirements.

The workflow WF represents specification of an abstract composite service. 
QR and TR are given QoS requirements and transactional requirements, 
respectively.

QR = {qr1, qr2, . . . .qrm}, where qri represents the QoS requirement for the 
ith QoS attribute qi and m is the number of QoS attributes.

TR = {tr1, tr1, . . . trn}, where tri is the transactional requirement of the ith 

abstract component service in the workflow and n is the total number of 
abstract component services or tasks in the workflow. The objective is to build 
a composite web service CWS with workflow WF satisfying QR and TR.

Related Work

Web services composition approaches can be categorized into three groups: 1) 
QoS-driven approaches, 2) transaction-driven approaches, and 3) transac-
tional and QoS-driven approaches.

QoS-driven Approaches

This group of approaches focuses on the construction of composite web 
services based on the QoS requirements. Existing QoS-driven web services 
composition approaches are either scalarization-based or Pareto-based. In the 
scalarization-based approach, QoS attributes are normalized and weights are 
assigned to QoS attributes such that the sum of weights of QoS attributes must 
be equal to 1. Each composition solution is assigned a QoS score using the 
fitness function. This approach has some limitation. Weights are deduced by 
an expert based on user preference. Different experts may specify different sets 
of weights. The solution having the highest score is preferred, but there is no 
way to verify that the obtained solution is nondominated. In the Pareto-based 
approach, a set of solutions is obtained when solving the multiobjective 
optimization problem. These solutions define the best trade-off between con-
flicting objectives (QoS attributes), and this set of solutions is called the Pareto 
optimal set.

Researchers proposed exact, heuristic, and metaheuristic algorithms for web 
services composition. In Zeng et al. (2004), the authors used local and global 
optimization algorithms for QoS-aware web services composition. The local 
optimization algorithm chooses the optimal service for each task defined in the 
composite web service. The global optimization algorithm uses integer pro-
gramming to select the optimal execution plan. Integer programming has 
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polynomial time complexity and finds accurate results on the small size 
candidate service set. Chattopadhyay, Banerjee, and Banerjee (2017) proposed 
the dependency graph-based composition mechanism that finds service com-
position with near-optimal QoS in the least possible time and achieves scal-
ability. Only a single QoS attribute can be considered at a time. The 
dependency graph-based approach has time complexity Oðn2Þ, where n is 
the number of services in the graph. Heuristic algorithms are generally experi-
enced-based techniques created for solving specific optimization problems. 
Klein, Ishikawa, and Honiden (2011) proposed an approach based on a hill- 
climbing algorithm to obtain near optimal solution. Metaheuristic algorithms 
are problem independent and can be applied to a wide range of problems. In 
Jatoth, Gangadharan, and Buyya (2015), the authors presented the systematic 
review of existing research works on QoS-driven web services composition. 
They provided a classification of computational intelligence approaches to find 
web services composition based on QoS criteria and highlighted the future 
research challenges. The performances of well-known nature-inspired multi-
objective algorithms are investigated in Cremene et al. (2016) to get optimal 
results for QoS-driven web services composition.

Canfora et al. (2005) proposed a Genetic Algorithm (GA)-based 
approach to obtain an optimal composite web service that satisfies global 
QoS requirements. Static and dynamic penalty strategies were used with the 
fitness function. This approach was compared with the integer program-
ming-based approach presented in Zeng et al. (2004). The genetic 
Algorithm performs well with large search space in comparison to integer 
programming. Time compexity of GA is OðmntÞ, where m is the number of 
component services in the workflow, n is the population size, and t is the 
number of generations. The nondominated Sorting Genetic Algorithm 
(NSGA-2) (Deb et al. 2002), a multiobjective evolutionary optimization 
algorithm, is used for service composition in Yao and Chen (2009). The 
time complexity of the proposed method is Oðmn2tÞ, where m is the 
number of QoS attributes, n is the population size, and t is the number of 
generations. In Liu et al. (2013), the authors applied end-to-end decom-
position of QoS constraints to select web services for each component 
service of a workflow. The authors used the Culture Genetic Algorithm 
(CGA) that has better searching ability and fast convergence rate as com-
pared to the Culture Max-Min Ant System. A hill climbing and genetic 
algorithm-based approach was proposed in Ai and Tang (2008) for QoS- 
aware web services composition that focused on both QoS constraints and 
dependencies between services. The optimzation approach accelerates the 
search for feasible solutions. Da Silva, Ma, and Zhang (2016) investigated 
three Genetic Programming (GP)-based service composition approaches. 
Each solution is represented as a tree. In the first approach, penalization in 
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the fitness function is used to penalize functionally incorrect solutions. The 
second approach ensures functional correctness of the solutions by gener-
ating the initial population through a greedy algorithm. The third approach 
uses the second approach with the inclusion of the choice composition 
structure. The GP approach produces accurate composition solutions for 
large size repository of services in less time as compared to graph-based 
PSO. In Wu et al. (2016), the authors considered the concept of a 
Generalized Component Service (GCS) that could perform multiple abstract 
services. The standard parse tree-based algorithm was proposed to identify 
CGSs in a workflow of composite service. The authors used extended GA 
for finding a near-optimal composite web service solution. The GA-based 
approach finds a feasible solution with significantly less time for the number 
of component services > 10 than the backtracking algorithm. Karimi, 
Isazadeh, and Rahmani (2017) proposed clustering of services to decrease 
the search space of the problem so that discovery time can be reduced. SLA 
contracts were also clustered based on the similarity of the content of SLA 
contracts. The association rules technique is used in discovering the related 
clusters of different abstract services. The culture Genetic algorithm is used 
to find optimal solution for QoS-aware web services composition. Genetic 
algorithm-based optimization methods have the same time complexity as 
defined in Canfora et al. (2005).

