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Abstract 
 
This paper presents a fuzzy approach for solving a three-decision maker’s model and presents 
how to solve three–level chance constraints quadratic programming problem. After converting 
probabilistic nature of the constraints to equivalence deterministic constraints each level 
attempts to optimize its problem separately using fuzzy programming technique, in this method 
the tolerance and membership function concepts are used to develop Tchebycheff problem for 
generating Pareto optimal solution for this problem. Finally, a numerical example is given to 
clarify the main results developed in this paper. 

 

Keywords: Three–level; chance constraints; fuzzy programming. 
 

1 Introduction 
 
Multi–level optimization plays an important role in engineering design, management and decision 
making in general. Ultimately, a designer or decision maker needs to make tradeoffs between 
disparate and conflicting design objectives. The field of three–level optimization defines the art and 
science of making such decisions. The prevailing approach to address this decision-making task is 
to solve an optimization problem, which yields a candidate solution [1,2,3].  
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Multilevel programming techniques are developed to solve decentralized planning problems with 
multiple decision makers in a hierarchal organization [4,5]. 
 
Three-level programming is a class of multi–level programming in which there are three 
independent decision-makers (DMs). Each DM attempts to optimize its objective function and is 
affected by the actions of the others DMs [2]. 
 
The basic concept of the fuzzy programming approaches implies that the LLDM optimizes his/her 
objective function, taking a goal or preference of the ULDM into consideration. In the decision 
process, considering the membership functions of the fuzzy goals for the decision variables of the 
ULDM, the LLDM solves a FP problem with the set of constraints on an overall satisfactory degree 
of the ULDM. If the proposed solution is not satisfactory to the ULDM, the solution search is 
continued by redefining the elicited membership functions until a satisfactory solution is reached 
[6,7]. 
 
Fuzzy approach uses the concept of tolerance membership to develop a fuzzy max-min decision 
model for generating Pareto optimal (satisfactory) solution for three level programming problem; 
the first level decision maker (FLDM) specifies his objective functions and decisions with possible 
tolerances which are described by membership functions of fuzzy set theory. Then, the second 
level decision maker (SLDM) specifies his objective functions and decisions, in the view of FLDM, 
with possible tolerances which are described by membership functions of fuzzy set theory. Finally, 
the third level decision maker (TLDM) uses the preference information for upper levels decision – 
maker subject to the upper levels decision [2,3,8]. 
 
Decision problems of chance constrained or stochastic optimization arises when certain coefficient 
of an optimization model is not fixed or known, but are instead, to some extent, probabilistic 
quantities. In most of the real life problems in mathematical programming, the parameters are 
considered as random variables. The branch of mathematical programming which deals with the 
theory and methods for the solution of conditional extreme problems under incomplete information 
about the random parameters is called stochastic programming [9,10]. 
 
In [11] Pramanik and Banerjee dealt with a fuzzy goal programming approach to solve chance 
constrained quadratic bi-level programming problem. Chance constraints were converted into 
equivalent deterministic constraints by the prescribed distribution functions. In this model 
formulation, the quadratic membership functions are formulated by using the individual best 
solution of the quadratic objective functions subject to the equivalent deterministic constraint. 
 
Therefore Pramanik et al. [12] presented a fuzzy goal programming approach to solve chance 
constrained linear plus linear fractional bi-level programming problem. The chance constraints with 
right hand parameters as random variables of prescribed probability distribution functions are 
transformed into equivalent deterministic system constraints. They construct nonlinear 
membership functions based on deterministic system constraints. The nonlinear membership 
functions are transformed into linear membership functions by using first order Taylor’s series 
approximation. In the bi-level decision making context. In this paper some simple and easy 
techniques are used to solve the problem like the technique which used in [13] to convert the 
probabilistic nature of the constraints to equivalence deterministic constraints , simplex method to 
give the best and the worst individual solution for each decision maker’s problem, the fuzzy set 
theory to formulate the previous results to membership function and use the concept of tolerance 
to develop Tchebycheff problem for generating Pareto optimal solution for our problem   
 
In [14] Sadand Emam presented a solution algorithm to solve bi-level integer linear fractional 
programming problem with individual chance constraints (CHBLIFP). They assumed that there is 
randomness in the right-hand side of the constraints only and that the random variables are 
normally distributed. The basic idea in treating (CHBLIFP) they dealt with is to convert the 
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probabilistic nature of this problem into a deterministic bi-level integer linear fractional 
programming problem (BLIFP). 
 
