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reductions (Konsula and Liakopouloukyriakides, 2004). 
Utilization of low cost substrates such as agricultural and 
industrial by-products in production medium can make 
commercial production of enzymes economical 
(Tanyildizi and Ozer, 2011). Starch is the primary storage 
compound of a large number of economically important 
crops such as cassava, rice, corn, wheat, sweetpotato 
and potatoes (Hussain et al., 2013). It is an abundant 
source of carbohydrate (Hussain et al., 2013) and 
consists of amylose and amylopectin. Corn is a major 
cereal crop grown in tropical regions of the world. It 
provides major source of energy and dietary supplement 
among the average and low income groups in Nigeria. In 
Southern parts of Nigeria, corn is used in preparation of 
food, beverages and breakfast snacks. Among the 
various starches, corn, potato, sweet potato and cassava 
are the most abundant and relatively inexpensive 
(Ubalua, 2014). The use of corn starch as raw material is 
attractive because of the enormous postharvest losses 
associated with our agricultural produce and the ability to 
obtain high yield of corn from marginal agricultural soils in 
our country. The regular use of soluble starch-based 
fermentation media is not commercially viable for 
industries in the sub-Saharan Africa. For efficient 
commercial production effort is therefore necessary to 
explore cheaper substrate sources. In this study 
therefore, isolation and optimization of α-amylase from a 
moderately thermophilic strain of B. subtilis using these 
cheap native starches as carbon sources are reported. 
 
 
MATERIALS AND METHODS 
 
Sampling  
 
Twenty (20) field soil samples from 5 different locations 
representing different agricultural soils at National Root Crops 
Research Institute (NRCRI) Umudike, Umuahia, Abia State, Nigeria 
were used for the analysis. Three samples from each location were 
collected at a distance of 200 m interval at depths of 5, 8 and 10 cm 
into sterile bottles with sterile hand shovel and labeled clearly. The 
soil samples were thereafter taken to NRCRI Microbiology 
laboratory. They were homogenized, mixed and sieved through a 2 
mm pore size sieve (Retsch, Germany) to sieve out large debris 
and used for isolation and enumeration purposes (Aghamirian and 
Ghiasian, 2009).  
 
 
Isolation of Bacillus colonies from the soil 
 
Isolation and enumeration of the Bacillus were performed using 
dilution method with nutrient agar (Oxoid, Basingstoke, UK) 
medium. Ten (10) grams of each of the soil samples were 
suspended in 90 ml of 0.85% normal saline (pH 7.0) and shaken 
vigorously at 150 rpm and 18°C for 1 h according to Agrawal and 
Agrawal (2013). The resulting slurries were serially diluted with 
0.85% normal saline. A 0.1 ml of the 10-4 dilution was spread plated 
in triplicate on nutrient agar (NA) medium. Cultures were incubated 
at 37±2°C for 24 h. Each colony was assayed for morphological, 
physiological and biochemical characteristics and were further 
compared with standard descriptions given in Bergey’s Manual of 
Determinative Bacteriology. Purified isolates were screened for 
starch hydrolysis as  described by Chu (2007). This  was  done with 

 
 
 
 
NA containing 1% soluble starch (potato, BDH, Poole, UK). 
Amylolytic activity was demonstrated by streaking the isolates on 
the NA. Incubation was at 37°C for 24 h before flooding with iodine 
solution. In situ enzyme production was observed with the clearing 
of zone of whitish appearance in the area surrounding the isolate.  
 
 
Spore stain test  
 
A dried heat-fixed bacterial film on a clean slide was placed over a 
beaker of boiling water, with the bacterial film upper most. After 
condensation of water droplets on the underside of the slide for 
several seconds, the slide was flooded with a 5% aqueous solution 
of malachite green and was left for 1 min to act while the water 
continued to boil. The slide was further rinsed in running cold water 
and treated with 0.5% safranine for 30 s. It was again rinsed in 
running cold water and dried. When viewed under microscope, the 
spores appeared green, while the vegetative bacilli appeared red. 
Lipid granules were unstained. 
 
 
Extraction of starch milk 
 
Cassava, sweet potato, corn and potato starches were prepared as 
already described by Ubalua et al., 2014; Ubalua, 2014. The 
starches were sterilized in a hot air oven at 175°C for 40 min with 
the powder depth not exceeding 1 cm according to El- Tayeb et al. 
(2007) before substituting in the amylase producing medium. 
 