In Zhang et al. (2010), the Ant Colony Optimization algorithm-based 
approach was proposed to obtain optimal QoS-aware service composition 
on the fly. Wang, Huang, and Xie (2014) described an Adaptive Ant Colony 
Optimization (AAOC)-based approach to find an optimal solution for QoS- 
aware web services composition. They considered the trust degree as an 
attribute to update pheromone evaporation dynamically. AACO has more 
than 90% accuracy in getting better Pareto solutions. The time complexity of 
ant colony optimization-based approaches is OðmntÞ, where m is the number 
of component services in the workflow, n is the number of ants, and t is the 
number of generations. In Da Silva et al. (2017), graph database is used to store 
dependencies among available services in repository. A subgraph was built 
from graph database when receiving a composition request. Each composition 
solution was represented as a GP tree. The optimization approach produces 
near optimal solutions in a reasonable time. Zhao et al. (2012) proposed an 
approach that uses discrete immune optimization with particle swarm opti-
mization (IDIPSO). The approach uses clonal selection theory and PSO to find 
optimal solutions for web service composition. Clonal selection theory 
describes the proliferation of antibodies that recognize a specific type of 
antigen. In web service composition, antigen represents the optimization 
problem and antibody refers to a solution, i.e., position vector of a particle. 
The proliferation of antibody (solution) is based on the affinity value. IDIPSO 
finds much better composition solutions than PSO. In Yin et al. (2014), the 
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authors proposed a hybrid multiobjective discrete particle swarm optimization 
algorithm (HMDPSO) for the SLA-aware service composition problem (SSC). 
The authors considered three user categories platinum, gold, and silver. The 
optimization method has time complexity Oðmn2tÞ, where m is the number of 
QoS attributes, n is the population size, and t is the number of generations. 
HMDPSO produces more accurate solutions than MOGA as it includes a local 
search strategy. In Yan et al. (2016), the authors proposed a Graph-Based 
Memetic algorithm that increases search ability by combining global search 
and local search. The memetic algorithm is an extension of GA that includes a 
search technique to reduce the premature convergence of GA. In Chandra et 
al. (2016), the authors presented a modified gray wolf optimizer to select a 
composite web service that satisfies global QoS constraints. Time complexty of 
the modified gery wolf optimizer is OðmntÞ, where m is the number of 
component services in the work flow, n is the number of wolves, and t is the 
number of generations. Gavvala et al. (2019) proposed an Eagle Strategy with 
the Whale Optimization method to obtain a global optimum solution for QoS- 
driven cloud service composition.The optimization method maintains the 
balance between exploration and exploitation to avoid premature convergence 
and slow convergence. The time complexity of the method is the same as that 
of GA. In Wang et al. (2018), the authors proposed a two-phase optimization 
process for QoS-aware web services composition. In the first phase, the 
credible services are obtained by integrating QoS computation with credibility 
evaluation and weight calculation using fuzzy AHP. In the second phase, a 
modified cuckoo method is applied to find global optimum solution for QoS- 
aware service composition. The time complexity of the method is Oðmn2tÞ, 
where m is the number of QoS attributes, n is the population size, and t is the 
number of generations. In Ren et al. (2021), the authors presented a QoS- 
aware composition framework based on deep learning and attention mechan-
isms. The approach finds high QoS composition solutions in less time.

Transaction-driven Approaches

Business-to-Business applications require web services composition to achieve 
their functionalities. Web services composition-based applications involve 
long-running web transactions that combine several transactions performed 
by different web services. These applications’ executions can fail because of 
unavailability or failure of any web service, machine failure, process cancella-
tion, etc. Thus, long-running web transactions violate some of the traditional 
transactional ACID (Atomicity, Consistency, Isolation, and Durability) prop-
erties, generally atomicity and isolation. Transaction-aware web services com-
position approaches focus on building reliable composite web services.
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Bhiri, Perrin, and Godart (2005) proposed a transactional approach for 
reliable web service composition by ensuring failure atomicity of a composite 
service needed by designers. The authors distinguished between control flow 
and transactional flow of a transactional composite web service (TCS). The 
notion of the Accepted Termination State (ATS) is used to represent the 
designer’s requirements for failure atomicity. ATS contains termination states 
of a composite service in which the designer accepts its termination. The 
execution of composite service is correct if the termination state of composite 
service belongs to ATS. The authors defined a set of transactional validity rules 
to generate transaction properties that ensure the validity of composite web 
services regarding the specified ATS. The time complexity of the method is 
OðmnÞ, where n is the number of ats in the set ATS and m is the size of each 
ats. In Bhiri, Perrin, and Godart (2006), the authors proposed reliable web 
service composition based on the concept of transactional patterns. A transac-
tional pattern is a workflow pattern augmented with transactional dependen-
cies between component services. There are two types of dependencies defined 
in this paper: activation dependencies and transactional dependencies (com-
pensation, cancellation, and alternative).

In Li, Liu, and Wang (2007), the authors focused on transactional 
support to compose and schedule web services having different transac-
tional properties. The authors proposed rules to derive transactional prop-
erties of composite web service described using sequential, parallel, 
alternative, and loop workflow patterns. Liu et al. (2009) proposed a frame-
work for specification, verification, and execution of fault tolerant compo-
site web service. Framework defined fault handling logic using Event 
Condition Action (ECA) rules at design time according to an application’s 
need. The authors considered four types of transactional web services: 
atomic, weak atomic, semantic-atomic, and pivot. A weak atomic service 
is not compensatable, and semantic atomic service is not cancelable. The 
authors summarized exception handling strategies for handling faults. The 
authors also proposed a simple transfer-based termination protocol for 
consistent termination of composite service when the service’s fault is 
unrepairable.

Transactional and QoS-driven Approaches

Execution of composite service should fulfill transactional and QoS require-
ments irrespective of any failure or dynamic changes. In El Hadad, 
Manouvrier, and Rukoz (2010), the authors proposed a design-time selec-
tion algorithm that satisfies the user’s preference expressed in terms of QoS 
criteria and transactional requirements. Transactional requirements are 
defined in terms of risk levels. QoS requirements are described by assigning 
weights to each quality criterion. A simple weighted sum technique is 
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applied to give a quality score to each web service. The web service selection 
for a task depends on the transactional property of the web service selected 
for the previous task in the workflow. The selection algorithm has time 
complexity OðmnÞ, where m is the number of component services and n is 
the number of candidate web services for each componet service. Wu and 
Zhu (2013) converted a workflow model of composite service into a direc-
ted acyclic graph using web service discovery. The solution is the path from 
the starting node to the sink node in DAG. An ant colony optimization 
(ACO) was employed to find the best path in DAG satisfying QoS con-
straints and transactional requirements. Each web service is assigned a QoS 
score and transaction score. The QoS score is calculated using the sum of 
weights of QoS attribute values. The time complexity of the optimization 
method is the same as in Wang, Huang, and Xie (2014). In Ding et al. 
(2015), the authors proposed an optimal selection approach based on the 
transactional performance evaluation method and Genetic Algorithm with a 
penalty function. The transactional performance method calculates the 
execution time of transactional composite web services according to the 
workflow pattern and transactional properties of component web services. 
An individual (solution) in GA was represented by integer array encoding. 
Execution time and price QoS attributes were considered.

