
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uaai20

Applied Artificial Intelligence
An International Journal

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uaai20

A Multiobjective Discrete Grey Wolf Optimization
Approach for Transactional and QoS-driven Web
Services Composition

Sunita Jalal & Dharmendra Kumar Yadav

To cite this article: Sunita Jalal & Dharmendra Kumar Yadav (2021) A Multiobjective Discrete
Grey Wolf Optimization Approach for Transactional and QoS-driven Web Services Composition,
Applied Artificial Intelligence, 35:15, 1646-1684, DOI: 10.1080/08839514.2021.1989168

To link to this article: https://doi.org/10.1080/08839514.2021.1989168

Published online: 09 Nov 2021.

Submit your article to this journal

Article views: 557

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/loi/uaai20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08839514.2021.1989168
https://doi.org/10.1080/08839514.2021.1989168
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2021.1989168
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2021.1989168
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.1989168&domain=pdf&date_stamp=2021-11-09
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.1989168&domain=pdf&date_stamp=2021-11-09

A Multiobjective Discrete Grey Wolf Optimization Approach
for Transactional and QoS-driven Web Services
Composition
Sunita Jalal a and Dharmendra Kumar Yadavb

aDepartment of Computer Engineering, College of Technology, Pantnagar, Uttarakhand, India;
bDepartment of Computer Science and Engineering, MNNIT Allahabad, Prayagraj, Uttar Pradesh, India

ABSTRACT
Web services facilitate reusability that allows cost-effective
development of business applications using web services com-
position. Due to the proliferation of web services, different
service providers are providing similar functionality web ser-
vices. But these web services can have different values for QoS
attributes and transactional properties. Thus, it is difficult to
build a transactional and QoS optimal composite web service.
Most of the existing works used the scalarization-based method
for selecting optimal composite web service. In the scalariza-
tion-based method, the service user should have a priori knowl-
edge of its preferences about the nonfunctional requirements of
desired solutions. This paper proposes a Multiobjective Discrete
Grey Wolf Optimization (MDGWO)-based approach for
Transactional and QoS-driven Web Services Composition. The
Pareto dominance concept is used to select optimal composite
web service. Generational Distance (GD), Inverse Generational
Distance (IGD), and Spread measures are used to evaluate the
performance of the proposed approach. Experimental results
indicate that the proposed approach performs well.

ARTICLE HISTORY
Compiled 19 October 2021

Introduction

Web services are self-descriptive, loosely coupled, and platform-independent
software components that can be published and accessed over a network using
open standards (Alonso et al. 2004). Service providers publish descriptions of
their services on the service registry. The service user sends a query to the
service registry, which discovers services on request through a query. A web
service is developed to perform a specific function such as Flight Booking
Service, Payment Service, etc. Due to the adoption of cloud computing and
service-oriented architecture, web services are playing a significant role in
software development. Organizations use web services composition to develop
business applications cost-effectively. Web services composition promotes
code reusability since the developer has no need to rewrite the code for a

CONTACT Sunita Jalal sunita.jalal@gmail.com Department of Computer Engineering, College of
Technology, Gbpuat, Pantnagar, Uttarakhand, India

APPLIED ARTIFICIAL INTELLIGENCE
2021, VOL. 35, NO. 15, 1646–1684
https://doi.org/10.1080/08839514.2021.1989168

© 2021 Taylor & Francis

http://orcid.org/0000-0001-7279-5971
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.1989168&domain=pdf&date_stamp=2022-03-08

function from scratch. Web services composition combines and coordinates
existing value-added web services with different functionalities to develop a
composite web service. A composite web service represents a complete busi-
ness application that consists of different activities. Web services are building
blocks for business application as they perform these activities that can involve
long-running transactions. An example of composite service is Online Trip
Management Service, which can be developed by aggregating web services for
hotel booking, flight booking, and payment.

Design time specification of a composite web service is depicted by a
workflow model that consists of a set of abstract component services inter-
connected using different workflow patterns. The description of different
workflow patterns is explained in Van der Aalst et al. (2003). A web service
discovery approach is used to find a set of candidate web services for each
abstract component service based on its functionality. Figure1 shows an
example of a workflow model of composite service CS. The workflow in
Figure 1 consists of six abstract component services that are interconnected
using workflow patterns. Suppose that each abstract component service has
n number of candidate web services to perform its function. Then, the
number of possible web services compositions for composite service CS
is n6.

The web services composition can have two types of requirements: Quality
of Service (QoS) requirements and Transactional requirements (Abbassi et al.
2015). Quality of Service (QoS) attributes of a web service describes how the
service carries out its function. QoS has a significant impact on web service
selection to meet the QoS needs of the service requester. Some of the quality of
service (QoS) attributes of web services are response time, cost, throughput,
availability, and reliability. The lower value of some QoS attributes, such as
cost and response time, indicates good quality. For some QoS attributes, such
as throughput and reliability, a higher value indicates good quality.
Specifications of QoS requirements are defined in Service Level Agreement
(SLA), a contract between the service requester and the service provider
(Statovci- Halimi and Halimi, 2004). An example of QoS requirement is
given as follows: the reliability value of the composite service CS shall be
greater than 95%. SLA assures the service requester to get the service as per the
specification. Failing to meet specifications defined in SLA could create severe
consequences for a service provider. Transactional requirements emphasize
correct execution of the service to get a consistent outcome. The application
designer defines transactional requirements as a set of transactional properties
of the composite service. A transactional property of a web service specifies its
behavior in the case of failure. For example, the effect of service having a
compensatable transaction property can be compensated after its successful
execution. A composite service instance should satisfy the specified QoS and
transactional requirements.

APPLIED ARTIFICIAL INTELLIGENCE 1647

With the wider acceptance of cloud computing, IOT, and web-based tech-
nologies, more and more functionally equivalent web services having different
QoS attributes and transactional properties are available in the service registry.
Thus, many composition solutions are possible for a user request with varying
values of QoS and transactional properties. Finding a composition solution
that satisfies QoS requirements specified in SLA is the NP-hard multiobjective
optimization problem (Wada et al. 2011). Thus, finding an optimal composi-
tion solution that satisfies both quality of service constraints defined in SLA
and transactional requirements defined by the composition designer is also the
NP-hard multiobjective optimization problem.

Metaheuristic algorithms can find a near-optimal solution in a reasonable
time. Many researchers have focused separately on the web services composi-
tion either from the QoS aspect (Canfora et al. 2005; Da Silva, Ma, and Zhang
2016; Karimi, Isazadeh, and Rahmani 2017; Wang, Huang, and Xie 2014; Yao
and Chen 2009) or from the transactional aspect (Bhiri, Perrin, and Godart
2005, 2006; Li, Liu, and Wang 2007; Liu et al. 2009). Some researchers have
also studied both QoS and transactional aspects in the web services composi-
tion (Ding et al. 2015; El Hadad, Manouvrier, and Rukoz 2010; Graiet et al.
2016; Imed and Graiet 2017; Wu and Zhu 2013). Most of the existing works
solve the transaction and QoS-based multiobjective web services composition
problem using the scalarization-based method by converting it into a single
objective problem. They considered the weighted average of all objectives
(QoS attributes). With this approach, it is difficult to give proper weights to
all QoS attributes when they are conflicting. It produces only one optimal
solution that may be nondominated. It is not useful when a service composer
requires nondominated solutions to take decision according to the importance
of each QoS attribute.

By considering the drawback of the scalarization-based method, this
paper proposes a Multiobjective Discrete Grey Wolf Optimization
(MDGWO)-based approach for transactional and QoS-driven web services
composition. The contributions of the proposed approach can be presented
as follows:

(1) Derivation rules are described for determining the transactional proper-
ties of the composition of two web services under different workflow patterns.

(2) A tree representation of composition workflow is discussed to compute
QoS values of web services composition and to determine transactional prop-
erties of composite service using automaton.

(3) The Multiobjective Discrete Grey Wolf Optimization (MDGWO)
approach is explained to find nondominated solutions for transactional and
QoS-driven web services composition problems.

The rest of this paper is organized as follows. Section 2 describes QoS
computation and transactional properties of composite service and defines
the problem statement. Section 3 reviews the related work. Section 4 discusses

1648 S. JALAL AND D. K. YADAV

the proposed composition approach based on the tree model of workflow and
multiobjective discrete gray wolf optimization. Section 5 demonstrates experi-
mental results, and section 6 presents the conclusion of this paper.

Composite Service Description and Problem Statement

In this section, workflow patterns of composite web service are described and
QoS attributes and transactional properties of composite service are explored.
Then, the problem statement is specified.

Workflow Patterns in Web Services Composition

Sequential, parallel, conditional, and loop are the four most commonly used
workflow patterns considered in web services composition (Cremene et al.
2016). In the sequential pattern (!), services are executed in sequential
order. In the parallel pattern (+), services are executed independently and
the next service will not start execution until all parallel services have finished
their execution. In the conditional or choice pattern (x), one of the services is
executed based on the condition. The service within a loop pattern (*) is
executed repeatedly, provided that the loop condition is met. In the workflow
model shown in Figure 1, service S2 and service S3 are parallel after success-
fully executing service S1. Service S4 will start execution after the completion
of both S2 and S3. After successful execution of S4, either service S5 or service
S6 is executed according to the condition. Suppose that the workflow model
shown in Figure 1 represents Online Trip Management Service (OTMS).
Service S1 is the Customer Request Service (CRS) that receives details for a
trip from the customer. Services S2 and S3 are the Hotel Booking Service
(HBS) and Flight Booking Service (FBS), respectively. Service S4 is a Payment
Service (PS) that processes payment of the trip. Services S5 and S6 are the Trip
Document E-Mail Service (TDES) and Trip Document Message Service
(TDMS), respectively. Business Process Execution Language (BPEL) (Jordan
et al. 2007) is an example of composition languages. It composes different web
services using sequential, choice, parallel, and loop workflow patterns.

Figure 1. Workflow model.

APPLIED ARTIFICIAL INTELLIGENCE 1649

Quality of Service (QoS) Computation of Composition

Vector Q = {q1, q2, . . ., qm} denotes the different QoS attributes, where qi
represents the ith QoS attribute and m is the total number of considered QoS
attributes. QoS attributes can be categorized into two groups: Qhigh and Qlow.
For Qhigh, a larger value of an attribute indicates better quality, such as
reliability and availability. But for Qlow, a lower value of an attribute indicates
better quality, such as response time and service cost. Some of the quality of
service attributes are response time, cost, relaibility, and availability. The
aggregated value of each QoS attribute of a composite web service depends
on the workflow pattern of composition and QoS attribute value of each
component web service. Table 1 shows the computation of four QoS attributes
under sequential, parallel, choice, and loop workflow patterns.