This paper is divided into the follow sections:  section 2 presents the problem formulation and 
solution concept of the model of the three–level chance constraints quadratic programming 
problem, section 3 introduce how to convert the probabilistic nature of the constraints to 
equivalence deterministic constraints, section 4 uses Fuzzy approach to solve the multilevel 
chance constraints quadratic programming problem, in section 5 a numerical example is provided 
to clarify the results. Finally, concluding remarks and future works are given in section 6. 
 

2 Problem Formulation and Solution Concept 
 
Let )3,2,1(,  jRx n

j be a vector variable indicating the first decision level choice, the second 

decision level choice, and the third decision level choice, .
3

1
j

j

nn 


  

Let )3,2,1(,:  iRRF iNn
i be the first level objective function, the second   level   objective 

function, and the third level objective function respectively. Let the FLDM (First Level Decision 

Maker), SLDM (Second Level Decision Maker), and TLDM (Third Level Decision Maker) have 1N , 

2N  and 3N objective function, respectively. 

 
Therefore, the three–level chance constraints quadratic programming (TLCCQP) problem may be 
formulated as follows: 
 
[First Level] 
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Where ��, �� and ��are the objective functions of the first level decision maker (FLDM), second level 
decision maker (SLDM), and third level decision maker (TLDM), �  is � × � real matrix, and � is 
(1 × �)  matrix, the vector of decision variables �  is n-vector partitioned between the three 
planners. 
 
Definition 1. 
 

For any    GxxxxGx  321111 ,, given by FLDM and    GxxxxGx  321222 ,,  

given by SLDM, if the decision-making variable    GxxxxGx  321333 ,,  is the optimal 

solution of the TLDM, then  321 ,, xxx  is the feasible solution of TLCCQP problem. 

 
Definition 2. 
 

If  *
3

*
2

*
1 ,, xxx  is a feasible solution of the TLCCQP problem; no other feasible solution 

  Gxxx 321 ,, exists; so  *
3

*
2

*
1 ,, xxx is the optimal solution of the TLCCQP problem. 

 

3 Converting Probabilistic Nature of the Constraints to 
Equivalence Deterministic Constraints 

 
The basic idea in this section is to convert the probabilistic nature of the constraints to equivalence 
deterministic constraints. Using: 
 

G = .0,,...2,1,)()(
1

 


jiij

n

j
ij

n xnibVarKbExcRx
i

 [13] (6) 

Assume that G is the constraints after converting from probabilistic nature to equivalence 

deterministic constraints, the random parameters ib ,(i = 1, 2… n),
 

)( ibE  is the mean,
 

)( ibVar  is 

the variance and  
i

K  is the standard normal table value of the constraint. 

 
So the TLCCQP problem can be written as: 
 
[First Level] 

  

 max��
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Where 32 , xx solves 

 
[Second Level] 
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Where 3x solves 

 
[Third Level] 
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Subject to 
 

  .,, 321 Gxxx 
                                                                                                 

 (10) 
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4 Fuzzy Approach of the Three–Level Chance Constraints 
Quadratic Programming Problem 

 
To solve the three–level chance constraints quadratic programming problem, one first convert the 
probabilistic nature of the constraints to equivalence deterministic constraints, after that gets the 
satisfactory solution that is acceptable to FLDM, and then gives the FLDM decision variable and 
goal with some leeway to the SLDM for him/her to seek the optimal solution, then the SLDM give 
the decision variables and goals with some leeway to the TLDM for him/her to seek the 
satisfactory solution and to arrive at the solution which is closer to the optimal solution of the 
FLDM. This due to, the TLDM who should not only optimize his/her objective function, but also try 
to satisfy the SLDM goals and preferences as much as possible, SLDM also do the same action to 
satisfy the FLDM goals and preferences as much as possible. 
 

4.1 FLDM Problem  
 

First, the FLDM solves (7) subject to G , by applying the simplex method. The individual best 

solution  *
1F  and individual worst solution  1F   of (7) subject to G are: 

  

)(1
*

1 xFMaxF
Gx

 , )()( 11 xFMinxF
Gx

                                                              (12) 

 
Goals and tolerances can then be reasonably set for individual solution and the differences of the 
best and worst solutions, respectively. This data can then be formulated as the following 
membership function of fuzzy set theory [8]: 
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  (13) 

 

4.2 SLDM Problem 
 

In the same way, the SLDM independently solves (8) subject to G , by applying the simplex 

method. The individual best solution  *
2F  and individual worst solution  1F   of (8) subject to G

are: 
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)(2
*

2 xFMaxF
Gx
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 (14)                                                                                     

 
This information can then be formulated as the following membership function: 
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4.3 TLDM Problem 
 

In the same way, the TLDM independently solves (9) subject to G , by applying the simplex 

method. The individual best solution  *
3F  and individual worst solution  3F   of (9) subject to G  

are: 
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  (16)                                                                                     

          
This information can then be formulated as the following membership function: 
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 (17)            

 
Now the solution of the FLDM, SLDM and TLDM are disclosed. However, three solutions are 
usually different because of nature between three levels objective functions. The FLDM and SLDM 

know that using the optimal decisions,
Sx2 as a control factor for the TLDM are not practical. It is 

more reasonable to have some tolerance that gives the TLDM an extent feasible region to search 
for his/her optimal solution, and reduce searching time or interactions. 
  