Abbassi et al. (2015) proposed a Genetic Algorithm-based approach for ATS- 
and SLA-aware web services composition. The authors considered the response 
time, availability, throughput, and cost QoS attributes. Acceptable Termination 
States (ATSs) define the transactional behavior of composite services that 
express which faults are acceptable, retriable, or recoverable. The authors used 
transactional fitness (TF) and SLA fitness (SF) in the fitness function. An array 
of integers represents a genome (solution). In Graiet et al. (2016), the authors 
introduced the concept of recovery capability (RC) to capture the recoverability 
level supported by web services. If the transactional property of a service is 
compensatable and retriable, then the RC value of the service is 1. This means 
that the service is perfectly recoverable. The authors proposed an adaptive 
service composition (ASC) approach to define or reconfigure composite services 
according to SLA and ATS constraints. The authors used the Genetic Algorithm 
to find a composition solution. The time complexity of genetic-based optimiza-
tion methods defined in Abbassi et al. 2015; Ding et al. 2015; Graiet et al. (2016) 
is OðmntÞ, where m is the number of component services in the workflow, n is 
the population size, and t is the number of generations. In Imed and Graiet 
(2017), the authors defined a hierarchical service composition model using a set 
of functional capabilities of abstract composite service. The authors used the 
concept of Required Efficiency Level (REL). They proposed an algorithm that 
decomposes global QoS constraints into local ones then verifies the reliability 
and efficiency of web services. The time complexity of the hierarchical 
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composition model is Oðk � ðnþmþ pÞÞ, where n represents the number of 
tasks in the workflow, m is the number of inner nodes in the tree, p is the 
number of web services, and k represents the number of QoS constraints.

Grey Wolf Optimization Methods

This section describes the use of gray wolf optimization and its variants in the 
different application areas.

Li et al. (2017) proposed a modified discrete gray wolf optimizer 
(MDGWO) algorithm to find the optimal threshold value for multilevel 
image segmentation. They describe improvement in the attack strategy of 
gray wolves. Locations of search agents are updated using the weighting 
method. MDGWO has better accuracy than GA, Differential Evolution 
(DE), andAnt bee colony optimization techniques. In Martin, Marot, and 
Bourennane (2018), the authors proposed an improved version of discrete 
gray wolf optimization that performs a random selection of a leader. The 
method is tested on various benchmark functions and shows better perfor-
mance. Sharma et al. (2019) described a modified Grey Wolf Optimization 
(MGWO) for detection of Parkinson’s disease in a patient. The modified 
method is used for selecting multiple features, and it applies machine learning 
techniques to the selected features.

The estimated accuracy of the optimization method is 94.83%. In Badawy et 
al. (2018), the authors presented a discrete version of gray wolf optimization 
(DGWO) for the reconstruction of the shredded document. The position of 
each search agent is updated using either a crossover operator or a mutation 
operator. The DGWO has a fast convergence rate as compared to the genetic 
algorithm. Lu et al. (2016) described multiobjective discrete GWO for hand-
ling scheduling problems of the welding process. They include a two-part 
representation for solution encoding and a modified search operator to ensure 
the solution’s feasibility. The optimization method presents better results than 
NSGA-II and Strength Pareto Evolutionary Algorithm 2(SPEA2) in terms of 
convergence and quality of optimal solutions. Karasu and Saraç (2020) 
employed a multiobjective gray wolf optimizer with KNN to choose the 
most appropriate features for the classification of power quality disturbances. 
The overall estimated accuracy of the classification model is 99.26. In Altan, 
Karasu, and Zio (2021), the authors applied the GWO method to optimize the 
weighted coefficients of each intrinsic mode function (IMF) for obtaining the 
best wind speed forecasting model. The proposed wind speed forecasting 
model performs well for different data sets.

Existing transactional and QoS-driven approaches are scalarization-based, 
and they used a simple weighted sum technique for thw QoS score calculation. 
They explained the formula of QoS computation for composite web services 
and rules for determining the transactional properties of web services 
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composition but did not provide any method for the same. The use of other 
nature inspired algorithms in this area is still missing. Thus, based on the 
above study, we propose the Multiobjective Discrete Grey Wolf Optimization- 
based approach for transactional and QoS-driven web services composition. 
The proposed approach presents a tree model of composition workflow and 
discusses QoS computation- and automaton-based transactional properties 
determination for web services composition.

Proposed Approach for Web Services Composition

The overview of transactional and QoS-driven web services composition is 
depicted in Figure 3. This approach focuses on a tree model of workflow to 
determine the QoS attribute value and transactional property of composite 
service, generating a candidate set for each component service and a multi-
objective discrete gray wolf optimization approach for finding composite web 
service optimal in terms of transactional and QoS requirements.

Figure 3. Proposed approach.
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QoS requirements are specified in SLA based on mutual agreement between 
a service provider and a service requester. QoS requirements are constrained 
on the QoS attributes. For example, the response time of composite web 
service should not exceed 10 ms. We have considered the following constraints 
in the proposed approach.

• Response time of composite service Tcs < ¼ Tmax
• Cost of composite service Ccs < ¼ Cmax
• Reliability of composite service Rcs > ¼ Rmin
• Availability of composite service Acs > ¼ Amin
The application designer specifies transactional requirements at design time. 

For example, consider following the transactional requirements of OTMS.
(1) If either component service S2 or component service S3 fails during 

execution, then the effects of component service S1 must be semantically 
undone.

(2) If component service S2 fails and component service S3 completes, then 
the effects of component service S1 and component service S3 must be 
semantically undone.

(3) If component service S3 fails and component service S2 completes, then 
the effects of component service S1 and component service S3 must be 
semantically undone.

(4) If component service S4 fails during execution, it can be retried for its 
successful completion.

(5) The effects of component service S4 cannot be semantically undone after 
its successful execution.

(6) After completion of component service S4, either component service S5 
or component service S6 will execute successfully.

Based on transactional requirements, the application designer decides 
transactional properties of component services so that the composition will 
execute correctly and consistently. Table 6 shows possible transactional prop-
erties of component services in OTMS to ensure failure-atomic execution.

