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Abstract

This article describes a new numerical solver for the Navier-Stokes equations. The proposed solver
is written in Python which is a newly developed language. The Python packages are built to solve
the Navier-Stokes equations with existing libraries. We have created discretized coefficient matrices
from systems of the Navier-Stokes equations by the finite difference method. In addition we focus on
the preconditioned Krylov subspace iterative methods in the linearized systems. Numerical results
of performances for the Preconditioned iterative methods are demonstrated. The comparison
between Python and Matlab is discussed at the end of the paper.
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1 Introduction

The numerical solvers for Partial Differential
Equations (PDEs) are developed greatly in
recent years. Most of them are based on
the traditional languages such as C, C++, or
Fortran etc. However, those languages are high
performances but lower level languages. In
general Languages like C, C++ require relative
strong programming backgrounds. Therefore
more scientists start to develop the numerical
applications for PDEs in Python due to its
huge potential advantages in the computational
mathematics areas.

1.1  Why Python?

Python is an interpreted, high-level, object-
oriented, dynamic general-purpose programming
language. Since python 1.0 was published in
1994, it has been one of the most popular
programming languages (3rd place on PYPL
index, Feb 2014). The advantages of the
Python programming language include rapid
development, excellent readability, fast learning
curves, huge community support and great
cross-platform capability. It is extensively
used in desktop application developments, web
application developments, scriptings, system
managements as well as scientific computations.
In the scientific computation area, Python has
the following important features compared with
Matlab:

e Code quality: Compared with the
Matlab scripting language, Python is a
full stack language supporting multiple
programming paradigms including
object-oriented, imperative, functional
programming, etc. It is capable of
more computational tasks.  With the
unique indent block, Python code is more
readable. The Python module system is a
sophisticated way to organize source code
files compared to Matlab which lacks the
support on namespace. The zero-based
bracket array indexing is much more
compatible with most other programming
languages. In addition Python is a
signal processing system compared to the
Matlab which is a one-based parenthesis
system.
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e Portability: Python is a free and open

source on all platforms. The run time
environment is light-weighted (239M
EPD Python full scientific computing
distribution) compared to the multi-
gigabyte Matlab. It can be easily deployed
anywhere while the installation of Matlab
is limited by the license.

Flexibility: ~ Python is a perfect glue
language. It is not hard to find
or write Python wrapper to provide
API (application programming interface)
of existing high performance software
packages written in C, C++, FORTRAN
or even Matlab. Thus, it provides a way
to quickly develop applications by reusing
existing code. In the case of Matlab’s
closed ecosystem, scientists have to rely
on the packages only from MathWorks,
the company which developed Matlab.
Unfortunately, the underlying algorithms
are proprietary and expensive.

Performance: Though performance
is a major concern of Python given
its interpreted, dynamic nature.  This
problem can be usually circumvent by
delegating most computational tasks to
high performance packages written in
C, FORTRAN. Cython, the variation of
standard Python (CPython), provided a
way to take the advantages of both the
rapid development capability of Python
and the high performance of C language
by translating a superset of Python
syntax to C code. In many scenarios, it
will provide comparable performance to
scientific packages.

Availability of packages: Python and
the huge number of extension packages
are freely available (41311 on PyPI,
a Python package repository on Mar.
2014). There are also high quality
packages for all aspects of scientific
computing.  Numpy/Scipy are popular
Python numerical packages that provide
similar functionality and performance to
Matlab. Matplotlib is a very useful package
for plotting. Numpy/Scipy and Matplotlib
together can cover most of the tasks done
on Matlab. Moreover, there are many
other very useful Python packages for
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scientific computing including the scientific
notebook iPython, the statistic package
panda, the cross-platform GUI toolkits
pyQt, wxPython and GTK, the all-in-one
scientific Python distribution Pythonxy and
canopy express (former EPD Python), the
test framework unittest and nose.

e Cost: Matlab is very expensive for
the researchers while Python and
corresponding packages are totally free. It
is more favorable for students who would
like to learn the numerical analysis with no
cost.

