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Abstract

The issue of finite-time event-triggered sliding mode control (SMC) is investigated for a class of interval type-
II fuzzy Markov jump systems with partially known transition probabilities. Firstly, for the sake of saving
network resources, a dynamic event-triggered scheme (DETS) is proposed to determine whether to transmit
the signal or not. Then, a feasible SMC law is developed that makes the state trajectory of the system reach
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the specified sliding surface in finite-time. Thereafter, by means of the time partition strategy, sufficient
conditions for the system to be bounded in finite-time during the arrival and sliding stages are derived.
Additionally, the controller gains are computed by utilizing the linear matrix inequality (LMI) toolbox. Lastly,
the advantages of the SMC strategy are verified by simulation products.

Keywords: Finite-time sliding mode control; dynamic event-triggered scheme (DETS); interval type-II Markov
jump systems.

1 Introduction

It is well known that the Takagi-Sugeno (T-S) fuzzy system is an excellent tool for the analysis and synthesis of
complex nonlinear plants[1]-[5]. With the T-S fuzzy model, the primitive nonlinear system can be well expressed
by a ”mixture” of some local linear subsystems. Consequently, analysis of the stability of linear systems can be
prolonged to the nonlinear case by the T-S fuzzy modeling approach.

Markovian jump systems (MJSs) as a special class of switched system which consist of an indexed family of
subsystems and a set of Markovian chain, have obtained increasing attention. Different from the conventional
controller, the control design of MJSs is under the idea of switching to improve the performance of closed-loop
system. During the past few years, MJSs have been applied to various fields of science and engineering and
a great number of research works have been reported [6]-[11] and references therein. However, most of the
researcher have only considered the transition probabilities of MJSs are fully known and various results have
been investigated in [12][13]. In practical point of view, the transition probabilities of MJSs are not fully known,
due to the presence of channel delays and packet dropout in digital control system, it may be very costly to
achieve full known transition probabilities [14][15]. Hence, it is important and necessary to further investigate
more general MJSs together with partially known transition probabilities.

The event-triggered mechanism, as an effective way to reduce communication burdens, has been widely applied,
whose main idea is that the control/measurement signal can access the network only at the instant when the
triggering condition is satisfied [16]. Compared with the static event-triggered scheme(SETS), the dynamic
event-triggered scheme (DETS) has received increasing attention in recent years [17]-[20]. The key feature of the
dynamic event-triggered (DET) strategy is that an additional internal dynamical variable is introduced to adjust
the event-triggered condition adaptively. In [20], the DET method was also integrated into the SMC scheme to
stabilize a slow-sampling singularly perturbed system. Nevertheless, the application of DETS to interval type-II
fuzzy MJSs with partially known transition rates, there are not many relevant research results. This is the main
motivation of this paper.

Furthermore, sliding mode control (SMC), a discontinuous nonlinear control method, has been extensively
studied for several decades due to its simplicity and robustness. The main idea behind SMC is to drive
the system states onto a prescribed sliding surface in finite-time and to maintain the trajectory on it for all
subsequent time [21]-[24]. In [25]-[27] , it is highlighted that Lyapunov stability takes into account the fact that
the system’s trajectory achieves a balance point within an infinitesimal time lapse. These articles only focus on
the infinite-time reachability, but in engineering applications, there is an urgent need to actuate the trajectory
of the system onto a specified sliding surface within a limited timespan. Consequently, a growing interest in
the field of finite-time stability (FTS) and finite-time boundedness (FTB) conceptions has been observed in the
recent couple of years, following the increase in efficiency of practical systems. In [28], FTB and reachability of
MJSs with timelags are discussed. Besides, scholars have also extended the finite-time theory to fuzzy systems
[29], multi-agent system systems [30], randomly switched systems [31] and so on.

In consideration of the above discussion, the issue of finite-time DET SMC for interval type-II fuzzy MJSs with
partially known transition probabilities, which has greatly aroused our attention. The key contributions to this
article are outlined below:
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1. The DET SMC problem of interval type-II fuzzy MJSs with partially known transition rates has been
considered, and the minimum inter-event time has been given to avoid Zeno phenomenon.

2. In view of the effect of DETS, the concept of FTB is introduced to cope with the mismatched membership
functions(MFs) and the exterior interferences. The trajectories of the interval type-II fuzzy MJSs with
partially known transition rates are not only ensured to arrive at the specified sliding surface in finite-time
by utilizing the designed SMC strategy, but also sufficient conditions for the system to be bounded in
finite-time.

3. An example is given to demonstrate that the proposed DETS is more effective than the traditional SETS.

Notations: The symbols applicable in the present paper are generic. αmax(C) means the maximum eigenvalue
of matrix C, with ‖C‖ represents the Euclidean norm of C. E {·} indicates the mathematical expectation. C > 0
represents that C is symmetric positive-definite. “ ∗ ” represents the symmetric block for a symmetric matrix.
sgn(c) represents the sign function that equals 1 when c > 0, equals 0 when c = 0. sym(C) = C +CT . If there
are no special instructions, the matrices are considered to have appropriate dimensions.

2 Problem Formulation and Preliminaries

2.1 System description

With respect to the probabilistic space (
⊎
,
⊙
,Pr) , the nonlinear MJSs with external disturbance are constructed

by the T-S fuzzy model presented below:
Plant rule i: IF i1(x(t)) is ði1,. . . , and ip(x(t)) is ðip, THEN{

ẋ(t) = Ai(‡(t))x(t) +Bi(‡(t))u(t) +Di(‡(t))w(t)

y(t) = C(‡(t))x(t)
(1)

where i(x(t)) is the premise variables, ði represents the fuzzy aggregations, i ∈ z = {1, 2, . . . , v} ,  ∈ 0 =
{1, 2, . . . , p} and p is the number of premise variables and v is the number of fuzzy rules. u(t) and x(t) signify
the control input and the system state, separately; y(t) is the output vector; w(t) is the exterior interference
with a known upper bound w̄ meeting ‖w(t)‖ ≤ ‖w̄‖. The firing intensity is for the rule i specified as the below

given set of intervals: ηi(x(t)) =
[
η
i
(x(t)), ηi(x(t))