Subsection 4.1 describes the tree model of workflow. The candidate set for 
each component service defined in the workflow is discovered using the web 
service discovery approach. It is described in subsection 4.2. A nature-inspired 
metaheuristic approach is used to solve multiobjective optimization problems. 

Table 6. Transactional properties of component services in 
OTMS.

S1 S2 S3 S4 S5 S6

c c c pr pr pr
c c c pr r r
c cr cr pr pr pr

APPLIED ARTIFICIAL INTELLIGENCE 1663



In subsection 4.3, Grey Wolf Optimization is described. Subsection 4.4 
explained multiobjective discrete gray wolf optimization to obtain web ser-
vices composition optimal in transactional and QoS requirements.

Tree Model of Workflow

The workflow of a composite web service can be viewed as a generalized tree. 
We define a tree representation of workflow as WF_Tree = (root, leaf, qos, tp, 
type)

• root: It defines the root node of the tree. It contains the QoS values and 
transactional property of composite service.

• leaf: It is a boolean type. It tells whether a node is a leaf node or an internal 
node. Its value is true for a leaf node.

• qos: It stores the QoS value of an attribute of a node.
• tp: It stores the transactional property of a node.
• type: It gives the workflow pattern type such as sequence(! ), parallel(+), 

choice(x), and loop(*) of an internal node other than root.
Figure 4 presents the tree model of workflow given in Figure 1. The root 

node represents the composite service, leaf nodes represent component ser-
vices, and internal nodes represent different workflow patterns.

Algorithm 1 presents the computation of the QoS attribute value and 
transactional property for a composition workflow represented as a tree. It 
starts from the root node for each QoS attribute. It processes each child of the 
root. It stores the QoS value of each child in a list qos composite and transac-
tional property in a list tp composite. If the QoS attribute is response-time or 
cost, then the QoS value of workflow is the sum of values defined in the list 
qos composite. If the QoS attribute is reliability or availability, then the QoS 
value of workflow is the product of values defined in the list qos composite. The 
transactional property of workflow is determined using automaton given in 
Figure 2 for wf pattern and transactional properties defined in list 
tp composite. Preprocessing of child node with parallel(þ ) type, sequence 
(! ) type, loop( � ) type, and choice(x) type is given in Algorithm 2, 

Figure 4. Tree model of composition workflow.
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Algorithm 3, Algorithm 4, and Algorithm 5, respectively. The computational 
complexity of Algorithm 1 is O(M), where M is the number of nodes in the 
tree.

Generation of the Candidate Set

The workflow model specifies the compositional structure of a business 
application at the design time. Different tasks in the workflow represent 
different functionalities defined in the application. These tasks are connected 
through workflow patterns that define the execution order of tasks. Service 
providers publish descriptions of their services in a service registry. Thus, 
service registry may contain several services with similar functionality. The 
service requester can retrieve descriptions of services from the service registry 
using a discovery approach. Given a workflow WF of the composition, the 
orchestration engine uses web service discovery approach to discover a set of 
candidate web services for each task in WF. The web service discovery 
approach looks up in a service registry to find web services descriptions that 
match the functional requirements of a task in WF.

In our earlier work (Jalal, Yadav, and Negi 2019), we proposed a web service 
discovery approach incorporating Latent Dirichlet Allocation (LDA) and 
k-medoids clustering technique. The LDA topic model is used to extract topics 
from text corpus (Blei, Ng, and Jordan 2003). The k-medoids partition n 
number of objects into k number of clusters. The optimal value of k is obtained 
by silhouette analysis. The clustering technique increases the performance of 
web service discovery by reducing the search space for a user query. Web 
service discovery finds web services based on semantic similarity between web 
service description and user query. It uses WordNet database (Miller 1998) 
and Wu-Palmer method (Wu and Palmer 1994) to compute semantic simi-
larity scores. After applying web service discovery, each component service 
defined in the workflow model may be associated with a set of candidate web 
services. For each component service, the size of the candidate set is reduced 
by considering transactional requirements. The reduced set contains web 
services that satisfy the transactional requirements of the application.

The Grey Wolf Optimization (GWO)

The Grey Wolf Optimization (GWO) (Mirjalili, Mirjalili, and Lewis 2014) is a 
new metaheuristic approach inspired by nature that depicts the leadership 
hierarchy of gray wolves and their hunting strategy for the prey. Grey wolves 
live in a group(pack) of 5–12 wolves. 

Algorithm 1: Workflow_QoS_Transaction;
Input : WF_Tree, root, attribute;
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Output: composite_qos_val, composite_tp_val
1 get child_list of root node;
2 i=1;
3 while i < ¼ length(child_list) do
4 child = child_list[i];
5 if leaf[child] = True then
6 qos_composite[i] = qos[child];
7 tp_composite[i] = tp[child];
8 end
9 else
10 if type[child] = ”*” then
11 val1, val2 = Loop(child_list of child, attribute, k);
// k is the number of loop iteration.
// Loop module is defined in Algorithm 4.
12 qos_composite[i]= val1;
13 tp_composite[i]=val2;
14 end
15 if type[child] = ”+” then
16 val1, val2 = Parallel(child_list of child, attribute);
// Parallel module is defined in Algorithm 2.
17 qos_composite[i]= val1;
18 tp_composite[i]=val2;
19 end
20 if type[child] = ”X” then
21 val1, val2 = Choice(child_list of child, prob_list);
// prob_list contains probability of execution of each service.
// Choice module is defined in Algorithm 5.
22 qos_composite[i]= val1;
23 tp_composite[i]=val2;
24 end
25 end
26 i=i+1;
27 end
28 if attribute = ”response time” or attribute = ”cost” then
29 composite_qos_val = 

P
qos_composite;

30 end
31 if attribute = ”reliability” or attribute = ”availability” then
32 composite_qos_val = 

Q
qos_composite;