With the advanced features of Python, we are
able to develop some efficient and easy-to-
use softwares to solve PDEs. In this paper,
we focus on using Python to solve the PDEs
arising from the incompressible flow problems,
especially the Navier-Stokes equations. We

%—?—VAu+(u~V)u+Vp:f in  Qx(0,7] (1.1)
V-u=0 in  Qx[0,7] (1.2)

Bu=g on Qx][0,7] (1.3)

u(x,0) = up in Q (1.4)

are more interested in the applications of
the preconditioned Krylov subspace iterative
methods. We will compare the performances
between Python and Matlab.

1.2 The Naviver-Stokes Equations

The Navier-Stokes equations, which are
named after Claude-Louis Navier and George
Gabriel Stokes, come from the motion of fluid
substances. The equations are important with
both academic and economic interests. The
Navier-Stokes equations model the movement
of the fluid from various types, such as the
weather, ocean currents, water flows in a pipe
and air flows around a wing. They are also
used as the models to study the blood flow, the
design of power stations, the analysis of pollution.
The incompressible Navier-Stokes equations are
given by the following PDEs:

Here the variable u = u(x,t) € R¢, where d = 2, or d = 3 is a vector-valued function representing the
velocity of the fluid, and the scalar function p = p(x,t) € R represents the pressure. Q C R*,where
d =2, ord = 3. For an example, Q is defined as [0, 1] x [0,1] € R%. T > 0 is a constant. Here B is
the boundary condition operator such as the Dirichlet Boundary condition or the Neumann'’s boundary

condition.

Assume Q C R2. Denoting u = (u,v), and f = (f1, f2), we can write the equations (1.1)—(1.2) in

scalar form as follows:

ou ou ou Op
E*VAU*‘FU%JFU@JF% = fl,
ov ov ov  Jdp
E—IJA’U-'—U%-‘FU%-‘F@ = f27
ou ov _
ox oy
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The pressure field, p, is determined up to an
additive constant. To uniquely determine p we
may impose some additional condition, such as

/pdx:O.
Q

The source function £ is given on a d-dimensional
domain denoted by Q C RY, with 9Q the
boundary of Q. Here v > 0 is a given constant
called the kinematic viscosity, which is v =
O(Re™'). Here Re is the Reynolds number:
Re = YL where V denotes the mean velocity
and L is the diameter of Q2 (see [1]).

(1.5)

Numerical algorithms for the computational
solutions of the Navier-Stokes equations have
been discussed for several decades. This
field still remains active in the research area.
In this paper, we will implement the efficient
solvers for the Navier-Stokes equations using
Python. Though we already have some
numerical solvers or softwares for solving
PDEs on line, very few of them consider the
preconditioned iterative solvers for the Navier-
Stokes equations. We are the first to develop
a Python package which enables us to solve
the Navier-Stokes equations using different
preconditioning techniques. We will compare
the performances of different precondtioners
and the convergence rates of the iterative
methods. During our numerical experiences,
we have used many mature libraries from the
Web in the package, including NumPy (http :
//numpy.scipy.org), Scipy (www.scipy.org),

ou—vAu+ (up-V)u+Vp="=f in
V-u=0 in

and Dolfin (www. fenics.org/dol fin).

2 Materials and Methods

2.1 Creating Matrices for the

Navier-Stokes Equations

The unsteady (time-dependent) case leads to
sequences of saddle point systems when fully
implicit time-stepping schemes are used. For
example, we can discretize the time derivative
term % using backward Euler or Crank-Nicolson
schemes; see [2]. For the space discretization,
either finite element methods or finite difference
methods will work. We first consider the Marker-
and-Cell (MAC) discretization, which is due to
Harlow and Welch (1965). See [3] for more
details. The particularity of MAC scheme is the
location of the velocity and pressure unknowns.
Pressures are defined at the center of each
cell and the velocity components are defined at
the cell edges (or cell faces in 3D). Such an
arrangement makes the grid suitable for a control
volume discretization. We also can use Dolfin
to generate the matrices for the Navier-Stokes
equations using the finite element method.