In the sequential composition pattern, response time and cost are additive,
while reliability and availability of composition are multiplicative. In the
parallel composition, the cost of composition is additive, while reliability
and availability of composition are multiplicative. The response time of par-
allel composition is the highest response time among all component services.
In the choice composition pattern, n component services S1, S2,., Sn are
invoked with probabilities p1, p2, . . ., pn such that

Pn
i¼1 pi ¼ 1.

Transactional Properties of Composition

Web services involved in the composition can fail due to several reasons like
machine failure, dynamic changes in the execution environment, and net-
working issues. Transaction support is required to ensure reliability in web
service composition. The main transactional properties of a web service are
pivot (p), retriable (r), and compensatable (c) (Mehrotra et al. 1992). A web
service can have a combination of transactional properties such as compensa-
table and retriable (cr) and pivot and retriable (pr). The complete set of
transactional properties for a web service is {p, r, c, cr, pr}. The description
of properties is given as follows:

• Retriable Service: A web service is said to be retriable (r) if it is guaranteed
to be complete successfully after a finite number of invocations.

• Compensatable Service: A web service is said to be compensatable (c) if it
is able to provide compensation policies to undo its effect semantically.

Table 1. Quality of Service (QoS) computation.
QoS attribute Sequential Parallel Choice Loop

Response time (T)
Pn

i¼1 Ti max
i2ð1;nÞ

fTig
Pn

i¼1 pi:Ti k.T

Cost (C)
Pn

i¼1 Ci
Pn

i¼1 Ci
Pn

i¼1 pi:Ci k.C
Availability (A)

Qn
i¼1 Ai

Qn
i¼1 Ai

Pn
i¼1 pi:Ai Ak

Reliability (R)
Qn

i¼1 Ri
Qn

i¼1 Ri
Pn

i¼1 pi:Ri Rk

1650 S. JALAL AND D. K. YADAV

• Pivot Service: A web service has the pivot (p) transactional property if it is
neither retriable nor compensatable. It means that once the pivot web service
performs successfully, we cannot semantically undo its effects. Failure of a
pivot web service makes no effect at all.
Compensatable and retriable services support backward recovery (i.e., undo)
and forward recovery (i.e., redo), respectively. Component web services sup-
porting backward and forward recoveries are useful in maintaining composite
web services as failure-atomic. The partial order among transactional proper-
ties is as follows: p < c and pr < r < cr

Atomic composite web service: To ensure that composite web service is
failure-atomic(a), the effects of previously successfully executed component
web services have to be semantically undone in the case of unsuccessful
execution of one of its component web services. Once a failure-atomic com-
posite web service executes successfully, its effect remains everlasting. The
nonatomic transactional property is denoted by (a’). The composite service
will be nonatomic (a’) for every composition workflow pattern if even one of
its component services is nonatomic (a’).

A transactional score (t_score) is assigned to each transactional property
according to partial order. We assign a t_score value of 1 for either cr web service
or failure-atomic (a) web service. Both compensatable and retriable web services
are desirable in web services composition, and pivot web service is least desirable.
Thus, a t_score value of 0.25 is assigned for pivot web service. Both the compen-
satable web service and the retriable web service are assigned a t_score value of
0.75. Pivot and retriable(pr) web services are assigned a t_score value of 0.5.

The transactional property of the composite web service is derived by
considering workflow patterns and the transactional properties of component
web services. El Hadad, Manouvrier, and Rukoz (2010) describe the derivation
of transactional properties of composite service under sequential and parallel
workflow patterns. Wu and Zhu (2013) also define the derivation of transac-
tional properties of composite service under choice and loop workflow pat-
terns. In a sequential pattern, services are processed from left to right to derive
the transactional property of the composition. In parallel and choice patterns,
services are processed from top to bottom to derive the transactional property
of composition. There must be a guarantee of failure atomicity during the
execution of composite web service.

Composition of two component services: The derivation of transactional
properties for composite web service under sequential, parallel, choice, and
loop workflow patterns is illustrated in Table 2. We are considering only two
component services at a time in a workflow pattern.

In a sequential workflow pattern, if the transactional property assigned to
the first component web service is p and the second component web service is
c, then the transactional property of the composite web service will be nona-
tomic (a’). In this case, if the first component service executes successfully and

APPLIED ARTIFICIAL INTELLIGENCE 1651

the second component service fails, then effects of the first component service
cannot be semantically undone. If the transactional property of the first
component service is c and the transactional property of the second compo-
nent service is from set {p, r, pr}, then the composite service will be failure-
atomic. If the second component service fails, then the effects of the first
component service can be semantically undone.

In a parallel workflow pattern, the composite web service will be atomic if it
is created by the parallel composition of p web service and cr web service. If cr
service fails after successful completion of p service, then cr service can be
retried to complete successfully. The composite web service created by the
parallel composition of r web service and p web service will be nonatomic
because the effects of r service cannot be undone on the failure of p service. In
the choice composition pattern, only one of the web services is executed. For
example, choice composition of c web service and p web service will be pivot
(p) because if first service fails, then its effects can be compensated and second
service will execute to perform the task. If pr web service and r web service are
composed using a choice pattern, then the resulting composite service will
be r.

Composition of component service and atomic service: Transactional
properties of the composition of two services are shown in Table 3, where
one service is a component web service and the other is a composite web service.
The sequential composition of pivot (p) component web service and atomic (a)

Table 2. Transactional property of composition of two component services.
Web service 1 Web service 2 Sequential Parallel Choice

(!) (+) (x)

p p a’ a’ p
p c a’ a’ p
p r p a’ p
p pr a a’ p
p cr a a p
c p a a’ p
c c c c c
c r a a’ p
c pr a a’ p
c cr c c c
r p a’ a’ p
r c a’ a’ a’
r r r r r
r pr r r r
r cr r r r
pr p a’ a’ p
pr c a’ a’ p
pr r r r r
pr pr pr pr pr
pr cr a a pr
cr p a a p
cr c c c c
cr r r r r
cr pr pr pr pr
cr cr cr cr cr

1652 S. JALAL AND D. K. YADAV

composite web service will be nonatomic. If the pivot (p) service completes and
the atomic (a) service fails, then the effects of the pivot (p) service cannot be
semantically undone. The sequential composition of compensatable (c) compo-
nent web service and atomic (a) composite web service will be atomic. The
effects of compensatable service can be semantically undone in case atomic
service fails. The parallel composition of compensatable and retriable (cr)
component web service and atomic (a) composite web service will be atomic.
If the cr service fails, then it can be retried for its successful completion. If cr
service completes and atomic service fails, then the effects of cr service can be
semantically undone. The choice composition between any web service and
atomic composite service will result in atomic composite service.

Composition of two composite services: Transactional properties of the
composition of two composite services are presented in Table 4. The sequen-
tial composition of two atomic composite web services will be nonatomic. If
the first atomic service completes and the second atomic service fails, then the
effects of first atomic service cannot be semantically undone. The sequential
composition of atomic (a) service and retriable (r) service will be atomic. If
atomic service completes and retriable service fails, then retriable service can
be re-executed for its successful completion. The parallel composition of
atomic (a) service and retriable (r) service will be nonatomic. If atomic service
fails, then the effects of retriable service cannot be semantically undone.

Table 4. Transactional property of composition of two composite services.
Composite Composite Sequential Parallel Choice
Web service 1 Web service 2 (!) (+) (x)

a p a’ a’ a
a c a’ a’ a
a r a a’ a
a pr a a’ a
a cr a a a
a a a’ a’ a

Table 3. Transactional property of composition of component service and compo-
site service.

Web service Composite Sequential Parallel Choice
Web service (!) (+) (x)

p a a’ a’ a
c a a a’ a
r a a’ a’ a
pr a a’ a’ a
cr a a a a

APPLIED ARTIFICIAL INTELLIGENCE 1653

Composition under the loop pattern: A web service in the loop pattern is
executed several times in sequence. If a web service with the transactional
property from the set {c, r, cr}, is executed in a loop pattern, its final transac-
tional property will be the same as initial. However, execution of a pivot (p)
web service in the loop pattern will be nonatomic. The transactional property
under the loop pattern is given in Table 5.

The above rules of transactional properties can be used to obtain the
transactional property of a composite web service that contains a number of
component web services in complex composition patterns. Figure 2 depicts
the automation of composite service according to the transactional rules
presented in Table 2, Table 3, Table 4, and Table 5. The automaton consists
of seven states. State I represents the initial state. Final states are p, c, cr, r, pr,
and a. The alphabets of the language accepted by the automaton are
{’p’,’pr’,’c’,’r’,’cr’,’a’,’! p’,’! pr’,’! c’,’! r’,’! cr’,’! a’,’+p’,’+pr’,’+-
c’,’+r’,’+cr’,’+a’,’xp’,’xpr’,’xc’,’xr’,’xcr’,’xa’}.

For example, we consider the workflow shown in Figure 1. Suppose that
service S1 (CRS) is compensatable retriable (cr), S2 (HBS) and S3 (FBS) are
compensatable (c), S4 (PS) is pivot (p), and S5 (TDES) and S6 (TDMS) are
retriable (r). In this workflow, first, we process parallel composition, then
choice composition, and finally sequential composition using automaton.
The transactional property of the composition is as follows:

cr ! ðcþ cÞ ! p! ðrxrÞ ¼ cr! c! p! r ¼ c! p! r ¼ a! r ¼ a:

Table 5. Transactional property of composition under the loop
pattern.

Web service p c r pr cr

loop(*) a’ c r a’ cr

Figure 2. Automaton of Composite Service for transactional properties

1654 S. JALAL AND D. K. YADAV

Problem Statement

The main objective of web services composition is to build a reliable and
efficient application, i.e., composite web service for a given workflow that
satisfies transactional and QoS requirements.

The workflow WF represents specification of an abstract composite service.
QR and TR are given QoS requirements and transactional requirements,
respectively.

QR = {qr1, qr2,qrm}, where qri represents the QoS requirement for the
ith QoS attribute qi and m is the number of QoS attributes.

TR = {tr1, tr1, . . . trn}, where tri is the transactional requirement of the ith

abstract component service in the workflow and n is the total number of
abstract component services or tasks in the workflow. The objective is to build
a composite web service CWS with workflow WF satisfying QR and TR.

Related Work

Web services composition approaches can be categorized into three groups: 1)
QoS-driven approaches, 2) transaction-driven approaches, and 3) transac-
tional and QoS-driven approaches.

QoS-driven Approaches

This group of approaches focuses on the construction of composite web
services based on the QoS requirements. Existing QoS-driven web services
composition approaches are either scalarization-based or Pareto-based. In the
scalarization-based approach, QoS attributes are normalized and weights are
assigned to QoS attributes such that the sum of weights of QoS attributes must
be equal to 1. Each composition solution is assigned a QoS score using the
fitness function. This approach has some limitation. Weights are deduced by
an expert based on user preference. Different experts may specify different sets
of weights. The solution having the highest score is preferred, but there is no
way to verify that the obtained solution is nondominated. In the Pareto-based
approach, a set of solutions is obtained when solving the multiobjective
optimization problem. These solutions define the best trade-off between con-
flicting objectives (QoS attributes), and this set of solutions is called the Pareto
optimal set.