33 end
34 composite_tp_val = Automaton(tp_composite,wf_pattern=”! ”);
// Use automaton in Figure 2 for wf_pattern on transactional properties in 

tp_composite
35 return composite_qos_val, composite_tp_val
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Algorithm 2: Parallel;
Input : child_list, attribute;
Output : qos_val, tp_val
1 Create qos_par[], tp_par[];
2 i=1;
3 while i < ¼ length(child_list) do
4 if leaf[child] = True then
5 qos_par[i] = qos[child];
6 tp_par[i] = tp[child];
7 end
8 else
9 if type[child] = ”*” then
10 val1, val2 = Loop(child_list of child, attribute);
// Loop module is defined in Algorithm 4.
11 qos_par[i]= val1;
12 tp_par[i]=val2;
13 end
14 if type[child] = ”! ” then
15 val1, val2 = Sequence(child_list of child, attribute);
// Sequence module is defined in Algorithm 3.
16 qos_par[i]= val1;
17 tp_par[i]=val2;
18 end
19 end
20 i=i+1;
21 end
22 if attribute = ”response time” then
23 qos_val = max (qos_par);
24 end
25 if attribute = ”cost” then
26 qos_val = 

P
qos_par;

27 end
28 if attribute = ”reliability” or attribute = ”availability” then
29 qos_val = 

Q
qos_par;

30 end
31 tp_val = Automaton(tp_par, wf_pattern=”+”);
// Use automaton in Figure 2 for wf_pattern on transactional properties in 

tp_par
32 return qos_val, tp_val

Algorithm 3: Sequence;
Input : child_list, attribute;
Output : qos_val, tp_val
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1 Create qos_seq[], tp_seq[];
2 i=1;
3 while i < ¼ length(child_list) do
4 if leaf[child] = True then
5 qos_seq[i] = qos[child];
6 tp_seq[i] = tp[child];
7 end
8 else
9 if type[child] = ”*” then
10 val1, val2 = Loop(child_list of child, attribute,k);
// Loop module is defined in Algorithm 4.
11 qos_seq[i]= val1;
12 tp_seq[i]=val2;
13 end
14 end
15 i=i+1;
16 end
17 if attribute = ”response time” or attribute = ”cost” then
18 qos_val = 

P
qos_seq;

19 end
20 if attribute = ”reliability” or attribute = ”availability” then
21 qos_val = 

Q
qos_seq;

22 end
23 tp_val = Automaton(tp_seq,wf_pattern=’! ’);
// Use automaton in Figure 2 for wf_pattern on transactional properties in 

tp_seq
24 return qos_val, tp_val

Algorithm 4: Loop;
Input : child_list, attribute, k;
Output : qos_val, tp_val
// child_list contains a single element.
1 qos1 = qos[child];
2 tp1 = tp[child];
3 if attribute = ”response time” or attribute = ”cost” then
4 qos_val = product of k and qos1;
5 end
6 if attribute = ”reliability” or attribute = ”availability” then
7 qos_val = power(qos1,k);
8 end
9 tp_val = Automaton(tp1, wf_pattern=”*”);
// Use automaton in Figure 2 for wf_pattern on transactional property tp1
10 return qos_val, tp_val
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Algorithm 5: Choice;
Input : child_list, prob_list;
Output : qos_val, tp_val
1 create tp_choice[];
2 i=1;
3 sum=0;
4 while i < ¼ length(child_list) do
5 child = child_list[i];
6 sum = sum + prob_list[i] * qos[child];
7 tp_choice[i] = tp[child];
8 i=i+1;
9 end
10 qos_val=sum;
11 tp_val = Automaton(tp_choice, wf_pattern=”X”);
// Use automaton in Figure 2 for wf_pattern on transactional properties in 

tp_choice
12 return qos_val, tp_val

The alpha(α) wolves are the leaders and make all the decisions. Beta(β) 
wolves are next in the hierarchy and are responsible for advising and main-
taining discipline. The next in the hierarchy are Delta(δ) wolves responsible 
for performing different tasks. The Omega(ω) wolves are lowest in the hier-
archy and follow the instructions passed by alpha, beta, and delta wolves. The 
main steps of gray wolf hunting are tracking, encircling, and attacking the 
prey. Hunting is guided by alpha, beta, and delta wolves. The mathematical 
model of gray wolf optimization considers alpha(α) as the best solution and 
beta(β) and delta(δ) as second and third best solutions in the solution space. 
The encircling behavior of a gray wolf at iteration t +1 is defined in eq (1), 

X
!

ðt þ 1Þ ¼ Xp
�!
ðtÞ � A

!

:D
!

; (1a) 

D
!

¼ jC
!

: Xp
�!
ðtÞ � X

!

ðtÞj; (1b) 

where t denotes the current iteration. Xp
�! and X! represent the position 

vectors of prey and gray wolf, respectively. D! represents the difference in 
prey’s position and the gray wolf’s position at iteration t. The coefficient 
vectors A! and C! are given as follows: 

A!¼ 2: a!:r1
!� a!; (2) 

C!¼ 2:r2
!; (3) 
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where components of vectors r1
! and r2

! have random values in the range [0,1]. 
Each component of vector a! is linearly reduced from 2 to 0 throughout the 
course of iterations. In a search space, the top three best solutions (α), beta(β), 
and delta(δ) have better knowledge about the optimum solution (position of 
the prey). Other search agents (grey wolves) update their positions according 
to the information provided by alpha (α), beta (β), and delta (δ) solutions (gray 
wolves). Hunting is mathematically formulated using the following equations: 

Dα
�!
¼ j C1
�!

: Xα
�!
ðtÞ �

$! $

X
ðtÞj; Dβ

�!
¼ j C2
�!

: Xβ
�!
ðtÞ �

$! $

X
ðtÞj; Dδ

�!

¼ jC3: Xδ
�!
ðtÞ �

$! $

X
ðtÞj;

(4a) 

X1
�!
¼ Xα
�!
ðtÞ � A1

�!
:Dα
�!

; X2
�!
¼ Xβ
�!
ðtÞ � A2

�!
:Dβ
�!

; X3
�!
¼ Xδ
�!
ðtÞ � A3

�!
: Dδ
�!

;

(4b) 

The updated location of the search agent at iteration (t +1) is given in 
equation (5), 

X
!

ðt þ 1Þ ¼
X1
�!
þ X2
�!
þ X2
�!

3
: (5) 

Value jAj> 1 or value jAj< -1 indicates that search agents (gray wolves) 
diverge from each other during the search for the prey (optimum solution). 
The value jAj < 1 indicates that gray wolves converge to attack prey. The 
optimum solution is found when termination criteria of hunting are satisfied. 
Vector C! contains random values in the range [0,2]. It supports exploration 
and avoids local optima by emphasizing or deemphasizing the effect of prey.