]
with

η
i
(x(t)) =

p∏
=1

µ
ði

(k(x(t))) > 0, ηi(x(t)) =

p∏
=1

µði
(k(x(t))) > 0,

where µ
ði

(i(x(t))) and µði
(i(x(t))) ∈ [0, 1) are the lower and upper grade of the MFs, satisfying µ

ði
(i(x(t))) ≤

µði
(i(x(t))). {‡(t)}t≥0 is a Markovian process with its values within a finite set ¶ , {1, 2, . . . , R}. Then, the

transition rate matrix ℵ , (ϕ=£), =,£ ∈ ¶ from mode = at time t to mode £ at time t+ ξ is determined by

Pr
{
‡t+ξ = £|‡t = =

}
,

{
ϕ=£ξ + o(ξ), = 6= £;

1 + ϕ==ξ + o(ξ), = = £;

where ξ > 0, lim
ξ→0

(o(ξ)/ξ) = 0; ϕ=£ ≥ 0, = 6= £, ϕ== = −
∑

£ 6==
ϕ=£,∀= ∈ ¶.

In this article, it is hypothesized that the Markov jump parameters are partially known, meaning that the other
parts of the elements of matrix ℵ are unknown. By way of example, consider the following form of a system
with three modes:

ℵ =

ϕ11 ? ?
? ϕ22 ?
? ϕ32 ?
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where “?” represents the unknown elements. To streamline the symbols, define ¶ = ¶=λ +¶=uλ, ∀= ∈ ¶ with ¶=λ ,
{£|ϕ=£ is known} ,¶=uλ , {£|ϕ=£ is unknown} . If ¶=λ 6= ∅ : ¶=λ =

{
λ=1 , . . . , λ

=
g

}
, ∀1 ≤ g ≤ R, where λ=g ∈ N+

is the gth element in the =th row of matrix ℵ.

To the whole ‡(t) , =, we define Ai= , Ai(‡(t)), Bi= , Bi(‡(t)), C= , C(‡(t)), Di= , Di(‡(t)) to simplier the
notations. Thus, the overall considered system can be formulated via the below T-S fuzzy model: ẋ(t) =

v∑
i=1

ηi(x(t)) [Ai=x(t) +Bi=u(t) +Di=w(t)]

y(t) = C=x(t)
(2)

with
ηi(x(t)) = η

i
(x(t))`i(x(t)) + ηi(x(t))`i(x(t))

`i(x(t)), `i(x(t)) ∈ [0, 1], `i(x(t)) + `i(x(t)) = 1,
v∑
i=1

ηi(x(t)) = 1

Where the the nonlinearity functions `i(x(t)) and `i(x(t)) enable uncertainty in parameters to be trapped,
Ai=, Bi=, C=, Di= are known matrices with appropriate dimensionalities.

2.2 Dynamic event-triggered scheme

In the paper, as presented in Fig.1, for the purpose of relieving the data transmission pressure, we introduce a
dynamic event-triggered scheme(DETS) which is used to decide whether the system state x(t) will be released
into the controller . Define e(t) = x(t) − x(tk) as the difference between the current state x(t) and the last
transmitted state x(tk). The triggering instant tk+1 is decided by the following rule:

tk+1 = inf

{
t|t > tk,

1

ρ
♠(t) + ℘xT (t)Nx(t)− eT (t)Me(t) ≤ 0

}
(3)

where ℘ ∈ (0, 1), ρ > 0, N with M are selected parameters. In addition, the dynamic variable ♠(t) satisfies the
following rule:

♠̇(t) = −κ♠(t) + ℘xT (t)Nx(t)− eT (t)Me(t) (4)

where κ > 0 with ♠(0) = ♠0 ≥ 0.

Remark 2.1. Different from the SETS in [8], the variable ♠(t), as the additional internal dynamic threshold,
is introduced into the DET criterion (3), which can be adjusted adaptively along with the rule (4). Therefore,
the presented DETS is more flexible in improving the transmission efficiency than the SETS.

Next, our goal is to design a fuzzy SMC law to realize the finite-time boundedness(FTB) of interval type-II
fuzzy MJSs (2) under DETS.

Lemma 2.1. [28] Considering the real matrices e and f which have suitable dimensionality, with respect to
any scalar σ > 0, the following inequality forms:

eT f + fT e ≤ eTσ−1e+ fTσf (5)

Definition 2.1. [8] Fixed a time inteval [0,>], scalars d2 > d1 > 0, ς > 0 and a matrix R > 0, system(2) is
FTB with respect to

(
d1, d2, [0,>],R,Ω[0,T ],ς

)
, if the following condition holds for any t ∈ [0,>]{

E
{
xT (0)Rx(0)

}
≤ d1

R ,
∫ >

0
wT (t)w(t) < ς

⇒ E
{
xT (t)Rx(t)

}
≤ d2 (6)
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Actuator

Plant

Sensor

DETS

NetworkController

w(t)

x(t)

x(tk)

u(t)

Fig.1. The system structure under DETS 

3 Main Results

3.1 Sliding surface design

The designed sliding surface is as follows:

s(t) = Jx(t) (7)

where J ,
R∑
==1

ν=B
T
= , with scalars ν=(= ∈ ¶) are supposed to be selected such that JB= is nonsingular for any

= ∈ ¶.

Plant Rule j : If [1(x(t)) is Zi1, [2(x(t)) is Zi2, . . ., and [p(x(t)) is Zip, then the ambiguous sliding mode controller
is designed below:

u(t) =

v∑
i=1

hi(x(tk))[Ki=x(tk)− γ(t)sgn(s(t))] (8)

where
v∑
i=1

hi(x(tk)) = 1, hi(x(tk)) ∈ [0, 1], i ∈ z, γ(t) = τ + φ ‖w(t)‖+ β ‖x(t)‖+ ‖Ki=x(tk)‖

with φ , max
=∈¶
{φ=} , φ= ,

∥∥(JBi=)−1JDi=
∥∥ , β , max

=∈¶
{β=} , β= , 1

2
‖Π=J‖+

∥∥(JBi=)−1JAi=
∥∥,

Π= ,
R∑

£=1

ϕ=£(JBi=)−1, τ > 0 is a small scalar.
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Remark 3.1. In the previous work, the sliding surface therein is designed as a mode-dependent one. Nevertheless,
due to the existence of the sign function, it is inevitable that the trajectory of the system raises the chattering
phenomenon when reaching the sliding surface. Therefore, if the mode-dependent sliding surface is chosen, the
reachability of the sliding surface might not be guaranteed all the time, and the trajectory of the system can not do
sliding motions along with the sliding surface strictly. Furthermore, the frequent switching of the sliding surface
and the chattering phenomenon of the system trajectory may degrade the performance of the controller. Thus,
we adopt a mode-independent sliding surface to avoid the above defects in this article.