Researchers proposed exact, heuristic, and metaheuristic algorithms for web
services composition. In Zeng et al. (2004), the authors used local and global
optimization algorithms for QoS-aware web services composition. The local
optimization algorithm chooses the optimal service for each task defined in the
composite web service. The global optimization algorithm uses integer pro-
gramming to select the optimal execution plan. Integer programming has

APPLIED ARTIFICIAL INTELLIGENCE 1655

polynomial time complexity and finds accurate results on the small size
candidate service set. Chattopadhyay, Banerjee, and Banerjee (2017) proposed
the dependency graph-based composition mechanism that finds service com-
position with near-optimal QoS in the least possible time and achieves scal-
ability. Only a single QoS attribute can be considered at a time. The
dependency graph-based approach has time complexity Oðn2Þ, where n is
the number of services in the graph. Heuristic algorithms are generally experi-
enced-based techniques created for solving specific optimization problems.
Klein, Ishikawa, and Honiden (2011) proposed an approach based on a hill-
climbing algorithm to obtain near optimal solution. Metaheuristic algorithms
are problem independent and can be applied to a wide range of problems. In
Jatoth, Gangadharan, and Buyya (2015), the authors presented the systematic
review of existing research works on QoS-driven web services composition.
They provided a classification of computational intelligence approaches to find
web services composition based on QoS criteria and highlighted the future
research challenges. The performances of well-known nature-inspired multi-
objective algorithms are investigated in Cremene et al. (2016) to get optimal
results for QoS-driven web services composition.

Canfora et al. (2005) proposed a Genetic Algorithm (GA)-based
approach to obtain an optimal composite web service that satisfies global
QoS requirements. Static and dynamic penalty strategies were used with the
fitness function. This approach was compared with the integer program-
ming-based approach presented in Zeng et al. (2004). The genetic
Algorithm performs well with large search space in comparison to integer
programming. Time compexity of GA is OðmntÞ, where m is the number of
component services in the workflow, n is the population size, and t is the
number of generations. The nondominated Sorting Genetic Algorithm
(NSGA-2) (Deb et al. 2002), a multiobjective evolutionary optimization
algorithm, is used for service composition in Yao and Chen (2009). The
time complexity of the proposed method is Oðmn2tÞ, where m is the
number of QoS attributes, n is the population size, and t is the number of
generations. In Liu et al. (2013), the authors applied end-to-end decom-
position of QoS constraints to select web services for each component
service of a workflow. The authors used the Culture Genetic Algorithm
(CGA) that has better searching ability and fast convergence rate as com-
pared to the Culture Max-Min Ant System. A hill climbing and genetic
algorithm-based approach was proposed in Ai and Tang (2008) for QoS-
aware web services composition that focused on both QoS constraints and
dependencies between services. The optimzation approach accelerates the
search for feasible solutions. Da Silva, Ma, and Zhang (2016) investigated
three Genetic Programming (GP)-based service composition approaches.
Each solution is represented as a tree. In the first approach, penalization in

1656 S. JALAL AND D. K. YADAV

the fitness function is used to penalize functionally incorrect solutions. The
second approach ensures functional correctness of the solutions by gener-
ating the initial population through a greedy algorithm. The third approach
uses the second approach with the inclusion of the choice composition
structure. The GP approach produces accurate composition solutions for
large size repository of services in less time as compared to graph-based
PSO. In Wu et al. (2016), the authors considered the concept of a
Generalized Component Service (GCS) that could perform multiple abstract
services. The standard parse tree-based algorithm was proposed to identify
CGSs in a workflow of composite service. The authors used extended GA
for finding a near-optimal composite web service solution. The GA-based
approach finds a feasible solution with significantly less time for the number
of component services > 10 than the backtracking algorithm. Karimi,
Isazadeh, and Rahmani (2017) proposed clustering of services to decrease
the search space of the problem so that discovery time can be reduced. SLA
contracts were also clustered based on the similarity of the content of SLA
contracts. The association rules technique is used in discovering the related
clusters of different abstract services. The culture Genetic algorithm is used
to find optimal solution for QoS-aware web services composition. Genetic
algorithm-based optimization methods have the same time complexity as
defined in Canfora et al. (2005).

In Zhang et al. (2010), the Ant Colony Optimization algorithm-based
approach was proposed to obtain optimal QoS-aware service composition
on the fly. Wang, Huang, and Xie (2014) described an Adaptive Ant Colony
Optimization (AAOC)-based approach to find an optimal solution for QoS-
aware web services composition. They considered the trust degree as an
attribute to update pheromone evaporation dynamically. AACO has more
than 90% accuracy in getting better Pareto solutions. The time complexity of
ant colony optimization-based approaches is OðmntÞ, where m is the number
of component services in the workflow, n is the number of ants, and t is the
number of generations. In Da Silva et al. (2017), graph database is used to store
dependencies among available services in repository. A subgraph was built
from graph database when receiving a composition request. Each composition
solution was represented as a GP tree. The optimization approach produces
near optimal solutions in a reasonable time. Zhao et al. (2012) proposed an
approach that uses discrete immune optimization with particle swarm opti-
mization (IDIPSO). The approach uses clonal selection theory and PSO to find
optimal solutions for web service composition. Clonal selection theory
describes the proliferation of antibodies that recognize a specific type of
antigen. In web service composition, antigen represents the optimization
problem and antibody refers to a solution, i.e., position vector of a particle.
The proliferation of antibody (solution) is based on the affinity value. IDIPSO
finds much better composition solutions than PSO. In Yin et al. (2014), the

APPLIED ARTIFICIAL INTELLIGENCE 1657

authors proposed a hybrid multiobjective discrete particle swarm optimization
algorithm (HMDPSO) for the SLA-aware service composition problem (SSC).
The authors considered three user categories platinum, gold, and silver. The
optimization method has time complexity Oðmn2tÞ, where m is the number of
QoS attributes, n is the population size, and t is the number of generations.
HMDPSO produces more accurate solutions than MOGA as it includes a local
search strategy. In Yan et al. (2016), the authors proposed a Graph-Based
Memetic algorithm that increases search ability by combining global search
and local search. The memetic algorithm is an extension of GA that includes a
search technique to reduce the premature convergence of GA. In Chandra et
al. (2016), the authors presented a modified gray wolf optimizer to select a
composite web service that satisfies global QoS constraints. Time complexty of
the modified gery wolf optimizer is OðmntÞ, where m is the number of
component services in the work flow, n is the number of wolves, and t is the
number of generations. Gavvala et al. (2019) proposed an Eagle Strategy with
the Whale Optimization method to obtain a global optimum solution for QoS-
driven cloud service composition.The optimization method maintains the
balance between exploration and exploitation to avoid premature convergence
and slow convergence. The time complexity of the method is the same as that
of GA. In Wang et al. (2018), the authors proposed a two-phase optimization
process for QoS-aware web services composition. In the first phase, the
credible services are obtained by integrating QoS computation with credibility
evaluation and weight calculation using fuzzy AHP. In the second phase, a
modified cuckoo method is applied to find global optimum solution for QoS-
aware service composition. The time complexity of the method is Oðmn2tÞ,
where m is the number of QoS attributes, n is the population size, and t is the
number of generations. In Ren et al. (2021), the authors presented a QoS-
aware composition framework based on deep learning and attention mechan-
isms. The approach finds high QoS composition solutions in less time.

Transaction-driven Approaches

Business-to-Business applications require web services composition to achieve
their functionalities. Web services composition-based applications involve
long-running web transactions that combine several transactions performed
by different web services. These applications’ executions can fail because of
unavailability or failure of any web service, machine failure, process cancella-
tion, etc. Thus, long-running web transactions violate some of the traditional
transactional ACID (Atomicity, Consistency, Isolation, and Durability) prop-
erties, generally atomicity and isolation. Transaction-aware web services com-
position approaches focus on building reliable composite web services.

1658 S. JALAL AND D. K. YADAV

Bhiri, Perrin, and Godart (2005) proposed a transactional approach for
reliable web service composition by ensuring failure atomicity of a composite
service needed by designers. The authors distinguished between control flow
and transactional flow of a transactional composite web service (TCS). The
notion of the Accepted Termination State (ATS) is used to represent the
designer’s requirements for failure atomicity. ATS contains termination states
of a composite service in which the designer accepts its termination. The
execution of composite service is correct if the termination state of composite
service belongs to ATS. The authors defined a set of transactional validity rules
to generate transaction properties that ensure the validity of composite web
services regarding the specified ATS. The time complexity of the method is
OðmnÞ, where n is the number of ats in the set ATS and m is the size of each
ats. In Bhiri, Perrin, and Godart (2006), the authors proposed reliable web
service composition based on the concept of transactional patterns. A transac-
tional pattern is a workflow pattern augmented with transactional dependen-
cies between component services. There are two types of dependencies defined
in this paper: activation dependencies and transactional dependencies (com-
pensation, cancellation, and alternative).

In Li, Liu, and Wang (2007), the authors focused on transactional
support to compose and schedule web services having different transac-
tional properties. The authors proposed rules to derive transactional prop-
erties of composite web service described using sequential, parallel,
alternative, and loop workflow patterns. Liu et al. (2009) proposed a frame-
work for specification, verification, and execution of fault tolerant compo-
site web service. Framework defined fault handling logic using Event
Condition Action (ECA) rules at design time according to an application’s
need. The authors considered four types of transactional web services:
atomic, weak atomic, semantic-atomic, and pivot. A weak atomic service
is not compensatable, and semantic atomic service is not cancelable. The
authors summarized exception handling strategies for handling faults. The
authors also proposed a simple transfer-based termination protocol for
consistent termination of composite service when the service’s fault is
unrepairable.

Transactional and QoS-driven Approaches

Execution of composite service should fulfill transactional and QoS require-
ments irrespective of any failure or dynamic changes. In El Hadad,
Manouvrier, and Rukoz (2010), the authors proposed a design-time selec-
tion algorithm that satisfies the user’s preference expressed in terms of QoS
criteria and transactional requirements. Transactional requirements are
defined in terms of risk levels. QoS requirements are described by assigning
weights to each quality criterion. A simple weighted sum technique is

APPLIED ARTIFICIAL INTELLIGENCE 1659

applied to give a quality score to each web service. The web service selection
for a task depends on the transactional property of the web service selected
for the previous task in the workflow. The selection algorithm has time
complexity OðmnÞ, where m is the number of component services and n is
the number of candidate web services for each componet service. Wu and
Zhu (2013) converted a workflow model of composite service into a direc-
ted acyclic graph using web service discovery. The solution is the path from
the starting node to the sink node in DAG. An ant colony optimization
(ACO) was employed to find the best path in DAG satisfying QoS con-
straints and transactional requirements. Each web service is assigned a QoS
score and transaction score. The QoS score is calculated using the sum of
weights of QoS attribute values. The time complexity of the optimization
method is the same as in Wang, Huang, and Xie (2014). In Ding et al.
(2015), the authors proposed an optimal selection approach based on the
transactional performance evaluation method and Genetic Algorithm with a
penalty function. The transactional performance method calculates the
execution time of transactional composite web services according to the
workflow pattern and transactional properties of component web services.
An individual (solution) in GA was represented by integer array encoding.
Execution time and price QoS attributes were considered.