Multiobjective Discrete Grey Wolf Optimization for Web Services Composition

The original GWO is designed to deal with a single objective optimization 
problem where search space is continuous. Transactional and QoS-driven 
web services compositions are a multiobjective combinatorial optimization 
problem and search space is discrete. QoS attributes are considered as 
different objectives. A standard multiobjective optimization problem can 
be defined as 

FðxÞ ¼ ðF1ðxÞ; F2ðXÞ; . . . :; FmðxÞÞsubject to :
CiðxÞ< ¼ 0; i ¼ 1; 2; . . . :; k;

CjðxÞ ¼ 0; j ¼ 1; 2; . . . :; l:

�

Function F(x) has m objectives, and it can be either maximization or mini-
mization subject to the various constraints Ci and Cj. Multiobjective optimiza-
tion problems are Pareto dominant because they can have conflicting 
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objectives. If objectives are conflicting, then improvement in one objective 
may cause the decline of other objectives. For example, in the case of web 
services composition, cost and availability are conflicting objectives. Any two 
solutions sol1 and sol2, are compared using Pareto dominance. Solution sol1 
dominates solution sol2 if the following conditions are met:

• sol1 is better than sol2 in all objectives.
• sol1 is better than sol2 in at least one objective.
The resultant set, i.e., Pareto optimal set, contains nondominated solutions 

that ensure trade-offs in conflicting objectives. The Multiobjective Discrete 
Grey Wolf Optimization for web services composition is presented in 
Algorithm 6. 

Algorithm 6: Composition-MDGWO;
Input : Candidate Sets for Component Services;
Output : Optimal Composite Web Service Solutions
1 Initialize population P randomly using integer encoding
2 foreach solution in P do
3 Determine QoS values and the transactional property using Algorithm 1;
4 end
5 Initialize each componet of a!=2, and each component of C!=1 and 

maximum number of Iterations tmax;
6 Initialize A! using equation (2);
7 Initialize t=0;
8 while t < tmax do
9 Rank search agents (composite solutions) in P using nondominated 

sorting;
10 Find α, β; and δ solutions using equation (6);
11 Store them in external archive;
12 foreach search agent X(t) do
// get new child population PCh
13 Update search agent X(t) using equation (8);
14 end
15 t=t+1;
16 Ptemp = Combined population P and population PCh;
17 foreach solution in Ptemp do
18 Determine QoS values and the transactional property using Algorithm 1;
19 end
20 Get population P for next iteration by applying nondominated sorting 

on Ptemp;
21 update each component of a!¼ 2ð1 � t

tmax
Þ;

22 update A! using equation (2);
23 end
24 Find top 3 nondominated solutions from external archive;
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25 return α, β and δ solutions

Solution Encoding
In web services composition, a composite web service instance, i.e., solution is 
represented by [S1, S2,..,Si,..,Sn]. It is encoded as an array of integers, and the 
length of the array is equal to the number of abstract component services in the 
composition workflow. The ith element in the array represents the ith abstract 
component service Si in the workflow. The value of the ith element in the array 
is the web service index in the candidate set of the ith abstract component 
service. Figure 5 shows an example of solution encoding for the web services 
composition. In this example, composite service consists of six abstract com-
ponent services and each abstract component service has a candidate set of five 
web services.

Initial Population and Ranking of Solutions
The initial population is generated randomly based on the integer encoding 
representation. Algorithm 1 is used to compute the value of each QoS attribute 
and transactional property for each solution in the population. The multi-
objective optimization problem can have a set of nondominated solutions. 
Nondominated sorting (Deb et al. 2002) is used to sort the solutions in 
population, and each solution has a rank equal to its nondominance level. 
Solutions are sorted on the basis of QoS attributes. At each nondominance 
level (or front), solutions can be ordered based on the score Sol Score com-
puted by equation (6), 

Sol ScoreðSÞ ¼ CDðSÞ þ t scoreðSÞ � p scoreðSÞ; (6) 

Figure 5. Example of solution encoding.
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where S represents a solution in the population and CDðSÞ is the crowding 
distance of the solution S. The value of t score gives the transaction score of 
solution S, and it will be −1 if the transactional property of solution S is 
nonatomic. The value of p scoreðSÞ is the penalty score of the solution S that 
is calculated using equation (7) as a difference from the given QoS requirements, 

p score ¼
Xm

i¼1
jqri � qij � xi; (7) 

where :
xi ¼ 0 if qisatisfiesqri
xi ¼ 1 if qidoes not satisfyqri

�

A superior solution has a large value of crowding distance. The value of p score 
will be zero for a solution if it satisfies all the QoS requirements.

Selection of Alpha, Beta, and Delta Solutions
The solutions at the first nondominance level are nondominated solutions for 
web services composition. If the population has only one nondominance level, 
then the best three solutions α, β, and δ can be obtained using Sol Score values. 
If there are at least three nondominance levels, we choose a alpha solution 
from the first level, a beta solution from the second level, and a delta solution 
from the third level. After completion of each iteration, α, β, and δ solutions 
are stored in an external archive. When MDGWO terminates, the top three 
nondominated solutions can be selected from the external archive.

Searching and Hunting Prey
In discrete grey wolf optimization, we use two operator crossover for explora-
tion and mutation for exploitation. Exploration is the process of searching for 
the prey, while exploitation is hunting the prey. A search agent performs 
crossover and mutation based on the value of A!. In discrete search space, 
the search agent (grey wolf or a solution) updates its position (information) 
using equation (8), 

X
 

ðt þ 1Þ ¼ crossover½X
 

pðtÞ;X
 

ðtÞ� jA
 

j � 1orjA
 

j � 1
mutation½X

 

ðtÞ�0 � jA
 

j1

(

(8) 

C! is set to 1, and A! is defined using equation (2). Information about the 
optimal solution (prey) is discovered through the knowledge of the α, β, and 
δ solutions. Thus, search agent X(t) updates itself by performing crossover 
with the best top three solutions α, β, and δ. Figure 6 depicts an instance of 
an update of search agent X(t). The newly generated population of offspring 
and parent population are combined. Then nondominated sorting technique 
and Sol Score value are used to select the population of size N for the next 
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iteration. Time complexity of the proposed method is OðmN2tÞ, where m is 
the number of QoS attributes, N is the population size, and t is the number 
of generations.

