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Abstract

This report provides some closed form solutions -and their inversion- to a satellite’s bounded
motion on the equatorial plane of a spheroidal attractor (planet) considering the J2 spherical
zonal harmonic. The equatorial track of satellite motion- assuming the co-latitude φ fixed at π/2-
is investigated: the relevant time laws and trajectories are evaluated as combinations of elliptic
integrals of first, second, third kind and Jacobi elliptic functions. The new feature of this report
is: from the inverse t = t(c) we get the period T of some functions c(t) of mechanical interest
and then we construct the relevant c(t) expansion in Fourier series, in such a way performing
the inversion. Such approach-which led to new formulations for time laws of a J2 problem- is
benchmarked by applying it to the basic case of keplerian motion, finding again the classic results
through our different analytic path.
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1 Introduction

The so called J2 problem -or main problem of satellite theory- can be considered among the most
important of Celestial Mechanics. The attractions of bodies were first investigated by Newton1

and derived by him on the basis of synthetic processes.

All the motions of a particle are treated by him under the assumption the Earth to be a perfect
sphere; but a real fact of nature is that all rotating bodies in the universe are spheroidal.

The Earth has a rather slight equatorial bulge: its diameter is about 43 km wider at the equator
than the pole-to-pole distance, a difference close to 1/300 of the diameter2 .

The spheroidal geometry has consequences on the motion of a particle: the potential cannot be
calculated any more as though the masses were concentrated at its centre and the real motion is
not planar.

The orbit of a particle about an oblate spheroid is in general not closed geometrically, and then
not periodic. But considering the orbits projected in a plane, some classes of closed orbits can be
found in which the motion can be periodic.

2 Aim of this Paper

We hereby prepare the way for solving the particle ODEs of motion induced by a spheroidal
attractor. We will recall the ODEs system of a bead in spherical coordinates: radius ρ, co-latitude
φ and azimuth θ. The oblate spheroid’s potential will be presented in its formulation till to the
harmonic J2 corrective term3 . We will consider the projection of the 3D-motion on the spheroid
equatorial plane: o.s. we study a particular planar motion (φ = π/2) modeled by two unknown
functions ρ(t) and θ(t).

3 Nomenclatures

The main symbols recurring through this paper are listed below:

A, B, C spheroid principal central moments of inertia
cn, dn, sn Jacobi elliptic functions
am(F |k) amplitude of F with modulus k
b semi-minor axis of the meridian ellipse of spheroid
c light velocity in vacuo

e =
√

R2−b2
R2 meridian ellipse eccentricity

er unity vector along the radial direction
eθ unity vector along the transversal direction
eφ unity vector along the third direction
E0 satellite’s total energy

1See sections XII and XIII of the first book of Principia,1687
2An Earth scaled down to a globe with equatorial diameter of 1 meter would have that difference

of only 3 millimeters.
3Such a problem is known as J2 problem, the symbol J comes from Harold Jeffreys, geodesist,

(1891-1989).
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E(φ|k) incomplete elliptic integral of second kind
of modulus k and amplitude φ

F (φ|k) incomplete elliptic integral of first kind
of modulus k and amplitude φ

G universal gravitational constant
I spheroid moment of inertia with respect to a mobile axis

Jn n.th zonal spherical harmonic
J2 = C−A

MR2 quadrupole term in the spheroidal potential
k0 constant areal velocity

(= satellite angular momentum per unity mass)
K(k) complete elliptic integral of first kind of modulus k
M spheroidal mass
ODE Ordinary Differential Equation
PDE Partial Differential Equation
R equatorial radius of the oblate spheroid
sn(φ|k), cn(φ|k), dn(φ|k) Jacobi elliptic functions of amplitude φ and modulus k
t time
T motion period

T̂ angular period
U(r) gravity potential function
−−−−−−
γ mass density function
∇2 Laplace operator
ε = R−b

R
spheroidal flattening or oblateness

η first perturbation coefficient
θ(t) satellite instantaneous azimuth
µ attractor gravitational coefficient = GM
ν attractor volumic mass
Π(φ,α|k) incomplete elliptic integral of third kind

of amplitude φ, parameter α, modulus k
φ satellite instantaneous co-latitude
ρ(t) instantaneous value of satellite polar radius
ρ0 satellite initial value of radius
ρ1, ρ2, ρ3 cubic’s roots and reference values during the satellite motion
Ω Earth angular rotation speed
ω0 satellite start-up angular rotation speed

Some other (many) symbols (like an, bn, σn, ζn, and so on) are used throughout the text as ease
variables without a specific physical nor geometrical meaning and do not need to be listed here.