First we can use backward Euler's method to
discretize (1.1)—(1.2) with respect to the time and
use the Picard’s iteration to linearize equations
(1.1)—-(1.2).  We obtain the a sequence of
linear problems which are also called the Oseen
equations:

Q x (0,7
Q% [0,7T]

Here o is O(dt), where 6t is the time step. And u;, is the solution which is obtained from the previous
step. The initial guess u, can be the solution from the Stokes equations which are

aou—vAu+Vp=f~f
V-u=0

in  Qx(0,7]
in  Qx[0,7T]

The following finite difference expressions are utilized (for the two dimensional case) when we

discretize the equations with respect to the space:
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(927u‘ ‘ O Ujts/2.k — 2Uj41/2,6 T Uj—1/2,k
8%2 Jj+1/2;k - AZ’2 )
(927u‘ ‘ o Ujt1/2,k+1 — 2Ujq1 2,k + Uj+1/2,6—1
8y2 Jj+1/2;k - Ay2 )
8%v Vjto,k—1/2 — 2Vj41,k—1/2 T Vjk—1/2
@‘Hl;k*l/? = A2 ’
&| ,  Ujk+1/2 — 2056-1/2 + Vi k—3/2
dy? Jjik=1/2 = Ay? )
@‘ _ _ Yits/2k T Uj-1/2k
9z Jj+1/2;k Az )
aﬁ‘ _ _ Uiti/2k41 T Uj41/2,k-1
ay j+1/2;k Ay )
ov  Uj42,k—1/2 — Ujk—1/2
%‘j«kl;kfl/Z - Az )
@| . _ Yikt1/2 — Ujk-3/2
8y jik—1/2 Ay )
Op _ Dj+1,k — DPik
Pglitien = T
Jp _ Pjk —Pjk-1
aiyb;k—l/? - T :

With the above scheme, we obtain the
following linear system Ax = b, where

A, 0 BY
A=| 0 A, BY |, (2.1)
B:. B, 0

where A;, Asare discrete reaction-convection-
diffusion operators. A; is the approximation
of au — vAu + u% + U?TZ’ and A, is the
approximation of av — vAv + v 5% 4 v 32 Here
B~ 2 and B; ~ a%- We denote the matrix .4
in the block form:

A
A= [ B o } : 2.2)
where
[ A 0
A= { o A } , (2.3)
and B = [Bl B2]
The right hand side b = [fi, f2,0]7. The

discretized linear system Ax = b is the major
system we focus on. Notice here the matrix A is
a large sparse matrix. Therefore the computation
involving the matrix .4 should always consider the
sparsity and use sparse operations.

Notice here the linear system Ax = b is
the linear system we need to solve at each
Picard’s iteration. Therefore, at each k-iteration
in the Picard’s iteration, we have the solution x.
Under certain conditions, the sequence xi,j‘zf1 will
converge to the solution of the nonlinear problem
(1.1) to (1.4).

2.2 Numerical Solvers

Currently, our most important application is to
play with the different numerical solvers for the
Saddle point system Ax = b with the coefficient
matrix 2.1. We focus on Krylov subspace iterative
methods: such as the General Minimum Residual
Method (GMRES) [4] and the Biconjugate
gradient stabilized method (BICGSTAB) [5]. For
both methods, the preconditioning techniques are
important for the Navier-Stokes equations. The
preconditioner P is a matrix which approximates
A in some yet-undefined sense. It is obvious that

the linear system
PlAx =P 'b (2.4)
has the same solution as
Ax=b. (2.5)
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However (2.4) may be easier to solve,
which means GMRES or other Krylov subspace
iterative methods may converge faster. System
(2.4) is preconditioned from the left, and we can
also preconditioned from the right:

AP 'y =b, x=P 'y. (2.6)

Many research work has been published in
the area of the preconditioning technique.
Unfortunately, there is no universal ’ideal”
preconditioner for all linear systems. See
a thorough discussion of the precondtioning
techniques in [6,7], ect. The choice of the
preconditioner is strongly case dependent which
is the most challenging topic in the iterative
solvers. We implemented the GMRES iterative
solvers with no preconditioner, and with different
choices of preconditions. The performance of
the iterative solver and the preconditioners can
be explored. At this stage, we have already
tested the following different precondtioners with
GMRES.

2.2.1 Block diagonal preconditioner
A O
P= { o I } '

where A is the approximation of A (in most our
cases, A is A or A+ ol where « is time variable,
and a = O(3)).

2.2.2 Block triangular preconditioner

|

Then the block LU factorization form of block
triangular reconditioner is

Il 7

A O
B I |’

L 0
P—{o Inm

2.2.3 Hermitian and Skew Hermitian
(HSS) Preconditioner

1 oA
P = HS

where
A+AT 1) A—AT BT
= 2 = 2
" { o 0]’8 { B0 }

H=H+ rIn+m73 =S+ rliim.

As we can see, H is the symmetric part of the
coefficient matrix A, i.e.

A+ AT
2 bl
and S is the skew-symmetric part of the
coefficient matrix A, i.e.
A—AT

S = 5

In order to make H and S invertible, we shift both
matrices by adding rI,+., where » # 0 is an
arbitrary parameter, and I,,., is a identity matrix
of size n + m.

H =

The performances of the above three
preconditioners are discussed in both [6,8]. Here
we focus on the application of Python in those
numerical solvers and the outcomes from the
software package.

3 Numerical Experiments

In this section we report on several numerical
experiments meant to illustrate the behavior of
the Python applications on the preconditioned
GMRES in a wide range of model problems.
We consider Navier-Stokes problems in the two
dimensional spaces.

3.1

In this session, we will show the example using
Python to solve the Navier-Stokes equations
and plot the solution. We use a few libraries:
numpy and matplotlib. Here numpy is a library
that provides matrix operations and matplotlib
provides the 2D plotting library that we could
use to plot the results. We consider the two-
dimensional lid-driven cavity problem.  This
is a classical problem from the Navier-Stokes
equations. We take a square cavity with sides of
unit length and kinematic viscosity v = 0.05. The
initial condition is u,v,p = 0 everywhere, and the
boundary conditions are:

Numerical Solutions
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Figure 1: Simulation Results for the Driven Cavity Problem t = 1

Table 1: Sample Output: Iteration counts for the 2D Cavity problem

64 x 64 | 128 x 128 | 256 x 256
Block Diagonal Preconditioner 31 33 34
Block triangular Preconditioner 16 17 18
HSS Preconditioner 49 52 55

e y=1laty=2;
e u,v = 0 on the other boundaries;

e To satisfy the continuity, we need to
correct the pressure term and here are the
boundary conditions for the pressure:g—;’ =
Oaty =0;p=0aty=2;and 22 =0 at
z =0, 2

Figure 1 - 4 show the solutions of the above
driven cavity problems with viscosity v = 0.1.
Figure 1 is the solution as ¢ = 1, Figure 2 is the
solution as ¢ = 200, Figure 3 is the solution as
t = 500, and Figure 4 is the solution as ¢ = 2000.
We can see as t goes to around 500, the system
gradually to stabilize.