Abbassi et al. (2015) proposed a Genetic Algorithm-based approach for ATS-
and SLA-aware web services composition. The authors considered the response
time, availability, throughput, and cost QoS attributes. Acceptable Termination
States (ATSs) define the transactional behavior of composite services that
express which faults are acceptable, retriable, or recoverable. The authors used
transactional fitness (TF) and SLA fitness (SF) in the fitness function. An array
of integers represents a genome (solution). In Graiet et al. (2016), the authors
introduced the concept of recovery capability (RC) to capture the recoverability
level supported by web services. If the transactional property of a service is
compensatable and retriable, then the RC value of the service is 1. This means
that the service is perfectly recoverable. The authors proposed an adaptive
service composition (ASC) approach to define or reconfigure composite services
according to SLA and ATS constraints. The authors used the Genetic Algorithm
to find a composition solution. The time complexity of genetic-based optimiza-
tion methods defined in Abbassi et al. 2015; Ding et al. 2015; Graiet et al. (2016)
is OðmntÞ, where m is the number of component services in the workflow, n is
the population size, and t is the number of generations. In Imed and Graiet
(2017), the authors defined a hierarchical service composition model using a set
of functional capabilities of abstract composite service. The authors used the
concept of Required Efficiency Level (REL). They proposed an algorithm that
decomposes global QoS constraints into local ones then verifies the reliability
and efficiency of web services. The time complexity of the hierarchical

1660 S. JALAL AND D. K. YADAV

composition model is Oðk � ðnþmþ pÞÞ, where n represents the number of
tasks in the workflow, m is the number of inner nodes in the tree, p is the
number of web services, and k represents the number of QoS constraints.

Grey Wolf Optimization Methods

This section describes the use of gray wolf optimization and its variants in the
different application areas.

Li et al. (2017) proposed a modified discrete gray wolf optimizer
(MDGWO) algorithm to find the optimal threshold value for multilevel
image segmentation. They describe improvement in the attack strategy of
gray wolves. Locations of search agents are updated using the weighting
method. MDGWO has better accuracy than GA, Differential Evolution
(DE), andAnt bee colony optimization techniques. In Martin, Marot, and
Bourennane (2018), the authors proposed an improved version of discrete
gray wolf optimization that performs a random selection of a leader. The
method is tested on various benchmark functions and shows better perfor-
mance. Sharma et al. (2019) described a modified Grey Wolf Optimization
(MGWO) for detection of Parkinson’s disease in a patient. The modified
method is used for selecting multiple features, and it applies machine learning
techniques to the selected features.

The estimated accuracy of the optimization method is 94.83%. In Badawy et
al. (2018), the authors presented a discrete version of gray wolf optimization
(DGWO) for the reconstruction of the shredded document. The position of
each search agent is updated using either a crossover operator or a mutation
operator. The DGWO has a fast convergence rate as compared to the genetic
algorithm. Lu et al. (2016) described multiobjective discrete GWO for hand-
ling scheduling problems of the welding process. They include a two-part
representation for solution encoding and a modified search operator to ensure
the solution’s feasibility. The optimization method presents better results than
NSGA-II and Strength Pareto Evolutionary Algorithm 2(SPEA2) in terms of
convergence and quality of optimal solutions. Karasu and Saraç (2020)
employed a multiobjective gray wolf optimizer with KNN to choose the
most appropriate features for the classification of power quality disturbances.
The overall estimated accuracy of the classification model is 99.26. In Altan,
Karasu, and Zio (2021), the authors applied the GWO method to optimize the
weighted coefficients of each intrinsic mode function (IMF) for obtaining the
best wind speed forecasting model. The proposed wind speed forecasting
model performs well for different data sets.

Existing transactional and QoS-driven approaches are scalarization-based,
and they used a simple weighted sum technique for thw QoS score calculation.
They explained the formula of QoS computation for composite web services
and rules for determining the transactional properties of web services

APPLIED ARTIFICIAL INTELLIGENCE 1661

composition but did not provide any method for the same. The use of other
nature inspired algorithms in this area is still missing. Thus, based on the
above study, we propose the Multiobjective Discrete Grey Wolf Optimization-
based approach for transactional and QoS-driven web services composition.
The proposed approach presents a tree model of composition workflow and
discusses QoS computation- and automaton-based transactional properties
determination for web services composition.

Proposed Approach for Web Services Composition

The overview of transactional and QoS-driven web services composition is
depicted in Figure 3. This approach focuses on a tree model of workflow to
determine the QoS attribute value and transactional property of composite
service, generating a candidate set for each component service and a multi-
objective discrete gray wolf optimization approach for finding composite web
service optimal in terms of transactional and QoS requirements.

Figure 3. Proposed approach.

1662 S. JALAL AND D. K. YADAV

QoS requirements are specified in SLA based on mutual agreement between
a service provider and a service requester. QoS requirements are constrained
on the QoS attributes. For example, the response time of composite web
service should not exceed 10 ms. We have considered the following constraints
in the proposed approach.

• Response time of composite service Tcs < ¼ Tmax
• Cost of composite service Ccs < ¼ Cmax
• Reliability of composite service Rcs > ¼ Rmin
• Availability of composite service Acs > ¼ Amin
The application designer specifies transactional requirements at design time.

For example, consider following the transactional requirements of OTMS.
(1) If either component service S2 or component service S3 fails during

execution, then the effects of component service S1 must be semantically
undone.

(2) If component service S2 fails and component service S3 completes, then
the effects of component service S1 and component service S3 must be
semantically undone.

(3) If component service S3 fails and component service S2 completes, then
the effects of component service S1 and component service S3 must be
semantically undone.

(4) If component service S4 fails during execution, it can be retried for its
successful completion.

(5) The effects of component service S4 cannot be semantically undone after
its successful execution.

(6) After completion of component service S4, either component service S5
or component service S6 will execute successfully.

Based on transactional requirements, the application designer decides
transactional properties of component services so that the composition will
execute correctly and consistently. Table 6 shows possible transactional prop-
erties of component services in OTMS to ensure failure-atomic execution.

Subsection 4.1 describes the tree model of workflow. The candidate set for
each component service defined in the workflow is discovered using the web
service discovery approach. It is described in subsection 4.2. A nature-inspired
metaheuristic approach is used to solve multiobjective optimization problems.

Table 6. Transactional properties of component services in
OTMS.

S1 S2 S3 S4 S5 S6

c c c pr pr pr
c c c pr r r
c cr cr pr pr pr

APPLIED ARTIFICIAL INTELLIGENCE 1663

In subsection 4.3, Grey Wolf Optimization is described. Subsection 4.4
explained multiobjective discrete gray wolf optimization to obtain web ser-
vices composition optimal in transactional and QoS requirements.

Tree Model of Workflow

The workflow of a composite web service can be viewed as a generalized tree.
We define a tree representation of workflow as WF_Tree = (root, leaf, qos, tp,
type)

• root: It defines the root node of the tree. It contains the QoS values and
transactional property of composite service.

• leaf: It is a boolean type. It tells whether a node is a leaf node or an internal
node. Its value is true for a leaf node.

• qos: It stores the QoS value of an attribute of a node.
• tp: It stores the transactional property of a node.
• type: It gives the workflow pattern type such as sequence(!), parallel(+),

choice(x), and loop(*) of an internal node other than root.
Figure 4 presents the tree model of workflow given in Figure 1. The root

node represents the composite service, leaf nodes represent component ser-
vices, and internal nodes represent different workflow patterns.

Algorithm 1 presents the computation of the QoS attribute value and
transactional property for a composition workflow represented as a tree. It
starts from the root node for each QoS attribute. It processes each child of the
root. It stores the QoS value of each child in a list qos composite and transac-
tional property in a list tp composite. If the QoS attribute is response-time or
cost, then the QoS value of workflow is the sum of values defined in the list
qos composite. If the QoS attribute is reliability or availability, then the QoS
value of workflow is the product of values defined in the list qos composite. The
transactional property of workflow is determined using automaton given in
Figure 2 for wf pattern and transactional properties defined in list
tp composite. Preprocessing of child node with parallel(þ) type, sequence
(!) type, loop(�) type, and choice(x) type is given in Algorithm 2,

Figure 4. Tree model of composition workflow.

1664 S. JALAL AND D. K. YADAV

Algorithm 3, Algorithm 4, and Algorithm 5, respectively. The computational
complexity of Algorithm 1 is O(M), where M is the number of nodes in the
tree.

Generation of the Candidate Set

The workflow model specifies the compositional structure of a business
application at the design time. Different tasks in the workflow represent
different functionalities defined in the application. These tasks are connected
through workflow patterns that define the execution order of tasks. Service
providers publish descriptions of their services in a service registry. Thus,
service registry may contain several services with similar functionality. The
service requester can retrieve descriptions of services from the service registry
using a discovery approach. Given a workflow WF of the composition, the
orchestration engine uses web service discovery approach to discover a set of
candidate web services for each task in WF. The web service discovery
approach looks up in a service registry to find web services descriptions that
match the functional requirements of a task in WF.

In our earlier work (Jalal, Yadav, and Negi 2019), we proposed a web service
discovery approach incorporating Latent Dirichlet Allocation (LDA) and
k-medoids clustering technique. The LDA topic model is used to extract topics
from text corpus (Blei, Ng, and Jordan 2003). The k-medoids partition n
number of objects into k number of clusters. The optimal value of k is obtained
by silhouette analysis. The clustering technique increases the performance of
web service discovery by reducing the search space for a user query. Web
service discovery finds web services based on semantic similarity between web
service description and user query. It uses WordNet database (Miller 1998)
and Wu-Palmer method (Wu and Palmer 1994) to compute semantic simi-
larity scores. After applying web service discovery, each component service
defined in the workflow model may be associated with a set of candidate web
services. For each component service, the size of the candidate set is reduced
by considering transactional requirements. The reduced set contains web
services that satisfy the transactional requirements of the application.

The Grey Wolf Optimization (GWO)

The Grey Wolf Optimization (GWO) (Mirjalili, Mirjalili, and Lewis 2014) is a
new metaheuristic approach inspired by nature that depicts the leadership
hierarchy of gray wolves and their hunting strategy for the prey. Grey wolves
live in a group(pack) of 5–12 wolves.