3.2 Finite-time reachability analysis

In this part, within a given limited time [0,>], the SMC law u(t) is designed to compel the trajectories of the
systems into the sliding surface s(t) = 0 in a finite interval [0,>∗], and ensures that they stay on the sliding
surface for the rest of time [>∗,>].

Theorem 3.1. For the interval type-II fuzzy MJSs (2), the SMC law (8) enables trajectories of the system to
be compelled into the sliding surface s(t) = 0 in the limited time [0,>∗] (>∗ < >) and stay on there in [>∗,>]
in mean square sense, where τ in the SMC law (8) satisfies

τ ≥
max
=∈¶
{αmax(JBi=)−1}

> ‖Jx(0)‖ (9)

Proof: Consider the Lyapunov function with respect to any t ∈ [0,>]

V1(s(t),=, t) =
1

2
sT (t)(JBi=)−1s(t) (10)

For the convenience of writing, let V1(s(t),=, t) , V1(t) whose infinitesimal operator is obtained:

ΓV1(t) =
1

2
sT (t)Π=s(t) + sT (t)(JB−1

i= ){
v∑
i=1

ηi(x(t))[JAi=x(t) + JDi=w(t) +

R∑
£=1

ϕ=£(JBi=)

(Ki=x(tk)− γ(t)sgn(s(t)))]}
≤ − τ ‖s(t)‖

≤ − τ

%

√
V1(t) (11)

where % ,

√
max
=∈¶
{αmax(JBi=)−1}

2

Integrating (11) from 0 to t with t ∈ [0,>∗], one gets that:

2V
1
2
1 (>∗)− 2V

1
2
1 (0) ≤ −τ

%
>∗ (12)

from which we known that there is V1(>∗) = 0(s(t) = 0 for t ≥ >∗). Thus, by virtue of (12), we can get that:

>∗ ≤ 2%

τ

√
V1(0) (13)

In conjunction with (7) and (10), we can derive that V1(0) ≤ 1
2

max
=∈¶
{αmax(JBi=)−1} ‖s(0)‖2

and ‖s(0)‖ = ‖Jx(0)‖, then one derives that:

>∗ ≤
max
=∈¶
{αmax(JBi=)−1}

τ
‖Jx(0)‖ (14)

In combination with (9), we get >∗ ≤ >.
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Consequently, in a limited time [0,>], the trajectories of the interval type-II fuzzy MJSs (2) is to be compelled
into the sliding surface (7) within limited time >∗(>∗ < >), and maintained there during the rest of time
[>∗,>], the proof is thus accomplished.

Remark 3.2. It is clear from the certification procedure described above that the parameter τ in the SMC (8) is
important and that it has the power to determine the arrival time >∗. According to (14), the time to the arrival
stage decreases as τ increases in value.

Remark 3.3. The analysis of arrival stage [0,>∗] and sliding mode movement stage [>∗,>] in chunks makes
finite-time sliding mode control distinct. In accordance with Theorem 3.1, the trajectories of the system will
be driven to the sliding surface s(t) = 0 in finite-time >∗. The next step is to demonstrate that the closed-loop
system(CLS), along with the sliding surface in [0,>], is mean-square finite-time bounded.

3.3 Finite-time boundedness in [0,>∗]

During the subsection, the trajectories of the system are at the external side of the sliding surface within the
arrival phase [0,>∗], which means s(t) 6= 0. By incorporating (2) and (8), the CLS can be reprofiled as: ẋ(t) =

v∑
i=1

v∑
j=1

ηihj [Ăi=x(t)−Bi=Ki=e(t)−Bi=γ̄(t) +Di=w(t)]

y(t) = C=x(t)
(15)

where
v∑
i=1

v∑
j=1

ηihj ,
v∑
i=1

v∑
j=1

ηi(x(t))hj(x(tk)), Ăi= , Ai= +Bi=Ki=, γ̄(t) , γ(t) sgn(s(t)). And we can get:

γ̄T (t)γ̄(t) =[τ + φ ‖w(t)‖+ β ‖x(t)‖+ ‖Ki=x(tk)‖]T [τ + φ ‖w(t)‖+ β ‖x(t)‖+ ‖Ki=x(tk)‖]

≤4τ2 + 4φ2wT (t)w(t) + 4β2xT (t)x(t) + 4xT (tk)KT
i=Ki=x(tk)

(16)

Then, the FTB issue of the system (15) is to be investigated within the time [0,>∗].

Theorem 3.2. With respect to the SMC law (8), given parameters d2 > d1 > 0, λ > 0, ς > 0, τ > 0, κ >
0, ρ > 0, ℘ > 0, N,M and matrix R > 0 are predetermined. If there are scalars d∗ > 0,>∗ > 0, matrices
Pi= > 0,Z > 0,Q > 0 and symmetric matrices L=, such that the following conidtions hold for all i, j ∈ z,= ∈ ¶

v∑
i=1

v∑
j=1

ηihjWij < 0 (17)

Pi£ − L= ≤ 0,£ ∈ ¶=uλ,£ 6= = (18)

Pi£ − L= ≥ 0,£ ∈ ¶=uλ,£ = = (19)

4λβ2I < e−λ>
∗
Z (20)

4λKT
i=Ki= < e−λ>

∗
Q (21)

d1 < d∗ < d2 (22)

ðPi=d1 +♠0 + 4τ2λ>∗ + 4λςφ2 + λς

ðPi=
< e−λ>

∗
d∗ (23)

where

Wij =

W11 W12 I
∗ W22 0
∗ ∗ −Z−1


W11 =

∑
£∈¶=

λ

ϕ=£(Pi£ − L=) + Pi=Ãi= + ÃTi=Pi= + Q + (1 + k1)℘N − λPi=,
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W12 =

[
Pi=Di= −Pi=

R∑
£=1

ϕ=£Bi=Ki£ −Q −Pi=Bi= 0

]
,

W22 = −diag
[
λI, (1 + k1)M −Q, λI, κ− k1

ρ
+ λ

]
Ãi= , Ai= +

R∑
£=1

ϕ=£Bi=Ki£

ðPi= , min
s∈¶

(
αmin

(
R−

1
2 Pi=R

1
2

))
,

ðPi= , max
s∈¶

(
αmax

(
R−

1
2 Pi=R

1
2

))
then, the system (15) is FTB about

(
d1, d

∗, [0,>∗],R,Ω[0,>∗],ς
)
.