3.2 2D Equations with Different
Preconditioners

In this session, we explore the iteration properties
of the 2D Navier-Stokes equations with different
preconditioners. We consider the Oseen
equation in this case. We apply the Krylov
subspace iterative methods: GMRES with three
different preconditioner we introduced in the
previous section. We use the library scipy, numpy
and matplotlib. In Table 1 we present results for
the iteration counts for 2D Oseen problem with
different precondtitioners. Here the exact solver
is used in each preconditioning action. The mesh
size increases from 64 x 64 to 256 x 256.
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Figure 2: Simulation Results for the Driven Cavity Problem t = 200
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Figure 3: Simulation Results for the Driven Cavity Problem t = 500

Figure 5 shows the convergence curves for 1. The length of the codes are similar. Both
those three preconditioned GMRES methods. Matlab and Python are script languages.

They are easy to use and easy to

We did a few numerical experiments using Matlab implement.

and Python. The performance of both languages 2. Both Matlab and Python can obtain
are quite close.

the images of the solutions, plot the
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Figure 4: Simulation Results for the Driven Cavity Problem t = 2000
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-Block Triangular
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iteration nurnber

0 = a0 48

Figure 5: Sample Output: GMRES iteration convergence for the Driven Cavity
Problem

eigenvalues, velocity streamlines etc.

. The speed are also similar. Here is
the comparison. We run the 2D Oseen
problem with constant wind using Matlab
and Python on the same computer. We
used HSS preconditioning technique with
GMRES iterations. Table 2 shows the
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cpu time for both languages. The CPU
time for Python is higher than the CPU
time in Matlab. The reason is due to
the optimization of the sparsity operations
in Matlab. We currently are working
on improving the sparsity operations in
Python too.



Liu et al.; JSRR, 7(3), 207-217, 2015; Article no.JSRR.2015.202

Table 2: CPU time for the 2D Oseen problem with constant wind

Matrix Size | Matlab CPU time | Python CPU time
40 x 40 0.029 0.05
176 x 176 0.13 0.45
736 x 736 2.69 36.8
3008 x 3008 83 119

A good way to explore the capabilities of
this package in Python is to download the codes
at hitp : www.uwf.edu/jliu/research/Python.
The Python codes are clean and simple but
they are easy to learn. With the development
of our Python package, scientists and students
can explore the properties of the preconditioned
Krylov subspace methods. The other software
in the preconditioning technique area is the
IFISS developed by David Silvester (School
of Mathematics, University of Manchester),
Howard Elman (Computer Science Department,
University of Maryland), and Alison Ramage
(Department of Mathematics and Statistics,
University of Strathclyde). See [1]. This software
is written in Matlab and it is a graphical package
of the numerical study of the incompressible
flows. This is a good way to study and explore
the numerical methods of the Navier-Stokes
equations. But you need to have Matlab installed
which costs around one thousand dollars. It
is expensive for the students who would like to
explore the numerical solutions for the Navier-
Stokes equations. On the other hand, Python
is free. In addition, Python is very similar with
Matlab in many features. Both of them are
script languages and easy to learn. In our
numerical experiments, we would like to show
that we can use this free high-level language
to develop a package. Our package will help
to implement the Navier-Stokes equations of
finite difference methods, explore a range of
preconditioned Krylov subspace solvers, provide
a visualization tool and etc. Notice that
with Python alone, the calculation speed is
not competitive with the softwares based on
C/C++/Fortran, or even Matlab. But with the
combination of C/C++/Fortran, the Python script
is able to run the meshes that have millions of
nodes on desktop computers, see [9].

4 Conclusions

In this article, we have developed a numerical
solver for the Navier-Stokes equations using
Python. We use the preconditioned iterative
methods to solve the problem and we explore
the effectiveness and performances of the
different preconditioners for the Krylov subspace
methods. The numerical solutions are analyzed
for their basic properties. We also compare the
performances between Python and Matlab. The
major contribution of this project is to develop a
free, efficient software and numerical algorithms
for the Navier-Stokes equations. It is the first
time to study the preconditioning techniques in
Python codes. The development of the Python
package may benefit both scientists and students
to analyze the numerical solvers of the Navier-
Stokes equations, especially in observing and
developing the preconditioning techniques.
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