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Abstract 

 
In this paper, the stability of non-integer differential system is studied using Riemann-Liouville and Caputo 

derivatives. The stability notion for determining the stability/asymptotic stability or otherwise fractional 

differential system is given. Example is provided to demonstrate the effectiveness of the result. 

 

 

Keywords: Stability; asymptotic stability; riemann-liouville derivative; caputo derivative; fractional differential 

systems. 

 

1 Introduction 

 
Calculus as created by Isaac Newton, a British scientist as well as Gottfried Leibniz, a self taught German 

mathematician in the 17th century and known in the early days as infinitesimal calculus is a mathematical 

discipline focused on limits, continuity derivatives, integrals and infinite series. There are broadly two forms of 

calculus namely, the integer-order calculus and the non-integer order calculus. 

 

It is customary to discuss differential calculus before discussing integral calculus in integer-order calculus. In 

non-integer calculus, it is necessary to deal with integral calculus before the differential calculus. This is 
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because differential calculus is defined in terms of the integral calculus. There are two fundamental distinctions 

between fractional order derivative and integer-order derivative. The non-integer derivative is concerned with 

the whole time domain for a mechanical or physical process, while the integer-order derivative indicates a 

variation or certain attribute at particular time. Also, the fractional order derivative is related to the whole space 

for a physical process, while the integer-order derivative describes the local properties of certain position. This 

is the reason that many real world physical systems are characterized by the fractional order state equations            

[1-6]. Fractional differential equations are generalization of classical integer-order differential equations through 

the application of fractional calculus [7].  

 

For more than three centuries, fractional calculus has received increasing attention due to its applications in 

many fields such as: synchronization, tracking controller, physics, control engineering, signal processing and 

complex systems. Continuing technological developments have required new methods in basic sciences, 

especially in mathematics for analysis and design of physical systems and their control tools. These methods 

which are easily implemented with the advancement of high speed computers facilitate better characterization, 

design tools and control performance of modern technological products of engineering systems of developing 

civilization. 

 

These developments which had covered only static systems models involving geometry and algebra until 1965, 

had started using dynamical models involving differential and integral calculus and now have been accelerating 

since 1960’s with the fractional order systems have gained momentum with high speed computers. Hence, 

FDE’s have become a powerful tool in studying, designing and control of engineering products of the present 

world and it still constitutes a popular research area resulting with new definitions of fractional derivative and its 

applications in need.  

 

Stability is one of the most important objects in the analysis and design of dynamical systems. If the differential 

equation of a system is not stable, the system may burn out, disintegrate or saturate when a signal is applied [8]. 

Therefore, an unstable system is useless in practice and needs a stabilization process via an additional control 

elements [9]. Stability analysis is a central task in the study of fractional differential systems and fractional 

control [10,11]. In fact, many systems in real world are now better characterized by FDE’s and analysed by 

numerical techniques developed for solving differential equations involving non-integer derivatives. Recently, 

due to evolving interest in the study of stability of systems occasioned by the importance of providing and 

ensuring the stability of differential systems, much work has been done in this direction.  

 

In this work, the stability of linear fractional differential equations is studied using Caputo and Riemann-

Liouville derivatives. The stability notion for linear fractional differential equations is presented. Example is 

given to show the applicability of the stability notion. In the remainder, the preliminaries and definitions are 

given in section 2 while the analysis and conclusion are given in sections 3 and 4 respectively.  

 

2 Preliminaries and Definitions   
 

Extraordinary differential equation as fractional differential equation is sometimes called is an evolving concept. 

It is therefore not unusual to define some concepts and functions in terms of other definitions and terms. In this 

section, some definitions and concepts that will be used in the paper are given. 

 

Definition 2.1 (Gamma Function): The gamma function represented by Γ (the capital letter gamma from the 

Greek alphabet) is one commonly used extension of the fractional function to complex numbers. Gamma 

function is the generalization of the factorial function to non-integral values, introduced by the Swiss 

mathematician Leonhard Euler in the 18th century. For any positive integer n,  

 

 𝛤(𝑛) = (𝑛 − 1)!. But this formula is meaningless if n is not an integer. To extend the factorial to any real 

number  𝑥 > 0 (whether or not x is a whole number), the gamma function is defined as  

 

          𝛤(𝑥) = ∫ 𝑡𝑥−1𝑒−𝑡
∞

0

𝑑𝑡                 (𝑥 > 0) 
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Definition  2.2: The Riemann-Liouville derivative and the Caputo derivative will be used in the analysis.  