Proof: Note that the DET condition (3) implies for any t ∈ [tk, tk+1]

1

ρ
♠(t) + ℘xT (t)Nx(t)− eT (t)Me(t) > 0 (24)

By virtue of the dynamic equation(4),we get

♠̇(t) > −κ♠(t)− 1

ρ
♠(t) = −(κ+

1

ρ
)♠(t) (25)

Then, integrating from 0 to t, yields

♠(t) > ♠0e
−(κ+ 1

ρ
)t

(26)

For ♠0 > 0, we get ♠(t) > 0 for t ∈ [0,∞).

Select the Lyapunov function:

V2(x(t),=, t,♠(t)) = xT (t)Pi=x(t) +

∫ t

0

xT (ξ)Zx(ξ)dξ +

∫ t

0

xT (tk)Qx(tk)dt+♠(t) (27)

Let V2(t) , V2(x(t),=, t,♠(t)), the weak infinitesimal generator of V2(t) is given:

ΓV2(t) = xT (t)
R∑

£=1

ϕ=£Pi£x(t) + sym{xT (t)Pi=
v∑
i=1

v∑
j=1

ηihj [Ãi=x(t)−Bi=γ̄(t) +Di=w(t)

−
R∑

£=1

ϕ=£Bi=Ki£e(t)]}+ xT (t)Zx(t) + xT (t)Qx(t) + eT (t)Qe(t)− 2xT (t)Qe(t)

−κ♠(t) + ℘xT (t)Nx(t)− eT (t)Me(t)

Due to
R∑

£=1

ϕ=£L= = 0 for arbitrary symmetric matrices L=, so ΓV2(t) can be rewritten as

ΓV2(t) =xT (t)[

R∑
£=1

ϕ=£Pi£ −
R∑

£=1

ϕ=£L=]x(t) + sym{xT (t)Pi=
v∑
i=1

v∑
j=1

ηihj [Ãi=x(t)−Bi=γ̄(t)

+Di=w(t)−
R∑

£=1

ϕ=£Bi=Ki£e(t)]}+ xT (t)Zx(t) + xT (t)Qx(t) + eT (t)Qe(t)

− 2xT (t)Qe(t)− κ♠(t) + ℘xT (t)Nx(t)− eT (t)Me(t)

=xT [
∑

£∈¶=
λ

ϕ=£(Pi£ − L=) +
∑

£∈¶=
uλ

ϕ=£(Pi£ − L=) +

v∑
i=1

v∑
j=1

ηihj(Pi=Ãi= + ÃTi=Pi=) + Q + Z

+ ℘N ]x(t) + sym{xT (t)Pi=
v∑
i=1

v∑
j=1

ηihj [−Bi=γ̄(t) +Di=w(t)−
R∑

£=1

ϕ=£Bi=Ki£e(t)]}

+ eT (t)Qe(t)− 2xT (t)Qe(t)− κ♠(t)− eT (t)Me(t)

(28)
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Select the auxiliary function
H1(=, t,♠(t)) = ΓV2(t)− λV2(t)− λγ̄T (t)γ̄T (t)− λwT (t)w(t)

If the DET condition (3) is violated, for any scalar k1 > 0, we can obtain from (28)

H1(=, t,♠(t)) ≤H1(=, t,♠(t)) + k1(
1

ρ
♠(t) + ℘xT (t)Nx(t)− eT (t)Me(t))

+

∫ t

0

xT (ξ)Zx(ξ)dξ +

∫ t

0

xT (tk)Qx(tk)dt

(29)

Notice that ϕ=£ ≥ 0 for all = 6= £ and ϕ== = −
∑

£ 6==
ϕ=£ for all = ∈ ¶λ, if = ∈ ¶=λ (the elements of the diagonal

are known), by inequalities (17)-(18) and Schur complement, the following inequality holds:

ΓV2(t) < λV2(t) + λγ̄T (t)γ(t) + λwT (t)w(t) (30)

If = ∈ ¶=uλ (the elements of the diagonal are unknown), according to inequalities (17)-(19) and Schur complement,
the following (30) holds.

Employing e−λt to multiply both sides of inequality (30), we can get that

e−λtdV2(t)

dt
< λe−λtV2(t) + λe−λtwT (t)w(t) + λe−λtγ̄T (t)γ̄(t) (31)

For t ∈ [0,>∗], integrate the above inequality from 0 to t, which yields

e−λtV2(t) < V2(0) + λ

∫ t

0

e−λξγ̄T (ξ)γ̄(ξ)dξ + λ

∫ t

0

e−λξwT (ξ)w(ξ)dξ

≤ðPi=d1 +♠0 + (4τ2λ>∗ + 4λφ2ς + λς) +

∫ t

0

xT (ξ)(4λβ2I)x(ξ)dξ +

∫ t

0

xT (tk)(4λKT
i=Ki=)x(tk)dt

(32)

Besides, it is clear that

e−λtV2(t) ≥ e−λtðPi=x
T (t)Rx(t) +

∫ t

0

xT (ξ)(e−λξZ)x(ξ)dξ +

∫ t

0

xT (tk)(e−λtQ)x(tk)dt (33)

By virtue of (32) and (33), we get

E{xT (t)Rx(t)} ≤ ðPi=d1 +♠0 + 4τ2λ>∗ + 4λφ2ς + λς

e−λ>∗ðPi=
(34)

Consequently, we can derive that E{xT (t)Rx(t)} < d∗. According to Definition 2.1, the CLS with the SMC
law is FTB about

(
d1, d

∗, [0,>∗],R,Ω[0,>∗],ς
)
. Therefore, the theorem is proved completely.