Algorithm 1: Workflow_QoS_Transaction;
Input : WF_Tree, root, attribute;

APPLIED ARTIFICIAL INTELLIGENCE 1665

Output: composite_qos_val, composite_tp_val
1 get child_list of root node;
2 i=1;
3 while i < ¼ length(child_list) do
4 child = child_list[i];
5 if leaf[child] = True then
6 qos_composite[i] = qos[child];
7 tp_composite[i] = tp[child];
8 end
9 else
10 if type[child] = ”*” then
11 val1, val2 = Loop(child_list of child, attribute, k);
// k is the number of loop iteration.
// Loop module is defined in Algorithm 4.
12 qos_composite[i]= val1;
13 tp_composite[i]=val2;
14 end
15 if type[child] = ”+” then
16 val1, val2 = Parallel(child_list of child, attribute);
// Parallel module is defined in Algorithm 2.
17 qos_composite[i]= val1;
18 tp_composite[i]=val2;
19 end
20 if type[child] = ”X” then
21 val1, val2 = Choice(child_list of child, prob_list);
// prob_list contains probability of execution of each service.
// Choice module is defined in Algorithm 5.
22 qos_composite[i]= val1;
23 tp_composite[i]=val2;
24 end
25 end
26 i=i+1;
27 end
28 if attribute = ”response time” or attribute = ”cost” then
29 composite_qos_val =

P
qos_composite;

30 end
31 if attribute = ”reliability” or attribute = ”availability” then
32 composite_qos_val =

Q
qos_composite;

33 end
34 composite_tp_val = Automaton(tp_composite,wf_pattern=”! ”);
// Use automaton in Figure 2 for wf_pattern on transactional properties in

tp_composite
35 return composite_qos_val, composite_tp_val

1666 S. JALAL AND D. K. YADAV

Algorithm 2: Parallel;
Input : child_list, attribute;
Output : qos_val, tp_val
1 Create qos_par[], tp_par[];
2 i=1;
3 while i < ¼ length(child_list) do
4 if leaf[child] = True then
5 qos_par[i] = qos[child];
6 tp_par[i] = tp[child];
7 end
8 else
9 if type[child] = ”*” then
10 val1, val2 = Loop(child_list of child, attribute);
// Loop module is defined in Algorithm 4.
11 qos_par[i]= val1;
12 tp_par[i]=val2;
13 end
14 if type[child] = ”! ” then
15 val1, val2 = Sequence(child_list of child, attribute);
// Sequence module is defined in Algorithm 3.
16 qos_par[i]= val1;
17 tp_par[i]=val2;
18 end
19 end
20 i=i+1;
21 end
22 if attribute = ”response time” then
23 qos_val = max (qos_par);
24 end
25 if attribute = ”cost” then
26 qos_val =

P
qos_par;

27 end
28 if attribute = ”reliability” or attribute = ”availability” then
29 qos_val =

Q
qos_par;

30 end
31 tp_val = Automaton(tp_par, wf_pattern=”+”);
// Use automaton in Figure 2 for wf_pattern on transactional properties in

tp_par
32 return qos_val, tp_val

Algorithm 3: Sequence;
Input : child_list, attribute;
Output : qos_val, tp_val

APPLIED ARTIFICIAL INTELLIGENCE 1667

1 Create qos_seq[], tp_seq[];
2 i=1;
3 while i < ¼ length(child_list) do
4 if leaf[child] = True then
5 qos_seq[i] = qos[child];
6 tp_seq[i] = tp[child];
7 end
8 else
9 if type[child] = ”*” then
10 val1, val2 = Loop(child_list of child, attribute,k);
// Loop module is defined in Algorithm 4.
11 qos_seq[i]= val1;
12 tp_seq[i]=val2;
13 end
14 end
15 i=i+1;
16 end
17 if attribute = ”response time” or attribute = ”cost” then
18 qos_val =

P
qos_seq;

19 end
20 if attribute = ”reliability” or attribute = ”availability” then
21 qos_val =

Q
qos_seq;

22 end
23 tp_val = Automaton(tp_seq,wf_pattern=’! ’);
// Use automaton in Figure 2 for wf_pattern on transactional properties in

tp_seq
24 return qos_val, tp_val

Algorithm 4: Loop;
Input : child_list, attribute, k;
Output : qos_val, tp_val
// child_list contains a single element.
1 qos1 = qos[child];
2 tp1 = tp[child];
3 if attribute = ”response time” or attribute = ”cost” then
4 qos_val = product of k and qos1;
5 end
6 if attribute = ”reliability” or attribute = ”availability” then
7 qos_val = power(qos1,k);
8 end
9 tp_val = Automaton(tp1, wf_pattern=”*”);
// Use automaton in Figure 2 for wf_pattern on transactional property tp1
10 return qos_val, tp_val

1668 S. JALAL AND D. K. YADAV

Algorithm 5: Choice;
Input : child_list, prob_list;
Output : qos_val, tp_val
1 create tp_choice[];
2 i=1;
3 sum=0;
4 while i < ¼ length(child_list) do
5 child = child_list[i];
6 sum = sum + prob_list[i] * qos[child];
7 tp_choice[i] = tp[child];
8 i=i+1;
9 end
10 qos_val=sum;
11 tp_val = Automaton(tp_choice, wf_pattern=”X”);
// Use automaton in Figure 2 for wf_pattern on transactional properties in

tp_choice
12 return qos_val, tp_val

The alpha(α) wolves are the leaders and make all the decisions. Beta(β)
wolves are next in the hierarchy and are responsible for advising and main-
taining discipline. The next in the hierarchy are Delta(δ) wolves responsible
for performing different tasks. The Omega(ω) wolves are lowest in the hier-
archy and follow the instructions passed by alpha, beta, and delta wolves. The
main steps of gray wolf hunting are tracking, encircling, and attacking the
prey. Hunting is guided by alpha, beta, and delta wolves. The mathematical
model of gray wolf optimization considers alpha(α) as the best solution and
beta(β) and delta(δ) as second and third best solutions in the solution space.
The encircling behavior of a gray wolf at iteration t +1 is defined in eq (1),

X
!

ðt þ 1Þ ¼ Xp
�!
ðtÞ � A

!

:D
!

; (1a)

D
!

¼ jC
!

: Xp
�!
ðtÞ � X

!

ðtÞj; (1b)

where t denotes the current iteration. Xp
�! and X! represent the position

vectors of prey and gray wolf, respectively. D! represents the difference in
prey’s position and the gray wolf’s position at iteration t. The coefficient
vectors A! and C! are given as follows:

A!¼ 2: a!:r1
!� a!; (2)

C!¼ 2:r2
!; (3)

APPLIED ARTIFICIAL INTELLIGENCE 1669

where components of vectors r1
! and r2

! have random values in the range [0,1].
Each component of vector a! is linearly reduced from 2 to 0 throughout the
course of iterations. In a search space, the top three best solutions (α), beta(β),
and delta(δ) have better knowledge about the optimum solution (position of
the prey). Other search agents (grey wolves) update their positions according
to the information provided by alpha (α), beta (β), and delta (δ) solutions (gray
wolves). Hunting is mathematically formulated using the following equations:

Dα
�!
¼ j C1
�!

: Xα
�!
ðtÞ �

$! $

X
ðtÞj; Dβ

�!
¼ j C2
�!

: Xβ
�!
ðtÞ �

$! $

X
ðtÞj; Dδ

�!

¼ jC3: Xδ
�!
ðtÞ �

$! $

X
ðtÞj;

(4a)

X1
�!
¼ Xα
�!
ðtÞ � A1

�!
:Dα
�!

; X2
�!
¼ Xβ
�!
ðtÞ � A2

�!
:Dβ
�!

; X3
�!
¼ Xδ
�!
ðtÞ � A3

�!
: Dδ
�!

;

(4b)

The updated location of the search agent at iteration (t +1) is given in
equation (5),

X
!

ðt þ 1Þ ¼
X1
�!
þ X2
�!
þ X2
�!

3
: (5)

Value jAj> 1 or value jAj< -1 indicates that search agents (gray wolves)
diverge from each other during the search for the prey (optimum solution).
The value jAj < 1 indicates that gray wolves converge to attack prey. The
optimum solution is found when termination criteria of hunting are satisfied.
Vector C! contains random values in the range [0,2]. It supports exploration
and avoids local optima by emphasizing or deemphasizing the effect of prey.

Multiobjective Discrete Grey Wolf Optimization for Web Services Composition

The original GWO is designed to deal with a single objective optimization
problem where search space is continuous. Transactional and QoS-driven
web services compositions are a multiobjective combinatorial optimization
problem and search space is discrete. QoS attributes are considered as
different objectives. A standard multiobjective optimization problem can
be defined as

FðxÞ ¼ ðF1ðxÞ; F2ðXÞ; . . . :; FmðxÞÞsubject to :
CiðxÞ< ¼ 0; i ¼ 1; 2; . . . :; k;

CjðxÞ ¼ 0; j ¼ 1; 2; . . . :; l:

�

Function F(x) has m objectives, and it can be either maximization or mini-
mization subject to the various constraints Ci and Cj. Multiobjective optimiza-
tion problems are Pareto dominant because they can have conflicting

1670 S. JALAL AND D. K. YADAV

objectives. If objectives are conflicting, then improvement in one objective
may cause the decline of other objectives. For example, in the case of web
services composition, cost and availability are conflicting objectives. Any two
solutions sol1 and sol2, are compared using Pareto dominance. Solution sol1
dominates solution sol2 if the following conditions are met:

• sol1 is better than sol2 in all objectives.
• sol1 is better than sol2 in at least one objective.
The resultant set, i.e., Pareto optimal set, contains nondominated solutions

that ensure trade-offs in conflicting objectives. The Multiobjective Discrete
Grey Wolf Optimization for web services composition is presented in
Algorithm 6.

Algorithm 6: Composition-MDGWO;
Input : Candidate Sets for Component Services;
Output : Optimal Composite Web Service Solutions
1 Initialize population P randomly using integer encoding
2 foreach solution in P do
3 Determine QoS values and the transactional property using Algorithm 1;
4 end
5 Initialize each componet of a!=2, and each component of C!=1 and

maximum number of Iterations tmax;
6 Initialize A! using equation (2);
7 Initialize t=0;
8 while t < tmax do
9 Rank search agents (composite solutions) in P using nondominated

sorting;
10 Find α, β; and δ solutions using equation (6);
11 Store them in external archive;
12 foreach search agent X(t) do
// get new child population PCh
13 Update search agent X(t) using equation (8);
14 end
15 t=t+1;
16 Ptemp = Combined population P and population PCh;
17 foreach solution in Ptemp do
18 Determine QoS values and the transactional property using Algorithm 1;
19 end
20 Get population P for next iteration by applying nondominated sorting

on Ptemp;
21 update each component of a!¼ 2ð1 � t

tmax
Þ;

22 update A! using equation (2);
23 end
24 Find top 3 nondominated solutions from external archive;

APPLIED ARTIFICIAL INTELLIGENCE 1671

25 return α, β and δ solutions

Solution Encoding
In web services composition, a composite web service instance, i.e., solution is
represented by [S1, S2,..,Si,..,Sn]. It is encoded as an array of integers, and the
length of the array is equal to the number of abstract component services in the
composition workflow. The ith element in the array represents the ith abstract
component service Si in the workflow. The value of the ith element in the array
is the web service index in the candidate set of the ith abstract component
service. Figure 5 shows an example of solution encoding for the web services
composition. In this example, composite service consists of six abstract com-
ponent services and each abstract component service has a candidate set of five
web services.