 

The Riemann-Liouville derivative is defined as  

 

𝐷𝑎,𝑡
𝛼

𝑅𝐿 𝑥(𝑡) =
1

𝛤(𝑛 − 𝛼)
(

𝑑

𝑑𝑡
)

𝑛

∫ (𝑡 − 𝜏)𝑛−𝛼−1𝑥(𝜏)𝑑𝜏
∞

0

,             (𝑛 − 1 ≤ 𝛼 < 𝑛) 

 

And the Caputo derivative is defined as 

 

𝐷𝑎,𝑡
𝛼

𝐶 𝑥(𝑡) =
1

𝛤(𝑛 − 𝛼)
∫ (𝑡 − 𝜏)𝑛−𝛼−1𝑥(𝑛)(𝜏)𝑑𝜏

∞

0

,             (𝑛 − 1 ≤ 𝛼 < 𝑛) 

 

where 𝛤(. ) 𝑖𝑠 𝑡ℎ𝑒 𝐸𝑢𝑙𝑒𝑟′𝑠 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙(𝑔𝑎𝑚𝑚𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛).   
 

The Laplace transform of the Riemann-Liouville fractional derivative  𝐷𝑎,𝑡
𝛼

𝑅𝐿 𝑥(𝑡)   is given as  

 

∫ 𝑒−𝑠𝑡 𝐷𝑎,𝑡
𝛼

𝑅𝐿 𝑥(𝑡)𝑑𝑡 =  𝑆𝛼𝑋(𝑠) − ∑ 𝑆𝑘

𝑛−1

𝑘=0

[𝐷𝛼−𝑘−1𝑥(𝑡)]𝑡=𝑎

∞

0

             (𝑛 − 1 ≤ 𝛼 < 𝑛) 

 

Similarly, the Laplace transform of the Caputo fractional differential derivative 𝐷𝑎,𝑡
𝛼

𝐶 𝑥(𝑡)  is given as    

 

∫ 𝑒−𝑠𝑡 𝐷𝑎,𝑡
𝛼

𝐶 𝑥(𝑡)𝑑𝑡 =  𝑆𝛼𝑋(𝑠) − ∑ 𝑆𝛼−𝑘−1

𝑛−1

𝑘=0

𝑥(𝑘)(𝑎)  ,
∞

0

             (𝑛 − 1 ≤ 𝛼 < 𝑛) 

 

Definition 2.3:  The Mittag-Leffler function is defined by 

 

𝐸𝛼(𝑧) = ∑
𝑧𝑘

𝛤(𝑘𝛼 + 1)
   ,         𝑤ℎ𝑒𝑟𝑒 𝑅𝑒(𝛼) > 0,   𝑧𝜖𝐶 

∞

𝑘=0

 

 

The two parameter Mittag-Leffler function is defined as 

 

𝐸𝛼,𝛽(𝑧) = ∑
𝑧𝑘

𝛤(𝑘𝛼 + 𝛽)
   ,         (𝛼 > 0,   𝛽 > 0) 

∞

𝑘=0

 

     

The Laplace transform of the Mittag-Leffler function is given as 

 

∫ 𝑒−𝑠𝑡𝑡𝑎𝑘−𝛽−1𝐸𝛼,𝛽
(𝑘)

(±𝑎𝑡𝛼)𝑑𝑡 =  
𝑘! 𝑆𝛼−𝛽

(𝑆𝛼 ∓ 𝑎)𝑘+1

∞

0

   ; (𝑅(𝑠) > |𝑎|
1
𝑛 ) 

 

3 Stability Analysis 
 

The linear fractional differential system with Riemann-Liouville derivative under  

consideration is  

 

𝐷𝑎,𝑡
𝛼

𝑅𝐿 𝑥(𝑡) = 𝐴𝑥(𝑡) ,                (0 < 𝛼 < 2)                                                                                        (3.1) 