3.4 Finite-time boundedness in [>∗,>]

In the time [>∗,>], the period of sliding motion stage, which indicates that s(t) = 0 and ṡ(t) = 0 hold for this
period. Then we can obtain equivalent sliding mode control law as follows:

ueq(t) =

v∑
i=1

v∑
j=1

ηihj [−(JBi=)−1JAi=x(t)− (JBi=)−1JDi=w(t)] (35)

By virtue of (29) and (2), we can get ẋ(t) =
v∑
i=1

v∑
j=1

ηihj [(I − B̄i=)(Ai=x(t) +Di=w(t))]

y(t) = C=x(t)
(36)

wherein B̄i= , Bi=(JBi=)−1J.
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Theorem 3.3. With respect to the SMC law (8), given parameters d2 > d1 > 0, λ > 0, ς > 0, τ > 0, κ > 0, ρ >
0, ℘ > 0, N,M and matrix R > 0 are predetermined. If there are scalars d∗ > 0,>∗ > 0, ξ1 > 0, ξ2 > 0, matrices
Pi= > 0 and symmetric matrices L=, such that the following conidtions hold for all i, j ∈ z,= ∈ ¶

v∑
i=1

v∑
j=1

ηihjŴij < 0 (37)

Pi£ − L= ≤ 0,£ ∈ ¶=uλ,£ 6= = (38)

Pi£ − L= ≥ 0,£ ∈ ¶=uλ,£ = = (39)

d1 < d∗ < d2 (40)

ðPi=d
∗ +♠0e

−(κ+ 1
ρ

)t
+ λς

ðPi=
< e−λ>d2 (41)

where

Ŵij =

Ŵ11 Ŵ12 Ŵ13

∗ Ŵ22 Ŵ23

∗ ∗ Ŵ33

 < 0

Ŵ11 =
∑

£∈¶=
λ

ϕ=£(Pi£ − L=) + Pi=Ãi= + ÃTi=Pi= + (1 + k2)℘N − λPi=

Ŵ12 =
[
Pi=Di= 0 0

]
, Ŵ13 =

[
ξ1Pi=B̄i= 0 ξ2Pi=B̄i= ATi=

]
Ŵ22 = −diag

[
λI (1 + k2)M κ− k2

ρ
+ λ

]
, Ŵ33 = −diag

[
ξ1I ξ1I ξ2I ξ2I

]
Ŵ23 = ΘT

1 D
T
i=Θ2,Θ1 =

[
I 0 0

]
,Θ2 =

[
0 I 0 0

]
then, the system (36) is FTB about

(
d∗, d2, [>∗,>],R,Ω[T∗,T ],ς

)
.

Proof: Pick the Lyapunov function V3(x(t),=, t,♠(t)) = xT (t)Pi=x(t) +♠(t).

For simplicity, let V3(t) , V3(x(t),=, t,♠(t)), the weak infinitesimal generator of V3(t) is given:

ΓV3(t) = xT (t)
R∑

£=1

ϕ=£Pi£x(t) + sym{xT (t)Pi=
v∑
i=1

v∑
j=1

ηihj [Ai=x(t) +Di=w(t)− B̄i=Ai=x(t)

−B̄i=Di=w(t)]} − κ♠(t) + ℘xT (t)Nx(t) − eT (t)Me(t) In accordance with Lemma 2.1, we can
readily obtain that

sym{xT (t)Pi=B̄i=Di=w(t)} < ξ1x
T (t)Pi=B̄i=B̄Ti=Pi=x(t) + ξ−1

1 wT (t)DT
i=Di=w(t),

sym{xT (t)Pi=B̄i=Ai=x(t)} < ξ2x
T (t)Pi=B̄i=B̄Ti=Pi=x(t) + ξ−1

2 xT (t)ATi=Ai=x(t).

Similar to the certification process of Theorem 3.2, ΓV3(t) can be rewritten as:

ΓV3(t) =xT {
∑

£∈¶=
λ

ϕ=£(Pi£ − L=) +
∑

£∈¶=
uλ

ϕ=£(Pi£ − L=) +

v∑
i=1

v∑
j=1

ηihj [Pi=Ãi= + ÃTi=Pi=

− (ξ1 + ξ2)Pi=B̄i=B̄Ti=Pi= − ξ−1
2 ATi=Ai=] + ℘N}x(t) + sym{xT (t)Pi=

v∑
i=1

v∑
j=1

ηihjDi=w(t)}

− ξ−1
1 wT (t)DT

i=Di=w(t)− κ♠(t)− eT (t)Me(t)

(42)

Select the auxiliary function
H2(=, t,♠(t)) = ΓV3(t)− λV3(t)− λwT (t)w(t)

If the DET condition (3) is violated, for any scalar k2 > 0, we can obtain from (42)

H2(=, t,♠(t)) ≤H2(=, t,♠(t)) + k2(
1

ρ
♠(t) + ℘xT (t)Nx(t)− eT (t)Me(t)) (43)
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Notice that ϕ=£ ≥ 0 for all = 6= £ and ϕ== = −
∑

£ 6==
ϕ=£ for all = ∈ ¶λ, if = ∈ ¶=λ (the elements of the diagonal

are known), by inequalities (37)-(38) and Schur complement, the following inequality holds:

ΓV3(t) < λV3(t) + λwT (t)w(t) (44)

If = ∈ ¶=uλ (the elements of the diagonal are unknown), according to inequalities (37)-(39) and Schur complement,
the following (44) holds.
Employing e−λt to multiply both sides of inequality (44), one gets that

e−λtdV3(t)

dt
< λe−λtV3(t) + λe−λtwT (t)w(t) (45)

For t ∈ [>∗,>], integrate the above inequality from >∗ to t, which yields

e−λtV3(t) <V3(>∗) + λ

∫ >
>∗
e−λξwT (ξ)w(ξ)dξ

≤ðPi=d
∗ +♠0e

−(κ+ 1
ρ

)t
+ λς

(46)

Besides, it is clear that
e−λtV3(t) ≥ e−λtðPi=x

T (t)Rx(t) + e−λt♠(t) (47)

By virtue of (46) and (47), we get

E{xT (t)Rx(t)} ≤ ðPi=d
∗ +♠0e

−(κ+ 1
ρ

)t
+ λς

e−λ>ðPi=
(48)

Consequently, in line with (41), we can derive that E{xT (t)Rx(t)} < d2 for t ∈ [>∗,>].