Experimental Setup

This section covers data set description, performance evaluation indicators, 
and result analysis. Performance of the web services composition based on 
Multiobjective Discrete Grey Wolf Optimization is compared with the well- 
known metaheuristic algorithms: NSGA-II (Deb et al. 2002) and 
Multiobjective Discrete Particle Swarm Optimization (MDPSO) (Yin et al. 
2014).

Figure 6. An instance of update of search agent X(t)

Table 7. Data set information.
Domain Customer Hotel Service Flight Payment Messaging

Service Service Service Service

No. of Services 140 170 150 180 200
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Data Set Description

We developed a data set of approximately 800 service descriptions from 
various domains such as Hotel, Flight Booking, Banking, and Finance pub-
lished by the online web directory ProgrammableWeb (Musser 2005). Data are 
preprocessed using Natural Language Processing (NLP) functionalities pro-
vided by the NLTK toolkit (Loper and Bird 2002). Table 7 presents different 
domains and number of services in each domain.

We consider four QoS attributes: Response time, Cost, Reliability, 
Availability, and five transactional properties: pivot (p), compensatable (c), 
retriable (r), pivot-retriable (pr), and compensatable-retriable (cr). Web ser-
vices in the data set are assigned values for QoS attributes and transactional 
properties using a random number generator with uniform distribution. 
TheiInitial candidate set (set of functionally relevant web services) for each 
task or domain is obtained using the web service discovery approach described 
in Jalal, Yadav, and Negi (2019). The reduced candidate set for each task is 
obtained by applying constraints defined by transactional requirements.

Performance Evaluation Indicators

Good convergence and maintaining diversity are desirable goals by evolution-
ary multiobjective optimization algorithms. The following indicators are used 
to evaluate the performance of multiobjective evolutionary algorithms NSGA- 
II, MDPSO, and MDGWO (proposed approach):

Generational Distance(GD)
The Generational Distance (Coello and Sierra 1999) indicator computes the 
distance between obtained Pareto front PF and the true Pareto front PF*. It is 
given as 

GD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN1
j¼1 ðdjÞ

2
q

N1
; (9) 

where N1 indicates the number of solutions presents on Pareto front PF and dj 

is the euclidean distance between the jth solution of PF and the closest solution 
of PF*. The lower value of GD indicates better convergence performance.

Inverse Generational Distance (IGD)
IGD (Sierra and Coello 2004) is a variant of the Generational Distance 
indicator. It computes the distances between each solution on the true 
Pareto front PF* and the closest solution on the obtained Pareto front PF. 
IDG is defined as 
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IGD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN2
j¼1 ðdjÞ

2
q

N2 ; (10) 

where N2 is the number of solutions present on true Pareto front PF*. The 
lower value of IGD shows good performance. IGD is used widely to assess the 
quality of an optimization algorithm that solves the problem with more than 
three objectives. GD and IGD are computationally fast.

Spread(S)
The spread indicator (Deb 2001) indicates diversity in the problem search 
space. It estimates the extent of the spread of solutions in the obtained Pareto 
front. It is defined as 

S ¼
Pm

k¼1 dxk þ
PN1

j¼1 jdj � �dj
Pm

k¼1 dxk þ N1:�d
; (11) 

where d is the mean value of all dj and m denotes the number of objectives. dx 
represents the distance of extreme solutions of obtained PF to the nearest 
solution of PF*. The lower spread value is desired for better diverse distribu-
tion. A zero value of spread indicates that all the solutions of PF* are uniformly 
spaced.

For several real problems, the true pareto front PF* is unknown. All non-
dominated solutions obtained by different algorithms for a given problem 
instance can be considered as reference points on PF*. It is possible that 
reference points on PF* are not evenly distributed, i.e., some parts of the 
front may have very less reference points and other parts may have many 
reference points. We use the k-medoid clustering technique to group reference 
points into different clusters. The medoids of clusters can be considered as 
new reference points on PF*. A medoid is a most centrally located object in a 
cluster.

Result Analysis

All the algorithms are implemented in the Python environment. Parameter 
settings can affect the performance of the optimization technique. The para-
meters are given in Table 8. All problem instances have the same values for 

Table 8. Parameter information.
Problem Component Candidate Pop-Size Crossover Mutation

Instance Services Set Size Rate Rate
Pb1 6 20 1000 0.85 0.15
Pb2 6 40 2000 0.85 0.15
Pb3 6 60 4000 0.85 0.15
Pb4 6 80 8000 0.85 0.15
Pb5 6 100 10000 0.85 0.15
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parameters such as Component Services, Crossover Rate, and Mutation. 
Candidate Set Size and Pop_Size parameters are sensitive to the web services 
composition problem. Each problem instance has different values for 
Candidate Set Size and Pop_Size parameters. The population size of 1000 is 
appropriate for a Candidate Set Size of 20, but it is small for a Candidate Set 
Size of 100. Hence, the population size of the problem depends on the size of 
the candidate set for each component service. Each experiment was conducted 
with 20 independent runs on each problem instance for each optimization 
algorithm.

The results obtained for the proposed approach are compared with NSGA-2 
and MDPSO and shown graphically in Figure 7 through (a) to (f). We have 
considered four QoS attributes and for each of QoS attribute pair, the com-
parison is carried out with the standard algorithms on problem instance Pb3. 
Figure 7(a) shows the set of nondominated solutions with respect to cost and 
response time QoS attributes. Similarly, Figure 7(b) compares each of the 
algorithms for a set of nondominated solutions with respect to reliability and 
response time. Figure 7(c-f) represent comparison with respect to availability- 
response time, reliability-cost, availability-cost, and availability-reliability pair 
QoS attributes, respectively. For each of the possible pairs of QoS attributes, 

Table 9. Pearson correlation coefficient values.

Algorithms
Cost 
Time

Reliability 
Time

Availability 
Time

Reliability 
Cost

Availability 
Cost

Availability 
Reliability

NSGA-2 −0.8704 0.9553 0.9220 0.9645 0.9516 −0.9710
MDPSO −0.8734 0.9512 0.9164 0.9584 0.9481 −0.9603
MDGWO −0.8581 0.9639 0.9100 0.9731 0.9545 −0.9632

Figure 7. Nondominated solutions for two objectives.
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the proposed approach reflects better results in terms of nondominated solu-
tions. Correlation between different objectives is computed using the Pearson 
correlation coefficient. Table 9 presents the values of the Pearson correlation 
coefficient for various QoS attribute pairs for NSGA-2, MDPSO, and 
MDGWO algorithms.