 

with initial conditions  

 

𝐷𝑎,𝑡
𝛼−𝑘

𝑅𝐿 𝑥(𝑡)|𝑡=𝑎 = 𝑥𝑘−1           (𝑘 = 1,2)                                                                                             (3.2)      

 

where  𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡) … … . 𝑥𝑛(𝑡))𝑇 ∈ 𝑅𝑛  ,  𝐴 = (𝑎𝑖𝑗)𝑛×𝑛 ∈ 𝑅𝑛×𝑛 
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The stability of the systems is determined by the nature of the eigenvalues of A. The solution of (3.1) with (3.2) 

is given by  

             

𝑥(𝑡) = (𝑡 − 𝑎)𝛼−1𝐸𝛼,𝛼(𝐴(𝑡 − 𝑎)𝛼)𝑥0 + (𝑡 − 𝑎)𝛼−2𝐸𝛼,𝛼−1(𝐴(𝑡 − 𝑎)𝛼)𝑥1 

 

Similarly, consider the system 

 

  𝐷𝑎,𝑡
𝛼

𝐶 𝑥(𝑡) = 𝐴𝑥(𝑡) ,                (𝛼 < 𝑡)                                                                                                (3.3) 

 

with the initial condition 

 

𝑥(𝑘)(𝑎) = 𝑥𝑘               (𝑘 = 0,1)                                                                                                            (3.4) 

 

The solution of (3.3) with (3.4) is given by 

 

 𝑥(𝑡) = 𝑥𝑘𝐸𝛼,1−𝑘(𝐴𝑡𝛼)  
 

which reduces to  

 

𝑥(𝑡) = 𝑥0𝐸𝛼,1(𝐴𝑡𝛼) 

  

since other terms are the obtainable.  

 

To establish the stability or otherwise of the solutions, we state the following theorem 

 

Theorem: The autonomous fractional differential system (3.1) with (3.2) and the system (3.3) with (3.4) are 

asymptotically stable iff    |𝑎𝑟𝑔 (𝑠𝑝𝑒𝑐(𝐴))| >
𝛼𝜋

2
. 

 

4 Discussion 
 

For the system (3.1), the components of the state decay towards O like 𝑡−𝛼−1. Also, the system is stable if and 

only if either it is asymptotically stable or those critical eigenvalues which satisfy |arg(𝑠𝑝𝑒𝑐(𝐴))| =
𝛼𝜋

2
   have 

the same algebraic and geometric multiplicities. Similarly, the components of the state decay towards O like 

𝑡−𝛼+1 in system (3.3) and the system is stable if either it is asymptotically stable or those critical eigenvalues 

which satisfy |arg(𝑠𝑝𝑒𝑐(𝐴))| =
𝛼𝜋

2
   have the same algebraic and geometric multiplicities. In both cases, if the 

critical eigenvalues are such that their algebraic multiplicities are larger than their geometric multiplicities, then 

the solution is unstable. 

 

Application: Consider the system       𝐷𝑡
𝛼

𝑅𝐿 𝑥(𝑡) = 𝐴𝑥(𝑡)       
   

where  𝐴 = [
1 2

−3 4
] 

 

The eigenvalues of A are         ⋋1=
5+𝑖√15

2
    𝑎𝑛𝑑  ⋋2=

5−𝑖√15

2
   

 

The system is stable when 𝛼 = 0.1   𝑎𝑛𝑑 𝑤ℎ𝑒𝑛 𝛼 = 0.5.   But the system is unstable when 𝛼 = 0.9 .  

Accordingly, the system is asymptotically stable for all 𝛼 < 0.3869, since |𝑎𝑟𝑔 (𝑠𝑝𝑒𝑐(𝐴))| = 0.6591.. 
 

5 Conclusion  
 

Central to the study of fractional differential system is the stability analysis. This is due toits importance. In this 

work, the stability of non-integer differential system is studied using Riemann-Liouville and Caputo derivatives. 

The yardstick for determining the stability/asymptotic stability of autonomous system is given. Example is given 

to show the applicability of the result. 
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