4 The Spheroidal Attractive Potential and the J2
Approximation

If the attractor is a point (or a sphere4) we assume it (or its centre) as origin. If its mass is M , it
will exert on a unitary mobile mass a centripetal force given by:

F⃗ = −GM
ρ3

ρ⃗

4A modern analytic proof by a triple integration that U(r) =MG/r for an attracting uniform
sphere can be read in [1].
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where the minus sign occurs being the radial reference ρ⃗ always oriented in centrifugal sense. It
follows:

U(r) =

∫ r

∞
F⃗ · dρ⃗ = −GM

∫ r

∞

dρ

ρ2
= GM/r

being zero the potential at infinity. What above in order to avoid the confusion of signs often
affecting this subject: the attractive potential is then positive.

The gravitational potential satisfies the Laplace PDE:

∇2U(x, y, z) = 0

in the space outside the mass generating the field. Starting from such a PDE in spherical coordinates,
by separation of variables, one finds that the a.m. U depends on azimuth through functions
Pn(cos θ) having a rotational symmetry around the z axis i.e. spherical zonal harmonics or Legendre
polynomials. Of course there are also radial and co-latitude harmonics (see e.g. [2]), so that we
have three sets of indexed non dimensional coefficients i.e. spherical harmonics: zonal Jn, tesseral
Cn,m and sectorial Sn,m. Therefore, solving the a.m. Laplace PDE, one will find U(ρ, θ, φ) as a
double series of spherical harmonics which is known to be convergent. The expression currently
presented is restricted to the zonal ones only.

Let be θ the azimuth of the satellite read over the equatorial plane of the spheroid of radius R and
of semi-minor axis b. MacCullagh is credited for his formula (1847) referred in 1849 by Allman at
p. 387 of [3] and [4] as

U =
M

r′
+

1

r′3
(A+B + C − 3I)

In it A,B,C are the spheroid central moments of inertia and I the moment about the straight line
joining its centre to the particle far r′ from it. But such a expression is not operative having I
to be evaluated with respect to a variable direction. Analyzing it, one meets again the spherical
zonal harmonics Jn. For the Earth’s potential, the Jn non dimensional values depend on the mass
distribution. As we know, [5] p. 45, |J2/J3| ∼ |J3/J4| ∼ 10−3: therefore, limiting ourselves to the
first approximation, we will stop the expansion5 not going beyond J2. In such a way the motion
of a main point, working on MacCullagh formula-after some long course here omitted- U(ρ, θ, φ) is
found to be ruled (see e.g. [5]) by:

U(ρ, φ) =
GM

ρ
+ η

GM

ρ3
(1− 3 cos2 φ) + o (ρ/R) (4.1)

where ρ > 0 is the magnitude of the satellite position vector in an inertial planetocentric frame,
φ its co-latitude and its azimuth θ does not appear. The frame reference origin is assumed at
the centre of spheroidal mass whose only motion is just given by the Ω rotation speed -around its
North-South axis- responsible of flatness.

Equation (4.1) for U does not hold the satellite’s azimuth θ due to the perfect axial symmetry
of the attracting body; but depends on radius ρ and on the co-latitude φ of the attracted body.
Furthermore such a formulation is not reliable everywhere, but within the order of magnitude

5Hoots and France [6] provide a semi-analytical solution for the motion of an artificial Earth
satellite under the gravitation and the drag of a dynamic atmosphere. The attraction is taken into
account including the zonal harmonics J2, J3 and J4. They employ mean motion, eccentricity,
inclination, argument of perigee, right ascension of ascending node and mean anomaly and apply
a generalized method of averaging to obtain a transformation of variables which removes the
dependence on the fast variable, mean anomaly. As far as we know, this is the only -even if
not purely analytical- treatment including zonal harmonics beyond J2.
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ρ >> R. Mind that η is the first perturbation coefficient measuring the a-sphericity of the spheroid
and given by

η =
1

2
R2 J2

where J2 is the not-dimensional quadrupole moment (aka second zonal spherical harmonic) J2 =
C−A
MR2 being A,B,C (again) the moments of inertia with respect to the central principal axes of
inertia:

A = B =
1

5
M(R2 + b2) , C =

2

5
MR2.

The non dimensional quantity J2 has a different value for each heavenly body: for the Earth it is
close to 1.082× 10−3.