According to Definition 2.1, the CLS with the SMC law is FTB about
(
d∗, d2, [>∗,>],R,Ω[>∗,>],ς

)
.

Therefore, the theorem is proved completely.

Theorem 3.4. For given parameters d2 > d1 > 0, λ > 0, ς > 0, ℘ > 0, τ > 0, κ > 0, ρ > 0, k > 0, N,M, qj
satisfying hj − qjηj ≥ 0 (qj ∈ (0, 1)), and matrix R > 0, if there are scalars ε > 0, ξ1 > 0, ξ2 > 0,>∗ > 0, d∗ > 0,
matrices Pi= > 0,Z > 0,Q > 0, Φi = ΦTi with appropriate dimensions and symmetric matrices L̃=, such that
the following conditions hold for all i, j ∈ z,= ∈ ¶

W̃ij − Φi < 0,= ∈ ¶=λ (49)

W̃ ∗ij − Φi < 0,= ∈ ¶=uλ (50)

qiW̃ii − (1− qi)Φi < 0,= ∈ ¶=λ (51)

qiW̃
∗
ii − (1− qi)Φi < 0,= ∈ ¶=uλ (52)

qjW̃ij + (1− qj)Φi + qiW̃ji + (1− qi)Φj < 0,= ∈ ¶=λ (53)

qjW̃
∗
ij + (1− qj)Φi + qiW̃

∗
ji + (1− qi)Φj < 0,= ∈ ¶=uλ (54)[

− e
−λ>d∗

2
+ Λ1

√
d1

∗ −ε

]
< 0 (55)[

−e−λ>Q̃
√

4λK̃T
i=

∗ −I

]
< 0 (56)[

−e−λ>Z
√

4λβ2

∗ −I

]
< 0 (57)
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2d∗ + 2λςε+ 2♠0e
−(κ+ 1

ρ
)t
ε ≤ e−λT d2ε (58)

d1 < d? < d2 (59)

0 <

R∑
£=1

ϕ=£(Bi=K̃i£ + K̃T
i£B

T
i=) (60)

εR−1 < Pi= < 2R−1 (61)[
−L̃= ∗
P̃i= P̃i£

]
≤ 0,£ ∈ ¶=uλ,£ 6= = (62)

P̃i£ − L̃£ ≥ 0,£ ∈ ¶=uλ,£ = = (63)

where

W̃ij =


W̃11 W̃12 W̃13 W̃14

∗ W̃22 W̃23 0

∗ ∗ W̃33 0

∗ ∗ ∗ W̃44

 < 0, W̃ ∗ij =


W̃ ∗11 W̃12 W̃13 W̃14

∗ W̃22 W̃23 0

∗ ∗ W̃33 0

∗ ∗ ∗ W̃44

 < 0

W̃11 = ϕ==P̃i= +Ai=P̃i= + P̃i=ATi= + Q̃ + (1 + k)℘Ñ +
R∑

£=1

ϕ=£(Bi=K̃i£ + K̃T
i£B

T
i=)−

∑
£∈¶=

λ

ϕ=£L̃= − λP̃i=

W̃ ∗11 = Ai=P̃i= + P̃i=ATi= + Q̃ + (1 + k)℘Ñ +
R∑

£=1

ϕ=£(Bi=K̃i£ + K̃T
i£B

T
i=)−

∑
£∈¶=

λ

ϕ=£L̃= − λP̃i=

W̃12 =

[
Di= −

R∑
£=1

ϕ=£Bi=K̃i£ − Q̃ −Bi= 0

]
, W̃13 =

[
P̃i= ξ1B̄i= 0 ξ2B̄i= P̃i=ATi=

]
W̃14 =

[
P̃i= · · · P̃i= · · · P̃i=

]
, W̃22 = −diag

[
λI (1 + k)M̃ − Q̃ λI κ+ λ− k

ρ

]
W̃23 = Θ̃T

1 D
T
i=Θ̃2, Θ̃1 =

[
I 0 0 0

]
, Θ̃2 =

[
0 0 I 0 0

]
W̃33 = −diag

[
Z−1 ξ1I ξ1I ξ2I ξ2I

]
W̃44 = −diag

[
ϕ−1

=λ=1
P̃iλ=1 · · · ϕ−1

=λ=
l

P̃iλ=
l
· · · ϕ−1

=λ=g
P̃iλ=g

]
=6=λ=

l

Λ1 = 4τ2λ>+ 4λφ2ς + λς +♠0, Q̃ = P̃i=QP̃i=, M̃ = P̃i=MP̃i=, Ñ = P̃i=NP̃i=, L̃= = P̃i=L=P̃i=.
then, the resultant CLS is FTB about

(
d1, d2, [0,>],R,Ω[0,T ],ς

)
. And the gains of sliding mode controller are

obtained as Ki= = K̃i=P̃
−1
i= .

Proof. As for the transition probabilities ϕ in W̃11, it can be divided into two parts:

P̃i=(
∑

£∈¶=
λ

ϕ=£(P̃i£ − L=))P̃i= =


ϕ==P̃i= + P̃i=(

∑
£∈¶=

λ

ϕ=£P̃i£)P̃i= − P̃i=(
∑

£∈¶=
λ

ϕ=£L=)P̃i=, = ∈ ¶=λ ,

P̃i=(
∑

£∈¶=
λ

ϕ=£P̃i£)P̃i= − P̃i=(
∑

£∈¶=
λ

ϕ=£L=)P̃i=, = ∈ ¶=uλ.
(64)

We can apparently deduce that the following inequality (65) can ensure that the establishment of conditions
(17) and (37) in the finite-time phase [0,>]

v∑
i=1

v∑
j=1

ηihjW̆ij < 0 (65)

where

W̆ij =

W̆11 W12 W̆13

∗ W̆22 W̃23

∗ ∗ W̆33


W̆11 =

∑
£∈¶=

λ

ϕ=£(Pi£ − L=) + Pi=Ãi= + ÃTi=Pi= + Q + (1 + k)℘N − λPi=
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W̆13 =
[
I ξ1Pi=B̄i= 0 ξ2Pi=B̄i= ATi=

]
, W̆22 = −diag

[
λI, (1 + k)M −Q, λI, κ− k

ρ
+ λ

]
W̆33 = −diag

[
Z−1 ξ1I ξ1I ξ2I ξ2I

]
In the following, to simplify the notation, let P̃i= , P−1

i= , and perform congruent transformation to inequality

(65) with diag
{
P̃i=, I, P̃i=, I, I, I, I, I, I, I

}
. Then, in line with (64) and Schur complement, we derive that

v∑
i=1

v∑
j=1

ηihjW̃ij < 0 and
v∑
i=1

v∑
j=1

ηihjW̃
∗
ij < 0.