 
Growth profile and amylase induction from B. subtilis   
 
250 ml Erlenmeyer flasks were used for α-amylase production by B. 
subtilis. Each contained 50 ml of the culture medium with the 
following composition: Starch (1.0%); yeast extract (0.5%); CaCl2 
(0.02%); NaCl (0.1%); and MgSO4 (0.1%) (Lily et al., 2012). The pH 
of the medium was adjusted to 7 with 1 N H2SO4 and/or 1 N NaOH 
before sterilization at 121°C for 15 min. An inoculum was prepared 
from a slope of B. subtilis by growing the organism for 24 h in a 
250-ml Erlenmeyer flask containing 50 ml of the medium at 30°C in 
an orbital incubator (200 rpm) for 24 h.  The growing cells were 
centrifuged at 2000 rpm and an aliquot (0.5 ml) of the suspension 
were inoculated into three 250 ml Erlenmeyer flasks containing 50 
ml each of the medium supplemented with 1% (w/v) soluble starch 
or the native starches. Fermentation was for 48 h at 200 rpm while 
samples were taken at intervals for analysis (biomass (OD 600 nm), 
and amylase production. Extents of starch depletion in the media 
were determined by withdrawing 0.5 ml of the culture broth at 
intervals and testing with aqueous iodine. 
 
 
Optimization of media components for α-amylase production 
 
Various carbon sources (Cassava, sweetpotato, corn, potato), 
nitrogen sources (groundnut cake, soybean cake, (NH4)2S04, 
NH4N03, coconut cake, peptone) and metal ions (in chloride and 
sulphate forms) were varied in different concentrations in the basal 
medium one at a time. Other medium ingredients in the basal 
medium were kept constant when one component was varied. 
Optimum concentration of the carbon sources, nitrogen sources 
and metal ions were deduced by determining the α-amylase activity 
of the cell free extract after 48 h of incubation (Poddar et al., 2012). 
 
 
Optimization of physical parameters for growth and α-amylase 
production 
 
Microbial growth progression and α-amylase production were
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Table 1. Microscopic and biochemical characteristics of the bacterial isolates. 
 

Parameter 
              Isolates   

CNS1 CNS2 CNS3 CNS4 

Colony features 
Pigmented, smooth butter-like 
glistening surface 

Large, rough and 
shinny colonies 

Dull and creamy 
brown 

Swarming with distinct 
odour 

     
Microscopy     
Gram reaction + - + - 
Motility - + + + 

Cell arrangement 
Cocci, singly and regular in 
clusters 

Rod shaped 
Blunt ended, singly 
and in pairs 

Straight rod, coccoid and 
irregular in chains 

Spore stain test - - + - 
     
Biochemical 
reaction 

    

Catalase + + + - 
Oxidase - + + ND 
Indole - ND - + 
Voges-Proskauer + ND + + 
NO3 + + + + 
     
Carbohydrate 
utilization 

    

Glucose +a +a +a +g 
Lactose +a - ND - 
Maltose +a - ND - 
Mannitol +a +a +a - 
Urease + + - + 
Hydrogen sulphide - - ND + 
     
Hydrolysis of:     
Starch - - + + 
Gelatin + + + + 
     

Identity Staphylococcus aureus 
Pseudomonas 
aeruginosa 

Bacillus subtilis Proteus mirabilis 
 

+ = Positive; - = negative; ND = not done, +a = positive with acid; +g = positive with gas. 
 
 
 

Table 2. Production of α-amylase from Bacillus subtilis grown on starches from different agricultural substrates. 
 

Starch (2%) Protein content (mg) 
Enzyme activity 

U/L) 
Optical density (660 nm) Specific activity (U/mg) 

Cassava 219±18b 2759±146b 0.62±0.01a 12.60±2.4b 
Corn 485±26a 4168±132a 0.71±0.02a 8.59±1.3c 
Sweet potato 488±44a 1622±98b 0.34±0.04c 3.23±1.0d 
Potato 82±7.1c 622±15c 0.42±0.01b 7.59±1.0c 
Soluble starch 203±12b 3988±126a 0.65±0.13a 19.65±7.1a 
LSD (0.05)        4.554 4.080 0.047 0.556 
 

Results represent mean values for three replications for each treatment. Same letters are not significantly different at p>0.05. 
 
 
 

(Nurullah, 2011; Esfahanibolandbalaie et al., 2008). 
Several authors have reported that the differences in the 

amylose, amylopectin composition and lipid contents of 
the starches could account for the variability in amylase
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Table 3. Production of α-amylase from Bacillus subtilis grown on nitrogen sources. 
 