The value of the Pearson correlation coefficient lies in a range from +1 to 
−1. A value of 0 indicates that the attributes are independent. Positive correla-
tion implies that the value of one attribute rises so does the value of the other 
attribute. In contrast, a negative correlation suggests that the value of one 
attribute increases and the other attribute’s value decreases. Figure 8 shows 
nondominated solutions obtained by MDGWO, NSGA-2, and MDPSO algo-
rithms for four quality of service attributes on problem instance Pb3. A parallel 
coordinates plot on four QoS attributes in Figure 9 shows nondominated 
solutions obtained by the different algorithms on problem instance Pb3.

Figure 8. Nondominated solutions for four objectives.

Figure 9. Parallel coordinates plot on four objectives.
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The comparison of MDGWO, NSGA-II, and MDPSO is shown in Table 10 
using obtained statistical outcomes of indicators GD, IGD, and Spread for all 
the QoS attributes under consideration.

It can be observed from Table 10 that MDGWO performs well for transactional 
and QoS-driven web services composition. MDGWO maintains a social hierarchy 
among solutions in the search space. It has a good convergence rate because search 
for optimal solution is guided by best three solutions. The selection of the best 
three solutions from different Pareto fronts maintains population’s diversity in 
generations and balances the exploration and exploitation processes.

Due to the stochastic nature of all optimization algorithms, a Wilcoxon 
signed rank test is used to discover the significant difference between the 
outcomes obtained by NSGA-II, MDPSO, and MDGWO algorithms on each 
problem instance with 20 independent runs. The significance level for all 

Table 10. Indicators values obtained by NSGA-2, MDPSO, and MDGWO.
Problem 
Instance

NSGA-2 
GD

MDPSO 
GD

MDGWO 
GD

NSGA-2 
Spread

MDPSO 
Spread

MDGWO 
Spread

NSGA-2 
IGD

MDPSO 
IGD

MDGWO 
IGD

Pb1 0.248 0.361 0.125 0.152 0.201 0.128 0.253 0.365 0.240
Pb2 0.365 0.499 0.279 0.191 0.243 0.132 0.386 0.452 0.377
Pb3 0.432 0.513 0.315 0.215 0.389 0.146 0.451 0.530 0.385
Pb4 0.590 0.699 0.478 0.351 0.429 0.237 0.593 0.694 0.481
Pb5 0.621 0.745 0.509 0.523 0.682 0.301 0.630 0.752 0.511
mean 0.451 0.563 0.346 0.286 0.388 0.189 0.462 0.558 0.398
std 0.139 0.140 0.132 0.135 0.169 0.0687 0.137 0.145 0.095

Table 11. Statistical results using the Wilcoxon signed rank test for MDGWO vs NSGA-2.
GD Spread IGD

MDGWO vs NSGA-2 MDGWO vs NSGA-2 MDGWO vs NSGA-2

Problem R+ R− p value R+ R− p value R+ R− p value

Instance
Pb1 210 0 0.8e-04 189 21 0.16e-04 179 31 0.57e-02
Pb2 204 6 2.2e-04 200 10 3.8e-04 171 39 1.3e-02
Pb3 207 3 1.4e-04 204 6 2.2e-04 200 10 3.8e-04
Pb4 210 0 0.8e-04 210 0 0.8e-04 210 0 0.8e-04
Pb5 210 0 0.8e-04 210 0 0.8e-04 210 0 0.8e-04

Table 12. Statistical results using the Wilcoxon signed rank test for MDGWO vs MDPSO.
GD Spread IGD

MDGWO vs MDPSO MDGWO vs MDPSO MDGWO vs MDPSO

Problem R+ R− p value R+ R− p value R+ R− p value

Instance
Pb1 210 0 0.8 × 10−04 207 3 1.4 × 10−04 207 3 1.4 × 10−04

Pb2 210 0 0.8 × 10−04 210 0 0.8 × 10−04 204 6 2.2 × 10−04

Pb3 210 0 0.8 × 10−04 210 0 0.8 × 10−04 210 0 0.8 × 10−04

Pb4 210 0 0.8 × 10−04 210 0 0.8 × 10−04 210 0 0.8 × 10−04

Pb5 210 0 0.8 × 10−04 210 0 0.8 × 10−04 210 0 0.8 × 10−04
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experiments is set to α = 0.05. Tables 11 and 12 summarize the test results 
based on GD, Spread, and IGD indicators for MDGWO versus NSGA-II and 
MDGWO versus MDPSO, respectively. R+ is the sum of ranks for the inde-
pendent runs of each problem instance in which the MDGWO performed 
better than the compared one and R− represents the sum of ranks for the 
compared one. It can be observed from Table 11 and Table 12 that MDGWO 
exhibits a high value of R+ for GD, Spread, and IGD on each problem instance. 
This indicates that the MDGWO performs better than the two compared 
optimization algorithms.

Conclusion

In this work, we proposed an approach for Transaction-QoS driven web 
services composition. A tree model of workflow is described to determine the 
QoS attribute value and transactional property of composite service. We 
used web service discovery to retrieve functionally relevant web services 
(candidate set) for each task defined in the business application workflow 
model. Transactional requirements are used to reduce the size of the candi-
date set. A nature-inspired metaheuristic algorithm, multiobjective discrete 
gray wolf optimization, is used to select a composite web service solution 
that fulfills the transactional and QoS requirements. We compared the 
proposed approach with NSGA-II and MDPSO. Generational 
Distance(GD), Inverse Generational Distance(IGD), and Spread measures 
evaluate the web services composition approach. Evaluation results show 
that the proposed approach works well. The Wilcoxon signed rank test 
presents the significance of the proposed approach in comparison to NSGA- 
II and MDPSO.

The initial population plays a significant role in solving problems by evolu-
tionary algorithms as it may impact the quality of the results obtained by 
evolutionary methods. The limitation of the proposed method is that the initial 
population is generated randomly. A portion of the initial population can be 
generated based on some heuristics to ensure the feasibility of the solutions. The 
proposed method also does not support web services composition on the fly. 
The applications of the proposed method can be possible in other domains, such 
as task scheduling for resources and selection of components from the library for 
component-based software engineering. According to the application, it may 
require making changes in the encoding and fitness computation of solutions.
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