Initial Population and Ranking of Solutions
The initial population is generated randomly based on the integer encoding
representation. Algorithm 1 is used to compute the value of each QoS attribute
and transactional property for each solution in the population. The multi-
objective optimization problem can have a set of nondominated solutions.
Nondominated sorting (Deb et al. 2002) is used to sort the solutions in
population, and each solution has a rank equal to its nondominance level.
Solutions are sorted on the basis of QoS attributes. At each nondominance
level (or front), solutions can be ordered based on the score Sol Score com-
puted by equation (6),

Sol ScoreðSÞ ¼ CDðSÞ þ t scoreðSÞ � p scoreðSÞ; (6)

Figure 5. Example of solution encoding.

1672 S. JALAL AND D. K. YADAV

where S represents a solution in the population and CDðSÞ is the crowding
distance of the solution S. The value of t score gives the transaction score of
solution S, and it will be −1 if the transactional property of solution S is
nonatomic. The value of p scoreðSÞ is the penalty score of the solution S that
is calculated using equation (7) as a difference from the given QoS requirements,

p score ¼
Xm

i¼1
jqri � qij � xi; (7)

where :
xi ¼ 0 if qisatisfiesqri
xi ¼ 1 if qidoes not satisfyqri

�

A superior solution has a large value of crowding distance. The value of p score
will be zero for a solution if it satisfies all the QoS requirements.

Selection of Alpha, Beta, and Delta Solutions
The solutions at the first nondominance level are nondominated solutions for
web services composition. If the population has only one nondominance level,
then the best three solutions α, β, and δ can be obtained using Sol Score values.
If there are at least three nondominance levels, we choose a alpha solution
from the first level, a beta solution from the second level, and a delta solution
from the third level. After completion of each iteration, α, β, and δ solutions
are stored in an external archive. When MDGWO terminates, the top three
nondominated solutions can be selected from the external archive.

Searching and Hunting Prey
In discrete grey wolf optimization, we use two operator crossover for explora-
tion and mutation for exploitation. Exploration is the process of searching for
the prey, while exploitation is hunting the prey. A search agent performs
crossover and mutation based on the value of A!. In discrete search space,
the search agent (grey wolf or a solution) updates its position (information)
using equation (8),

X

ðt þ 1Þ ¼ crossover½X

pðtÞ;X

ðtÞ� jA

j � 1orjA

j � 1
mutation½X

ðtÞ�0 � jA

j1

(

(8)

C! is set to 1, and A! is defined using equation (2). Information about the
optimal solution (prey) is discovered through the knowledge of the α, β, and
δ solutions. Thus, search agent X(t) updates itself by performing crossover
with the best top three solutions α, β, and δ. Figure 6 depicts an instance of
an update of search agent X(t). The newly generated population of offspring
and parent population are combined. Then nondominated sorting technique
and Sol Score value are used to select the population of size N for the next

APPLIED ARTIFICIAL INTELLIGENCE 1673

iteration. Time complexity of the proposed method is OðmN2tÞ, where m is
the number of QoS attributes, N is the population size, and t is the number
of generations.

Experimental Setup

This section covers data set description, performance evaluation indicators,
and result analysis. Performance of the web services composition based on
Multiobjective Discrete Grey Wolf Optimization is compared with the well-
known metaheuristic algorithms: NSGA-II (Deb et al. 2002) and
Multiobjective Discrete Particle Swarm Optimization (MDPSO) (Yin et al.
2014).

Figure 6. An instance of update of search agent X(t)

Table 7. Data set information.
Domain Customer Hotel Service Flight Payment Messaging

Service Service Service Service

No. of Services 140 170 150 180 200

1674 S. JALAL AND D. K. YADAV

Data Set Description

We developed a data set of approximately 800 service descriptions from
various domains such as Hotel, Flight Booking, Banking, and Finance pub-
lished by the online web directory ProgrammableWeb (Musser 2005). Data are
preprocessed using Natural Language Processing (NLP) functionalities pro-
vided by the NLTK toolkit (Loper and Bird 2002). Table 7 presents different
domains and number of services in each domain.

We consider four QoS attributes: Response time, Cost, Reliability,
Availability, and five transactional properties: pivot (p), compensatable (c),
retriable (r), pivot-retriable (pr), and compensatable-retriable (cr). Web ser-
vices in the data set are assigned values for QoS attributes and transactional
properties using a random number generator with uniform distribution.
TheiInitial candidate set (set of functionally relevant web services) for each
task or domain is obtained using the web service discovery approach described
in Jalal, Yadav, and Negi (2019). The reduced candidate set for each task is
obtained by applying constraints defined by transactional requirements.

Performance Evaluation Indicators

Good convergence and maintaining diversity are desirable goals by evolution-
ary multiobjective optimization algorithms. The following indicators are used
to evaluate the performance of multiobjective evolutionary algorithms NSGA-
II, MDPSO, and MDGWO (proposed approach):

Generational Distance(GD)
The Generational Distance (Coello and Sierra 1999) indicator computes the
distance between obtained Pareto front PF and the true Pareto front PF*. It is
given as

GD ¼

ffiPN1
j¼1 ðdjÞ

2
q

N1
; (9)

where N1 indicates the number of solutions presents on Pareto front PF and dj

is the euclidean distance between the jth solution of PF and the closest solution
of PF*. The lower value of GD indicates better convergence performance.

Inverse Generational Distance (IGD)
IGD (Sierra and Coello 2004) is a variant of the Generational Distance
indicator. It computes the distances between each solution on the true
Pareto front PF* and the closest solution on the obtained Pareto front PF.
IDG is defined as

APPLIED ARTIFICIAL INTELLIGENCE 1675

IGD ¼

ffiPN2
j¼1 ðdjÞ

2
q

N2 ; (10)

where N2 is the number of solutions present on true Pareto front PF*. The
lower value of IGD shows good performance. IGD is used widely to assess the
quality of an optimization algorithm that solves the problem with more than
three objectives. GD and IGD are computationally fast.

Spread(S)
The spread indicator (Deb 2001) indicates diversity in the problem search
space. It estimates the extent of the spread of solutions in the obtained Pareto
front. It is defined as

S ¼
Pm

k¼1 dxk þ
PN1

j¼1 jdj � �dj
Pm

k¼1 dxk þ N1:�d
; (11)

where d is the mean value of all dj and m denotes the number of objectives. dx
represents the distance of extreme solutions of obtained PF to the nearest
solution of PF*. The lower spread value is desired for better diverse distribu-
tion. A zero value of spread indicates that all the solutions of PF* are uniformly
spaced.

For several real problems, the true pareto front PF* is unknown. All non-
dominated solutions obtained by different algorithms for a given problem
instance can be considered as reference points on PF*. It is possible that
reference points on PF* are not evenly distributed, i.e., some parts of the
front may have very less reference points and other parts may have many
reference points. We use the k-medoid clustering technique to group reference
points into different clusters. The medoids of clusters can be considered as
new reference points on PF*. A medoid is a most centrally located object in a
cluster.

Result Analysis

All the algorithms are implemented in the Python environment. Parameter
settings can affect the performance of the optimization technique. The para-
meters are given in Table 8. All problem instances have the same values for

Table 8. Parameter information.
Problem Component Candidate Pop-Size Crossover Mutation

Instance Services Set Size Rate Rate
Pb1 6 20 1000 0.85 0.15
Pb2 6 40 2000 0.85 0.15
Pb3 6 60 4000 0.85 0.15
Pb4 6 80 8000 0.85 0.15
Pb5 6 100 10000 0.85 0.15

1676 S. JALAL AND D. K. YADAV

parameters such as Component Services, Crossover Rate, and Mutation.
Candidate Set Size and Pop_Size parameters are sensitive to the web services
composition problem. Each problem instance has different values for
Candidate Set Size and Pop_Size parameters. The population size of 1000 is
appropriate for a Candidate Set Size of 20, but it is small for a Candidate Set
Size of 100. Hence, the population size of the problem depends on the size of
the candidate set for each component service. Each experiment was conducted
with 20 independent runs on each problem instance for each optimization
algorithm.

The results obtained for the proposed approach are compared with NSGA-2
and MDPSO and shown graphically in Figure 7 through (a) to (f). We have
considered four QoS attributes and for each of QoS attribute pair, the com-
parison is carried out with the standard algorithms on problem instance Pb3.
Figure 7(a) shows the set of nondominated solutions with respect to cost and
response time QoS attributes. Similarly, Figure 7(b) compares each of the
algorithms for a set of nondominated solutions with respect to reliability and
response time. Figure 7(c-f) represent comparison with respect to availability-
response time, reliability-cost, availability-cost, and availability-reliability pair
QoS attributes, respectively. For each of the possible pairs of QoS attributes,

Table 9. Pearson correlation coefficient values.

Algorithms
Cost
Time

Reliability
Time

Availability
Time

Reliability
Cost

Availability
Cost

Availability
Reliability

NSGA-2 −0.8704 0.9553 0.9220 0.9645 0.9516 −0.9710
MDPSO −0.8734 0.9512 0.9164 0.9584 0.9481 −0.9603
MDGWO −0.8581 0.9639 0.9100 0.9731 0.9545 −0.9632

Figure 7. Nondominated solutions for two objectives.

APPLIED ARTIFICIAL INTELLIGENCE 1677

the proposed approach reflects better results in terms of nondominated solu-
tions. Correlation between different objectives is computed using the Pearson
correlation coefficient. Table 9 presents the values of the Pearson correlation
coefficient for various QoS attribute pairs for NSGA-2, MDPSO, and
MDGWO algorithms.

The value of the Pearson correlation coefficient lies in a range from +1 to
−1. A value of 0 indicates that the attributes are independent. Positive correla-
tion implies that the value of one attribute rises so does the value of the other
attribute. In contrast, a negative correlation suggests that the value of one
attribute increases and the other attribute’s value decreases. Figure 8 shows
nondominated solutions obtained by MDGWO, NSGA-2, and MDPSO algo-
rithms for four quality of service attributes on problem instance Pb3. A parallel
coordinates plot on four QoS attributes in Figure 9 shows nondominated
solutions obtained by the different algorithms on problem instance Pb3.

Figure 8. Nondominated solutions for four objectives.