The shape of the Earth would be spherical in absence of rotation: the equatorial bulge existence
is due to the balance on the spheroid between its self-gravitation and the centrifugal force coming
from rotation6 , [7]. Such a bulge produces the main perturbations of keplerian potential. Formula
(4.1) does provide the gravitational potential outside and quite far from the Earth surface
as formed by the keplerian plus the first spheroidal correction whose sign is the same of the first
term and then providing a rise in attraction. The potential useful to analyze phenomena lying on
the Earth surface, e.g. tidal phenomena, is obtained by adding to the gravitational one that is

coming from the centrifugal force, given by ν2

2
Ω2 cos2 φ, being ν and Ω the Earth mass density and

angular rotation speed. Of course the potential due to the bulge also depends on Ω; if in fact the
latter e.g. increase, it would increase the flatness too and therefore the bulge’s attractive effect.

4.1 Is the J2 problem integrable ?

Not many systems of differential equations-after the two body problem- arising in Celestial Mechanics
were found integrable. An example is the motion of a rigid body about a fixed point: if there are
enough first integrals -capable to give a coordinate system on the set of solutions-then it is possible
to reduce the original ODEs system to an equation solvable by an explicit integral, see e.g. [8] p. 6.

After two centuries of hard investigations only few solutions have been produced. At mid 19th

century, J. Liouville (1809-1882) provided a general framework [9].

The Liouville theorem states simply: the solution of the equations of motion of a Liouville integrable
system is obtained by quadrature. The proof can be read e.g. in [10] p.8.

And what about the motion induced by an axisymmetric spheroidal potential? In his treatise (1873)
I. Todhunter [11] describes the contents of about 300 papers or books of about 40 authors.

Celletti-Negrini in [12] make reference to the hamiltonian where the potential is written with all
the zonal harmonics Jn and expound the Jn problem integrability as an open problem.

On the contrary, the so called J2 problem is non-integrable at all, as stated numerically by other
authors, see [13]. In [12] the non-integrability is investigated proving the existence of a region
of chaotic motions because for such a hamiltonian the Lerman’s [14] chaoticity condition is met.
Finally, let us quote that Irigoyen and Simó proved, [15], the analytical non-integrability of this
problem using Ziglin theorem and the Yoshida criterion for homogeneous potentials. Our -more
simple- case is the J2 equatorial problem and will be solved by means of a composition of elliptic

6If Earth were to rotate faster or slower, its shape would change and therefore so would do its
gravitational potential.
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functions and inverted through a Fourier series expansion.

Brouwer, [16] takes not two but three terms of the potential. The equatorial plane fixed in space is
used as the xy plane of rectangular coordinates. He determines a particular solution which is the
circular one, and afterwards looks for a general solution by studying the orbits near to it, dealing
with the same analytical problem as Hill in his lunar theory.

Janssens writes in [17] that orbits under an additional force term ρ−4 can be expressed by elliptic
functions quoting Whittaker, but his observation has to be rejected as Whittaker analyzes -at p.
81 of [18]- the orbit integrability under a single positional force as ρ−n and then not a combination
of them; furthermore the equations nonlinearity does not authorize such a conclusion, as we will see.

The motion -we are going to analyze- is of course a 3D one, so that the body moves in an orbital
plane which is not fixed, but rotates about the Earth axis in the opposite direction to the satellite,
see [19] who solves analytically the orbit in vacuo by means of perturbative approach: an article of
difficult reading of more than 40 symbols without a nomenclature list.

Omonile and alii in [20] obtain the motion differential equations in oblate spheroidal coordinates.

In [21] the authors write the Lagrange equations for the satellite motion and -including the J2
term-a first order perturbation solution is given in terms of standard orbital parameters.

The oblate spheroid describes the shape of axially spinning objects ranging from the small Earth
to gigantic galaxies. A recent article [22] discusses formulae by Gauss and MacCullagh about the
gravitational potential and derive new formulae -much more long and involved- for the gravitational
potential, but lacking of a reliable motivation.

As it concerns the nature of trajectories, already in 1910 it was clear (e.g. see MacMillan, [23]),
the trajectory of a particle about an oblate spheroid is not in general closed, and then the motion
is, in general, not periodic from a geometric point of view: in such case the word ”orbit” should be
avoided. The failure of these trajectories to close in space arises from the incommensurability of the
period of rotation of the line of nodes with the period of motion in the revolving plane. When these
periods happen to be commensurable, they will result closed in space (= orbits) and the motion is
periodic.

Jeze [24], completely focused on the use of elliptic functions describes well the problem but does
not analyze periodicity questions.