So as to make full use of MFs information and reduce the conservativeness, slack matrices Φi are introduced.

By using the property of MFs, i.e.,
v∑
i=1

ηi(x(t)) = 1,we obtain:

v∑
i=1

v∑
j=1

ηi(ηj − hj)Φi =

v∑
i=1

ηi(

v∑
j=1

ηj −
v∑
j=1

hj)Φi = 0 (66)

According to
v∑
i=1

v∑
j=1

ηihjW̃ij < 0 and (54), we can get that:

v∑
i=1

v∑
j=1

ηihjW̃ij

=
v∑
i=1

v∑
j=1

ηihjW̃ij +
v∑
i=1

v∑
j=1

ηi(ηj − hj)Φi

=
v∑
i=1

v∑
j=1

ηihj(W̃ij − Φi) +
v∑
i=1

v∑
j=1

ηiηjΦi

=
v∑
i=1

v∑
j=1

ηi(hj − qjΦj)(W̃ij − Φi) +
v∑
i=1

v∑
j=1

ηiηj(qj(W̃ij − Φi) + Φi)

=
v∑
i=1

v∑
j=1

ηi(hj − qjηj)(W̃ij − Φi) +
v∑
i=1

v∑
j=1

ηiηj(qjW̃ij + (1− qj)Φi)

=
v∑
i=1

v∑
j=1

ηi(hj − qjηj)(W̃ij − Φi) +
v∑
i=1

η2
i (qiW̃ii + (1− qi)Φi)

+

v∑
i=1

v∑
j>i

ηiηj [qjW̃ij + (1− qj)Φi + qiW̃ji + (1− qi)Φj ] (67)

Combined with
v∑
i=1

v∑
j=1

ηihjW̃ij < 0, we can get that inequalities (49),(51),(53) hold. Similar to the above

certification process, we can obtain that (50),(52),(54) can be ensured by
v∑
i=1

v∑
j=1

ηihjW̃
∗
ij < 0.

Besides, in accordance with (61), one gets:

αmax
(
R−

1
2 Pi=R

1
2

)
<

1

ε
, αmin

(
R−

1
2 Pi=R

1
2

)
>

1

2
(68)

Furthermore, it is obvious that (20),(21),(23),(41) can be guaranteed by (57),(56),(55),(58) respectively.

Finally, (62)-(63) can be deduced by pre-multiplying and post-multiplying simultaneously by P−1
i= with (18)-(19)

or (38)-(39), then the proof is over.

Theorem 3.5. With regard to the controlled interval type-II fuzzy MJSs (1), the DET condition (3) can assure
that the triggering interval � = tk+1 − tk, k ∈ N satisies

� ≥ 1

a1
ln

[
1 +

a1(♠(tk+1) + ρ℘xT (t)Nx(t))

a2ραmax(M)

]
, Y (69)
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where
a1 =

∥∥∥Ã∥∥∥+
∥∥∥B̃Ki=

∥∥∥+ γ(t)
∥∥∥B̃∥∥∥+

∥∥∥D̃∥∥∥,

a2 =
∥∥∥Ã∥∥∥ ‖x(t)‖2 +

∥∥∥B̃Ki=

∥∥∥ ‖x(tk)‖2 + γ(t)
∥∥∥B̃∥∥∥+

∥∥∥D̃∥∥∥ w̄2,

with

Ã ,
v∑
i=1

v∑
j=1

ηihjAi=, B̃ ,
v∑
i=1

v∑
j=1

ηihjBi=, D̃ ,
v∑
i=1

v∑
j=1

ηihjDi=.

Thus, there is a positive scalar Y to avoid the Zeno phenomenon.
Proof. With respect to ∀t ∈ [tk, tk+1), we get

ė(t) =

v∑
i=1

ηi(x(t))[Ai=x(t) +Bi=u(t) +Di=w(t)]

=

v∑
i=1

v∑
j=1

ηihj [Ai=x(t) +Bi=Ki=x(tk)−Bi=γ(t)sgn(s(t)) +Di=w(t)]

=Ãx(t) + B̃Ki=x(tk)− B̃γ(t)sgn(s(t)) + D̃w(t) (70)

Moreover, we can deduce that from (70)
d
dt
‖e(t)‖2 ≤ 2 ‖e(t)‖ ‖ė(t)‖

≤
∥∥∥Ã∥∥∥ (‖x(t)‖2 + ‖e(t)‖2) +

∥∥∥B̃Ki=

∥∥∥ (‖x(tk)‖2 + ‖e(t)‖2) + γ(t)
∥∥∥B̃∥∥∥ (1 + ‖e(t)‖2)

+
∥∥∥D̃∥∥∥ (w̄2 + ‖e(t)‖2)

=
[∥∥∥Ã∥∥∥+

∥∥∥B̃Ki=

∥∥∥+ γ(t)
∥∥∥B̃∥∥∥+

∥∥∥D̃∥∥∥] ‖e(t)‖2 +
∥∥∥Ã∥∥∥ ‖x(t)‖2

+
∥∥∥B̃Ki=

∥∥∥ ‖x(tk)‖2 + γ(t)
∥∥∥B̃∥∥∥+ w̄2

∥∥∥D̃∥∥∥
, a1 ‖e(t)‖2 + a2

In line with Comparison Lemma and e(tk) = 0 at the triggering instant, one gets from d
dt
‖e(t)‖2 ≤ a1 ‖e(t)‖2+a2

‖e(tk+1)‖2 ≤ a2

a1
(ea1(tk+1−tk) − 1) (71)

In accordance with the dynamic event-triggered condition (3), we get

♠(tk+1) + ρ℘xT (tk+1)Nx(tk+1)

ραmax(M)
≤ ‖e(tk+1)‖2 (72)

By virtue of (71) and (72), we can get the triggering interval

� ≥ 1

a1
ln[1 +

a1(♠(tk+1) + ρ℘xT (tk+1)Nx(tk+1))

a2ραmax(M)
] , Y (73)

Due to ρ > 0, which means that the term a1(♠(tk+1) + ρ℘xT (tk+1)Nx(tk+1)) is strictly greater than zero.
Therefore, by means of (73), we can derive that Y > 0. Thus, the Zeno phenomenon can be excluded.