In this way, the range of decision variable 21 , xx should be around
Fx1 ,

Sx2  with maximum 

tolerance 21, tt   and the following membership function specify 
SF xx 21 , as: 
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Finally, in order to generate the satisfactory solution, which is also the optimal solution with overall 
satisfaction for all decision - makers, the Tchebycheff problem can be solved as the following: [15] 
 

,Max                                                                                                               
 (20) 
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Where  is the overall satisfaction, and I is the column vector with all elements equal to 1s. By 
solving problem (20). If the FLDM is satisfied with the solution then optimal solution is reached. 
Otherwise, he/she should provide a new membership function for the control variable and 
objectives to the SLDM and TLDM, until an optimal solution is reached. It is easy to see that there 

is an inverse correlation between 21,tt and . 
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5 Numerical Example  
 
To demonstrate the solution for (TLLSLP) problem, let us consider the following example: 
 
[Upper Level] 
 

  2
3

2
2

2
1

,
11 35

11

xxxMaxxFMax
xx


, 

 

Where 2x solves 

 
[Second Level] 
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22
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Where 3x solves 

 

[Third Level] 
 

 
 
 

 
Subject to 
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Suppose thatbi, (i=1,2,3) is normally distributed random parameters with the following means and 
variances, E(b1)=10,  E(b2)=14, E(b2)=12,VAR(b1)=16,VAR(b2)=25,VAR(b3)=4 . 
 
From the standers normal table:kα1=0.758, kα2=0.7881,kα3=0.8238. 
 

1. In the first the probability nature will be converted to equivalent deterministic constrain. 
2. Secondly, reformulate the problem in to deterministic form as following: 

 
[Upper Level] 
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Where 2x solves 

 
 [Second Level] 
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Where 3x solves 

  
[Third Level]    
 

 
 
 

 
Subject to 

 
 

 

,03.13321  xxx
 

 

,940.172 321  xxx
 

 

,647.132 321  xxx
 

 
 

 
 
First, the FLDM solves his/her problem as follows: 
 
Find individual best and worst solutions by solving the FLDM problem using simplex methodas

849*
1 F , and 0)(1  xF . 

  
Second, the SLDM solves his/her problem as follows: 
Find individual best and worst solutions by solving the SLDM problem using simplex method as

30.402*
2 F , and 0)(2  xF . 

 
Third, the TLDM solves his/her problem as follows: 
 
Find individual best and worst solutions by solving the TLDM problem using simplex method

04.186*
3 F , and

0)(3  xF
. 

 
Finally 

1. Assume the FLDM control decision 
F

x1
is around (0) with tolerance1. 

2. Assume the SLDM control decision 
F

x2  is around (8.97) with the tolerance 2. 
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Subject to 
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,03.141 x
 

 

,03.121 x
 

 

,970.1022  x
 

 

,97.622  x
 

 

 1,0
. 

 

Whose compromise solution is   )3,26.8,02.13(,, 321 xxx and 67.0  (overall satisfaction 

for all decision maker's) and the objective function value are F1= 927.829, F2=90.247,F3= 213.78. 
 

6 Summary and Concluding Remarks 
 
In this paper three-level chance constrained quadratic programming problem (TLCCQP) is 
presented by using fuzzy approach which is easy to apply and simple to be understood. After 
converting probabilistic nature of the constraints to equivalence deterministic constraints the FLDM 
solved his/her problem and give the individual best solution and individual worst solution by 
applying the simplex method, the SLDM solved his/her problem and give the individual best 
solution and individual worst solution by applying the simplex method, TLDM solved his/her 
problem and give the individual best solution and individual worst solution by applying the simplex 
method, after that the membership functions were created using the tolerance concept to develop 
Tchebycheff problem for generating Pareto optimal solution for this problem. 
 
However, there are many other aspects, which should by explored and studied in the area of 
stochastic multi-level optimization such as: 
 

1- A three–level integer programming problem with stochastic parameters in objective 
function. 

2- A three–level chance constraints quadratic mixed integer programming problem with 
stochastic parameters in objective function. 
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