Nitrogen source (2%) 
Protein content 

(mg) 
Enzyme activity 

(U/L) 
Optical density 

(660 nm) 
Specific 

activity (U/mg) 

Soybean cake 384±37.5b 6126±166b 0.54±0.03b 15.95±2.0b 
(NH4)2S04                    264±11.5c 3526±164c 0.43±0.05c 13.36±0.6c 
Groundnut cake 420±32b 7280.7±144a 0.63±0.06a 17.3±0.6a 
NH4N03 584±35.5a 8024±198a 0.78±0.07a 13.73±0.5c 
Coconut cake 128±12.5d 456.7±34.5c 0.34±0.03d 3.57±1.0d 
Peptone 461±71.5a 7643.3±213a 0.65±0.13a 16.58±1.2a 
Yeast extract                  352±8.5b 6218.7±188b 0.57±0.14b 17.67±1.6a 
LSD (0.05) 4.894 4.649 0.046 0.161 

 

Results represent mean values for three replications for each treatment. Same letters are not significantly different at 
p>0.05. 

 
 
 
production (Chavez et al., 2004; Gomes et al., 2005). 
Corn starch has approximately 28% amylose, 72% 
amylopectin and 6.0% lipids while cassava starch has 
approximately 17% amylose, 83% amylopectin and 0.1% 
lipids (Tester et al., 2004).  Cruz et al. (1997) posited that 
the ability of an organism to produce amylolytic enzymes 
that liberate reducing units is higher when the carbon 
source is more of amylose rather than amylopectin, and 
that corn amylose is a better inducer of amylase than its 
homologue from potatoes. Typical growth and enzyme 
production profiles in the media containing different 
nitrogen sources at 2% concentration is as summarized 
in Table 3. All the nitrogen sources yielded α-amylase in 
the following decreasing order (in U/L): NH4NO3 
(8024±198)>peptone (7643.3±213)>groundnut cake 
(7280.7±144)>yeast extract (6218.7±188)>soybean cake 
(6126±166)>(NH4)2SO4 (3526±164)> coconut cake 
(456.7±34.5) (Table 3). Nurulla (2011) reported 560, 797, 
798, 800 and 800 U/mL at 1% concentration for growth 
medium containing peptone, ammonium nitrate, ammo-
nium chloride, ammonium sulphate and sodium nitrate, 
respectively.  

In contrast, 7643±213, 8024±182, 3526±164 U/L were 
obtained for peptone, ammonium nitrate and ammonium 
sulphate at 2% concentration in this study. The oilseed 
cakes (soybean and groundnut) remarkably enhanced 
production of extracellular α-amylase (Table 3). However, 
the degree of enhancement was relative to the nature 
and the concentration of the soybean and groundnut 
cakes (Ramachandran et al., 2006).  
 
 
Optimization studies and growth kinetics 
 
Growth and enzyme production profiles in the media 
containing different carbon sources showed that α-
amylase production was highest in the corn starch 
medium as compared to other carbon sources (Table 2). 
Gradual increase in the concentrations of carbon and 
nitrogen sources resulted in the corresponding increase 

in both growth kinetics and α-amylase production. Under 
this growth condition, corn and soluble starch media 
induced a maximum α-amylase activities of 6427±168 
and 5982±167 U/L against 4168±132 and 3988±126 U/L 
produced in the basal media respectively (Figure 1 and 
Table 2). Similarly, 7856±306 and 8203±353 U/L were 
produced in soybean cake and NH4NO3 media respec-
tively (Figure 2) against 6126±166, 8024±198 U/L in the 
basal media (Table 3). Beyond 1.5% concentration of 
starch or nitrogen source, growth and activity gradually 
declined. Lily et al. (2012) achieved optimum α-amylase 
production with 1% peptone against 1.5% observed in 
this study. At lower concentration, groundnut seed cake 
induced additive effect while beyond 1.5% concentration 
adverse effect was observed. Defatted coconut meal was 
observed to be ineffective at low concentrations and 
retarded at concentrations above 1.5%. Groundnut cake 
has been credited with a well-balanced composition of 
nutrients that are essential for α-amylase production in 
contrast to coconut cake (Ramachandran et al., 2006). 
Previous reports by various authors also reported an 
optimum α-amylase production with 2% starch concen-
tration (Qader et al., 2006; Lily et al., 2012) in contrast to 
1.5% starch concentration obtained in this study. 
However, Yasser et al. (2013) reported a concentration of 
1.25% starch for optimum α-amylase production against 
1.5% obtained from the present study. 

It is worthy to mention here that starches are 
characterized by a wide degree of variation in their 
susceptibility to enzymatic attack. The susceptibility and 
mode of enzyme action depends on both the botanic 
origin of the starch, granule size and enzyme(s) involved 
(Satish and Aniruddha, 2007; Aderibigbe et al., 2009). 
Starch granules from different groups, including cereals 
(corn), roots (cassava, sweetpotato) and tubers (potato) 
are attacked preferentially (Aderibigbe et al., 2009). Nadir 
et al. (2010) reported that starches that naturally show a 
porous surface, as in corn, are prone to attack more 
easily than those with a smooth surface as in tapioca 
starch and that small starch granules are hydrolyzed
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