4 Numerical Examples

In the chapter, our goal is to verify the validity of the presented control plan via a numerical instance.

Consider a two-rule interval type-II fuzzy MJSs with three modes, which means R = 3. the partially known
transition rate matrix is given by

ℵ =

−1 ? ?
0.2 −1 0.8
0.5 ? ?
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The correlative system parameters are listed as follows:

A11 =

−0.4875 2.0001 0.1137
0.2024 −0.3162 −3.0787
−0.1105 0.3002 −3.4147

, A12 =

−0.4731 2.1113 0.0747
0.1813 −0.2517 −3.0505
−0.1201 0.4112 −3.2123

,

A13 =

−0.3831 1.8525 0.0509
0.1926 −0.2817 −4.0525
−0.1201 0.4331 −4.2138

, A21 =

−0.5001 1.3714 0.1546
0.0723 −0.2312 −2.0426
−0.1434 0.5161 −2.3935

,

A22 =

−0.7215 1.4515 0.1815
0.3321 −0.5117 −2.8520
−0.2226 0.6487 −2.5681

 , A23 =

−0.7018 1.3515 0.1515
0.2219 −0.4223 −2.5530
−0.4012 0.3330 −2.6667

,

B11 =

1.2
1.6
0.8

, B12 =

1.3
1.7
0.9

 , B13 =

1.4
1.1
0.4

 , B21 =

0.3
0.8
0.7

, B22 =

0.4
0.5
0.1

 , B23 =

0.8
1.2
0.9

,

C1 =
[
−0.41 0.17 0.31

]
, C2 =

[
−0.54 0.82 0.33

]
, C3 =

[
−0.75 0.38 0.62

]
,

J1 =
[
0.1550 0.2750 0.4875

]
, J2 =

[
0.3700 0.4120 0.6300

]
, J3 =

[
0.5327 0.4103 0.4993

]
,

D11 =

0.32
0.41
0.25

 , D12 =

0.11
0.09
0.17

 , D13 =

0.62
0.87
0.55

 , D21 =

0.35
0.16
0.21

 , D22 =

0.16
0.23
0.08

 , D23 =

0.39
0.32
0.61


with w(t) = 0.32sin(0.6t),the upper with lower membership functions:

η
1
(x) = 0.75(1− 1

1+e
−(x1+ 13

2
)/8

),η1(x) = 0.75(1− 1

1+e
−(x1+ 9

2
)/8

)

η
2
(x) = 1− η

1
(x), η2(x) = 1− η1(x)

and the weighting coefficients `1 = sin2(x1), `1 = 1− sin2(x1). The actual membership functions are expressed
as η1(x) = η

1
(x)`1 + η1(x)`1 and η2(x) = 1− η1(x). To perform the emulation, the starting location is selected

as x(0) = [−2.03,−2.52,−2.70]T .

Table 1. Distinct control schemes

Control scheme Ki= Triggering number

K11 = [−5.5221,−2.5181,−2.1123]
K12 = [−4.3245,−1.4781,−2.0388]

DETS K13 = [−2.0326,−3.6149,−1.7143] 30
K21 = [−2.3704,−3.2247,−1.5427]
K22 = [−4.0126,−1.4281,−1.2827]
K23 = [−3.5186,−4.3135,−1.9017]

K11 = [−11.2327,−17.3302,−14.5187]
K12 = [−7.3431,−10.7341,−15.3162]
K13 = [−7.0326,−18.5249,−13.6234]

SETS K21 = [−11.1959,−22.2141,−25.2029] 117
K22 = [−9.2504,−13.7324,−18.3048]
K23 = [−12.6203,−8.2219,−21.1703]

Therefore, the parameters can be chosen as ξ1 = 0.25, ξ2 = 0.35, ς = 0.6, ℘ = 0.5, κ = 0.2, ρ = 0.6, τ = 0.4, ε =
0.3, N = 1,M = 10, qi = 0.16; 0.27(i = 1, 2), qj = 0.05; 0.36(j = 1, 2), d1 = 0.1, d2 = 4.6, T = 5s.

The simulation results are shown in Fig.2-Fig.6 and Table 1. From Fig.2, we can see that the trajectories of
the sliding variable can be compelled into the sliding surface s(t) = 0 at t = >∗,>∗ < >. And stays on the
sliding surface for the rest of the time [>∗,>]. Fig.3 depicts the SMC law, where the resultant CLS with the
proposed event-triggered SMC law u(t) is stable. From Fig.4, we can observe that the states of the CLS can
be forced by the designed controller, and then it arrives onto the sliding surface as depicted in Fig.2 and finally
converges to the steady-state. Fig.5 and Fig.6 displays transmit instants and transmit intervals of the system
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under DETS and SETS, respectivlely. Besides, Table 1 shows that the triggering number under the DETS is
less than the one in the SETS . In other words, the triggering under the SETS is more frequent than the one
under the DETS. Summarizing the aforementioned simulation results, the effectiveness of the proposed method
has been confirmed.
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5 Conclusions

In the article, the issue of finite-time event-triggered sliding mode control (SMC) is investigated for a class of
interval type-II fuzzy Markov jump systems with partially known transition probabilities. For the sake of saving
network resources, a dynamic event-triggered scheme (DETS) is proposed to determine whether to transmit
the signal or not. The mismatched membership functions between the system and the controller are solved,
and we obtain less conservative stability conditions. Then, a suitable fuzzy SMC law is devised that makes
the state trajectory of the system reach the specified sliding surface in finite-time. Thereafter, the sufficient
conditions of finite-time boundedness(FTB) in the reaching phase and sliding phase are derived by the time
partition strategy. Besides, the suitable fuzzy controller has been computed. Finally, an example is presented to
validate the effectiveness of the proposed control scheme. In the future, we will extend the theory to multiagent
systems and combine it with distinct types of event-triggered schemes, such as resilient adaptive event-triggered
scheme.
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