Figure 9. Parallel coordinates plot on four objectives.

1678 S. JALAL AND D. K. YADAV

The comparison of MDGWO, NSGA-II, and MDPSO is shown in Table 10
using obtained statistical outcomes of indicators GD, IGD, and Spread for all
the QoS attributes under consideration.

It can be observed from Table 10 that MDGWO performs well for transactional
and QoS-driven web services composition. MDGWO maintains a social hierarchy
among solutions in the search space. It has a good convergence rate because search
for optimal solution is guided by best three solutions. The selection of the best
three solutions from different Pareto fronts maintains population’s diversity in
generations and balances the exploration and exploitation processes.

Due to the stochastic nature of all optimization algorithms, a Wilcoxon
signed rank test is used to discover the significant difference between the
outcomes obtained by NSGA-II, MDPSO, and MDGWO algorithms on each
problem instance with 20 independent runs. The significance level for all

Table 10. Indicators values obtained by NSGA-2, MDPSO, and MDGWO.
Problem
Instance

NSGA-2
GD

MDPSO
GD

MDGWO
GD

NSGA-2
Spread

MDPSO
Spread

MDGWO
Spread

NSGA-2
IGD

MDPSO
IGD

MDGWO
IGD

Pb1 0.248 0.361 0.125 0.152 0.201 0.128 0.253 0.365 0.240
Pb2 0.365 0.499 0.279 0.191 0.243 0.132 0.386 0.452 0.377
Pb3 0.432 0.513 0.315 0.215 0.389 0.146 0.451 0.530 0.385
Pb4 0.590 0.699 0.478 0.351 0.429 0.237 0.593 0.694 0.481
Pb5 0.621 0.745 0.509 0.523 0.682 0.301 0.630 0.752 0.511
mean 0.451 0.563 0.346 0.286 0.388 0.189 0.462 0.558 0.398
std 0.139 0.140 0.132 0.135 0.169 0.0687 0.137 0.145 0.095

Table 11. Statistical results using the Wilcoxon signed rank test for MDGWO vs NSGA-2.
GD Spread IGD

MDGWO vs NSGA-2 MDGWO vs NSGA-2 MDGWO vs NSGA-2

Problem R+ R− p value R+ R− p value R+ R− p value

Instance
Pb1 210 0 0.8e-04 189 21 0.16e-04 179 31 0.57e-02
Pb2 204 6 2.2e-04 200 10 3.8e-04 171 39 1.3e-02
Pb3 207 3 1.4e-04 204 6 2.2e-04 200 10 3.8e-04
Pb4 210 0 0.8e-04 210 0 0.8e-04 210 0 0.8e-04
Pb5 210 0 0.8e-04 210 0 0.8e-04 210 0 0.8e-04

Table 12. Statistical results using the Wilcoxon signed rank test for MDGWO vs MDPSO.
GD Spread IGD

MDGWO vs MDPSO MDGWO vs MDPSO MDGWO vs MDPSO

Problem R+ R− p value R+ R− p value R+ R− p value

Instance
Pb1 210 0 0.8 × 10−04 207 3 1.4 × 10−04 207 3 1.4 × 10−04

Pb2 210 0 0.8 × 10−04 210 0 0.8 × 10−04 204 6 2.2 × 10−04

Pb3 210 0 0.8 × 10−04 210 0 0.8 × 10−04 210 0 0.8 × 10−04

Pb4 210 0 0.8 × 10−04 210 0 0.8 × 10−04 210 0 0.8 × 10−04

Pb5 210 0 0.8 × 10−04 210 0 0.8 × 10−04 210 0 0.8 × 10−04

APPLIED ARTIFICIAL INTELLIGENCE 1679

experiments is set to α = 0.05. Tables 11 and 12 summarize the test results
based on GD, Spread, and IGD indicators for MDGWO versus NSGA-II and
MDGWO versus MDPSO, respectively. R+ is the sum of ranks for the inde-
pendent runs of each problem instance in which the MDGWO performed
better than the compared one and R− represents the sum of ranks for the
compared one. It can be observed from Table 11 and Table 12 that MDGWO
exhibits a high value of R+ for GD, Spread, and IGD on each problem instance.
This indicates that the MDGWO performs better than the two compared
optimization algorithms.

Conclusion

In this work, we proposed an approach for Transaction-QoS driven web
services composition. A tree model of workflow is described to determine the
QoS attribute value and transactional property of composite service. We
used web service discovery to retrieve functionally relevant web services
(candidate set) for each task defined in the business application workflow
model. Transactional requirements are used to reduce the size of the candi-
date set. A nature-inspired metaheuristic algorithm, multiobjective discrete
gray wolf optimization, is used to select a composite web service solution
that fulfills the transactional and QoS requirements. We compared the
proposed approach with NSGA-II and MDPSO. Generational
Distance(GD), Inverse Generational Distance(IGD), and Spread measures
evaluate the web services composition approach. Evaluation results show
that the proposed approach works well. The Wilcoxon signed rank test
presents the significance of the proposed approach in comparison to NSGA-
II and MDPSO.

The initial population plays a significant role in solving problems by evolu-
tionary algorithms as it may impact the quality of the results obtained by
evolutionary methods. The limitation of the proposed method is that the initial
population is generated randomly. A portion of the initial population can be
generated based on some heuristics to ensure the feasibility of the solutions. The
proposed method also does not support web services composition on the fly.
The applications of the proposed method can be possible in other domains, such
as task scheduling for resources and selection of components from the library for
component-based software engineering. According to the application, it may
require making changes in the encoding and fitness computation of solutions.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

1680 S. JALAL AND D. K. YADAV

ORCID

Sunita Jalal http://orcid.org/0000-0001-7279-5971

References

Abbassi, I., M. Graiet, W. Gaaloul, and N. B. Hadj-Alouane (2015). Genetic-based approach for
ats and sla-aware web services composition. In International Conference on Web Information
Systems Engineering, pp. 369–83. Springer, Miami, FL, USA.

Ai, L., and M. Tang (2008). Qos-based web service composition accommodating inter-service
dependencies using minimal-conflict hill-climbing repair genetic algorithm. In 2008 IEEE
Fourth International Conference on eScience, pp. 119–26. IEEE, Indianapolis, IN, USA.

Alonso, G., F. Casati, H. Kuno, and V. Machiraju. 2004. Web services. In Web services 2004:
Data-centric systems and applications, 123-149. Berlin: Springer.

Altan, A., S. Karasu, and E. Zio. 2021. A new hybrid model for wind speed forecasting
combining long short-term memory neural network, decomposition methods and grey
wolf optimizer. Applied Soft Computing 100:106996. doi:10.1016/j.asoc.2020.106996.

Badawy, H., E. Emary, M. Yassien, and M. Fathi (2018). Discrete grey wolf optimization for
shredded document reconstruction. In International Conference on Advanced Intelligent
Systems and Informatics, pp. 284–93. Springer, Cairo, Egypt.

Bhiri, S., O. Perrin, and C. Godart (2005). Ensuring required failure atomicity of composite web
services. In Proceedings of the 14th international conference on World Wide Web, pp. 138–47.
ACM, Chiba, Japan.

Bhiri, S., O. Perrin, and C. Godart (2006). Extending workflow patterns with transactional
dependencies to define reliable composite web services. In Advanced Int’l Conference on
Telecommunications and Int’l Conference on Internet and Web Applications and Services
(AICT-ICIW’06), pp. 145–145. IEEE, Guadeloupe, French Caribbean.

Blei, D. M., A. Y. Ng, and M. I. Jordan. January 2003. Latent dirichlet allocation. Journal of
Machine Learning Research 3:993–1022.

Canfora, G., M. Di Penta, R. Esposito, and M. Villani (2005). An approach for qos-aware
service composition based on genetic algorithms. In Proceedings of the 7th annual conference
on Genetic and evolutionary computation, pp. 1069–75. ACM, Washington DC, USA.

Chandra, M., A. Agrawal, A. Kishor, and R. Niyogi (2016). Web service selection with
global constraints using modified gray wolf optimizer. In 2016 International Conference
on Advances in Computing, Communications and Informatics (ICACCI), pp. 1989–94.
IEEE, Jaipur, India.

Chattopadhyay, S., A. Banerjee, and N. Banerjee. 2017. A fast and scalable mechanism for web
service composition. ACM Transactions on the Web (TWEB) 11 (4):1–36. doi:10.1145/
3098884.

Coello, C. A. C., and M. R. Sierra. 1999. Multiobjective evolutionary algorithms: Classifications,
analyses, and new innovations, In CINVESTAV-IPN (Evolutionary Computation Group);
Departamento de Ingeniería Eléctrica, Sección de Computación, Evolutionary computation
Citeseer, pp. 125-147, MÉXICO.

Cremene, M., M. Suciu, D. Pallez, and D. Dumitrescu. 2016. Comparative analysis of
multi-objective evolutionary algorithms for qos-aware web service composition. Applied
Soft Computing 39:124–39. doi:10.1016/j.asoc.2015.11.012.

Da Silva, A. S., H. Ma, and M. Zhang. 2016. Genetic programming for qos-aware web service
composition and selection. Soft Computing 20 (10):3851–67. doi:10.1007/s00500-016-2096-
z.

APPLIED ARTIFICIAL INTELLIGENCE 1681

https://doi.org/10.1016/j.asoc.2020.106996
https://doi.org/10.1145/3098884
https://doi.org/10.1145/3098884
https://doi.org/10.1016/j.asoc.2015.11.012
https://doi.org/10.1007/s00500-016-2096-z
https://doi.org/10.1007/s00500-016-2096-z

Da Silva, A. S., E. Moshi, H. Ma, and S. Hartmann (2017). A qos-aware web service composi-
tion approach based on genetic programming and graph databases. In International
Conference on Database and Expert Systems Applications, pp. 37–44. Springer, Lyon, France.

Deb, K. 2001. Multi-objective optimization using evolutionary algorithms, vol. 16. John Wiley &
Sons, Chichester, UK.

Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A fast and elitist multiobjective genetic
algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6 (2):182–97.
doi:10.1109/4235.996017.

Ding, Z., J. Liu, Y. Sun, C. Jiang, and M. Zhou. 2015. A transaction and qos-aware service
selection approach based on genetic algorithm. IEEE Transactions on Systems, Man, and
Cybernetics: Systems 45 (7):1035–46. doi:10.1109/TSMC.2015.2396001.

El Hadad, J., M. Manouvrier, and M. Rukoz. 2010. Tqos: Transactional and qos-aware selection
algorithm for automatic web service composition. IEEE Transactions on Services Computing
3 (1):73–85. doi:10.1109/TSC.2010.5.

Gavvala, S. K., C. Jatoth, G. Gangadharan, and R. Buyya. 2019. Qos-aware cloud service
composition using eagle strategy. Future Generation Computer Systems 90:273–90.
doi:10.1016/j.future.2018.07.062.

Graiet, M., I. Abbassi, M. Kmimech, and W. Gaaloul. 2016. A genetic-based adaptive approach
for reliable and efficient service composition. IEEE Systems Journal 12 (2):1644–54.
doi:10.1109/JSYST.2016.2612641.

Imed, A., and M. Graiet. 2017. An automatic configuration algorithm for reliable and efficient
composite services. IEEE Transactions on Network and Service Management 15 (1):416–29.
doi:10.1109/TNSM.2017.2785360.

Jalal, S., D. K. Yadav, and C. S. Negi. 2019. Web service discovery with incorporation of web
services clustering. International Journal of Computers and Applications 1–12. doi:10.1080/
1206212X.2019.1698131.

Jatoth, C., G. Gangadharan, and R. Buyya. 2015. Computational intelligence based qos-aware
web service composition: A systematic literature review. IEEE Transactions on Services
Computing 10 (3):475–92. doi:10.1109/TSC.2015.2473840.

Jordan, D., J. Evdemon, A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera, M. Ford,
Y. Goland, and A. Guızar. 2007. Web services business process execution language version
2.0. OASIS Standard 11 (120):5.

Karasu, S., and Z. Saraç. 2020. Classification of power quality disturbances by 2d-riesz trans-
form, multi-objective grey wolf optimizer and machine learning methods. Digital Signal
Processing 101:102711. doi:10.1016/j.dsp.2020.102711.

Karimi, M. B., A. Isazadeh, and A. M. Rahmani. 2017. Qos-aware service composition in cloud
computing using data mining techniques and genetic algorithm. The Journal of
Supercomputing 73 (4):1387–415. doi:10.1007/s11227-016-1814-8.

Klein, A., F. Ishikawa, and S. Honiden (2011). Efficient heuristic approach with improved time
complexity for qos-aware service composition. In 2011 IEEE International Conference on
Web Services, pp. 436–43. IEEE, Washington, DC, USA.

Li, L., C. Liu, and J. Wang (2007). Deriving transactional properties of compositeweb services.
In IEEE International Conference on Web Services (ICWS 2007), pp. 631–38. IEEE, Salt Lake
City, UT, USA.

Li, L., L. Sun, J. Guo, J. Qi, B. Xu, and S. Li. 2017. Modified discrete grey wolf optimizer
algorithm for multilevel image thresholding. Computational Intelligence and Neuroscience
2017.

Liu, A., Q. Li, L. Huang, and M. Xiao. 2009. Facts: A framework for fault-tolerant composition
of transactional web services. IEEE Transactions on Services Computing 3 (1):46–59.
doi:10.1109/TSC.2009.28.

1682 S. JALAL AND D. K. YADAV

https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/TSMC.2015.2396001
https://doi.org/10.1109/TSC.2010.5
https://doi.org/10.1016/j.future.2018.07.062
https://doi.org/10.1109/JSYST.2016.2612641
https://doi.org/10.1109/TNSM.2017.2785360
https://doi.org/10.1080/1206212X.2019.1698131
https://doi.org/10.1080/1206212X.2019.1698131
https://doi.org/10.1109/TSC.2015.2473840
https://doi.org/10.1016/j.dsp.2020.102711
https://doi.org/10.1007/s11227-016-1814-8
https://doi.org/10.1109/TSC.2009.28

Liu, Z., X. Xue, J. Shen, and W. Li. 2013. Web service dynamic composition based on
decomposition of global qos constraints. The International Journal of Advanced
Manufacturing Technology 69 (9–12):2247–60. doi:10.1007/s00170-013-5204-6.

Loper, E., and S. Bird. 2002. Nltk: The natural language toolkit. arXiv preprint cs/0205028,
Cornell University.

Lu, C., S. Xiao, X. Li, and L. Gao. 2016. An effective multi-objective discrete grey wolf optimizer
for a real-world scheduling problem in welding production. Advances in Engineering
Software 99: 161-176. doi: 10.1016/j.advengsoft.2016.06.004

Martin, B., J. Marot, and S. Bourennane (2018). Improved discrete grey wolf optimizer. In 2018
26th European Signal Processing Conference (EUSIPCO), pp. 494–98. IEEE, Rome, Italy.

Mehrotra, S., R. Rastogi, H. F. Korth, and A. Silberschatz (1992). A transaction model for
multidatabase systems. In International Conference on Distributed Computing Systems, pp.
56–63. IEEE, Yokohama, Japan.

Miller, G. A. 1998. WordNet: An electronic lexical database. Cambridge, MA: MIT Press.
Mirjalili, S., S. M. Mirjalili, and A. Lewis. 2014. Grey wolf optimizer. Advances in Engineering

Software 69:46–61. doi:10.1016/j.advengsoft.2013.12.007.
Musser, J. (2005). Programmableweb.
Ren, X., W. Zhang, L. Bao, J. Song, S. Wang, R. Cao, and X. Wang (2021). Deepqsc: A gnn and

attention mechanism-based framework for qos-aware service composition. In 2021
International Conference on Service Science (ICSS), pp. 76–83. IEEE, Xi'an, China.

Sharma, P., S. Sundaram, M. Sharma, A. Sharma, and D. Gupta. 2019. Diagnosis of Parkinson’s
disease using modified grey wolf optimization. Cognitive Systems Research 54:100–15.
doi:10.1016/j.cogsys.2018.12.002.

Sierra, M. R., and C. A. C. Coello (2004). A new multi-objective particle swarm optimizer with
improved selection and diversity mechanisms. Technical Report of CINVESTAV-IPN.

Statovci-Halimi, B., and A. Halimi. 2004. Qos management through service level agreements: A
short overview. e & i Elektrotechnik und Informationstechnik 121 (6):243–46. doi:10.1007/
BF03055357.

Van der Aalst, W., A. Ter Hofstede, B. Kiepuszewski, and A. Barros. 2003. Workflow Patterns.
Distributed and Parallel Databases 14 (1):5–51.doi:10.1023/A:1022883727209.

Wada, H., J. Suzuki, Y. Yamano, and K. Oba. 2011. E3: A multiobjective optimization frame-
work for sla-aware service composition. IEEE Transactions on Services Computing 5
(3):358–72. doi:10.1109/TSC.2011.6.

Wang, D., H. Huang, and C. Xie (2014). A novel adaptive web service selection algorithm based
on ant colony optimization for dynamic web service composition. In International
Conference on Algorithms and Architectures for Parallel Processing, pp. 391–99. Springer,
Dalian, China.

Wang, H., D. Yang, Q. Yu, and Y. Tao. 2018. Integrating modified cuckoo algorithm and
creditability evaluation for qos-aware service composition. Knowledge-Based Systems
140:64–81. doi:10.1016/j.knosys.2017.10.027.

Wu, Q., F. Ishikawa, Q. Zhu, and D. H. Shin. 2016. Qos-aware multigranularity service
composition: Modeling and optimization. IEEE Transactions on Systems, Man, and
Cybernetics: Systems 46 (11):1565–77. doi:10.1109/TSMC.2015.2503384.

Wu, Q., and Q. Zhu. 2013. Transactional and qos-aware dynamic service composition based on
ant colony optimization. Future Generation Computer Systems 29 (5):1112–19. doi:10.1016/j.
future.2012.12.010.

Wu, Z., and M. Palmer (1994). Verbs semantics and lexical selection. In Proceedings of the 32nd
annual meeting on Association for Computational Linguistics, pp. 133–38, Las Cruces, New
Mexico, USA.

APPLIED ARTIFICIAL INTELLIGENCE 1683

https://doi.org/10.1007/s00170-013-5204-6
https://doi.org/10.1016/j.advengsoft.2016.06.004
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.cogsys.2018.12.002
https://doi.org/10.1007/BF03055357
https://doi.org/10.1007/BF03055357
https://doi.org/10.1023/A:1022883727209
https://doi.org/10.1109/TSC.2011.6
https://doi.org/10.1016/j.knosys.2017.10.027
https://doi.org/10.1109/TSMC.2015.2503384
https://doi.org/10.1016/j.future.2012.12.010
https://doi.org/10.1016/j.future.2012.12.010

Yan, L., Y. Mei, H. Ma, and M. Zhang (2016). Evolutionary web service composition: A
graph-based memetic algorithm. In 2016 IEEE Congress on Evolutionary Computation
(CEC), pp. 201–08. IEEE, Vancouver, BC, Canada.

Yao, Y., and H. Chen (2009). Qos-aware service composition using nsga-ii1. In Proceedings of
the 2nd International Conference on Interaction Sciences: Information Technology, Culture
and Human, pp. 358–63. ACM, Seoul, Korea.

Yin, H., C. Zhang, B. Zhang, Y. Guo, and T. Liu. 2014. A hybrid multiobjective discrete particle
swarm optimization algorithm for a sla-aware service composition problem. Mathematical
Problems in Engineering 2014:14. doi:10.1155/2014/252934.

Zeng, L., B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang. 2004. Qos-aware
middleware for web services composition. IEEE Transactions on Software Engineering 30
(5):311–27. doi:10.1109/TSE.2004.11.

Zhang, W., C. K. Chang, T. Feng, and H.-Y. Jiang (2010). Qos-based dynamic web service
composition with ant colony optimization. In 2010 IEEE 34th Annual Computer Software
and Applications Conference, pp. 493–502. IEEE, Seoul, Korea (South).

Zhao, X., B. Song, P. Huang, Z. Wen, J. Weng, and Y. Fan. 2012. An improved discrete immune
optimization algorithm based on pso for qos-driven web service composition. Applied Soft
Computing 12 (8):2208–16. doi:10.1016/j.asoc.2012.03.040.

1684 S. JALAL AND D. K. YADAV

https://doi.org/10.1155/2014/252934
https://doi.org/10.1109/TSE.2004.11
https://doi.org/10.1016/j.asoc.2012.03.040

	Abstract
	Introduction
	Composite Service Description and Problem Statement
	Workflow Patterns in Web Services Composition
	Quality of Service (QoS) Computation of Composition
	Transactional Properties of Composition
	Problem Statement

	Related Work
	QoS-driven Approaches
	Transaction-driven Approaches
	Transactional and QoS-driven Approaches
	Grey Wolf Optimization Methods

	Proposed Approach for Web Services Composition
	Tree Model of Workflow
	Generation of the Candidate Set
	The Grey Wolf Optimization (GWO)
	Multiobjective Discrete Grey Wolf Optimization for Web Services Composition
	Solution Encoding
	Initial Population and Ranking of Solutions
	Selection of Alpha, Beta, and Delta Solutions
	Searching and Hunting Prey

	Experimental Setup
	Data Set Description
	Performance Evaluation Indicators
	Generational Distance(GD)
	Inverse Generational Distance (IGD)
	Spread(S)

	Result Analysis

	Conclusion
	Disclosure Statement
	ORCID
	References