5 ODEs System for the J2 Problem

5.1 The equatorial assumption

We now assume that the a.m. co-latitude is fixed at the value φ = π/2: we study the planar motion
in which the effective 3D-motion is projected onto the equatorial plane. In short, we are looking
for the equatorial shadow of the motion as projected by parallel light rays coming from the infinite
and orthogonal to that plane. In such a way we get the ODE system of the J2 equatorial problem
in vacuo:

55



Bocci and Scarpello; ARJOM, 17(5): 50-68, 2021; Article no.ARJOM.70488


ρ̈− ρθ̇2 +

µ

ρ2
+ 3η

µ

ρ4
= 0

d

dt
(ρ2 θ̇) = 0

(5.1)

with the fixed, known and positive quantities η and µ. By the second of (5.1) we get:

k0 = ρ2 θ̇ = ρ20ω0 ,∀t ≥ 0 (5.2)

which is the constant magnitude of the moment of momentum: i.e. the areal velocity.

Notice that the Kepler first law (elliptic trajectory for bounded motion) and the third (square of
periods of planets) are true only in the specific keplerian case of inverse square force, and then not
in such a field. On the contrary, the second one (constant areal velocity) keeps its validity also in
the J2 perturbed spheroidal field. However the differential equations decouple, i.e. each of them
holds either ρ or θ. Let us focus first on the radial one.

6 Inverse Radial Time Law

Plugging the constant of areas (5.2) in the first of (5.1), we obtain the radial equation:

ρ̈− ρ

(
k20
ρ4

)
+

µ

ρ2
+ 3η

µ

ρ4
= 0 (6.1)

whose integrating factor is ρ̇, so that (6.1) becomes:

ρ̇ρ̈− k20 ρ̇ρ
−3 + µρ̇ρ−2 + 3µηρ̇ρ−4 = 0

or:
d

dt

(
ρ̇2

2
+

k20
2ρ2

− µ

ρ
− µη

ρ3

)
= 0

The quantity within brackets has the dimension of an energy for unity mobile mass (J/kg) and
then is the total (kinetic radial+kinetic transverse+potential keplerian+potential spheroidal) energy
which keeps constant during time, being no dissipation. We put:

ρ̇2 +
k20
ρ2

− 2
µ

ρ
− 2µ

η

ρ3
= E0, with E0 ∈ R (6.2)

where such a constant (=double total energy) is completely set by 5 numbers only: 3 initial
conditions (v0, ω0, ρ0) and 2 process data µ, η:

E0 = v20 + ω2
0 ρ

2
0 − 2

µ

ρ0
− 2µ

η

ρ30

We consider only bounded7 motions, so that E0 < 0.

When in a bounded state (like a satellite in orbit around the Earth) the body’s negative potential
energy is in absolute value greater than its kinetic energy (positive), so that its total energy is
negative: this is said gravity well. Then, if the object tries to escape from Earth, it would fly up,
converting kinetic energy in potential (i.e. slow down in the gravitational field). But since it has
less kinetic than potential energy, it will eventually stop and fall down.

7A recent solution for unbounded motion in the equatorial plane induced by an oblate spheroid
can be found in [25].
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On the contrary, if this difference is larger than zero (or equal), it will have enough energy to reach
infinity, i.e. get away from Earth: it is not gravitationally bound.

Referring to bounded orbits, Goldstein’s Classical Mechanics [26] says, p.78:

This does not necessarily mean that the orbits are closed. All that can be said is
that they are bounded, contained between two circles of radii ρ1 and ρ2 with turning
points always lying on the circles.

Bounded doesn’t automatically mean closed: means that there could be closed paths. On the other
hand you can have closed, but not bounded trajectories. In order to avoid mistakes we hereinafter
put

0 > E0 = − |E0| ,∀t ≥ 0

In such a way, (6.2) becomes:

dt = ∓ 1√
|E0|

ρ3/2dρ√
−ρ3 + 2µ

|E0|
ρ2 − k20

|E0|
ρ+ 2µη

|E0|

(6.3)

Let us go to compute the law time-radius. The (6.3), can be written as:

dt = ∓ 1√
|E0|

ρ3/2dρ√
(ρ− ρ1)(ρ− ρ2)(ρ3 − ρ)

(6.4)

Up to this point, before going on with integration, a short discussion on the cubic’s roots ρ1 < ρ2 <
ρ3 is necessary.

1. Due to the practical values of data involved in the process, we computed8 ρ1 < R, i.e. its
value would fall inside the Earth and then is meaningless for us. As a consequence, ρ1 can
be ignored. We basically then have 3 cases according to the mutual relationship between ρ2
and ρ3 only.

2. If ρ2 and ρ3 are both real with ρ2 ̸= ρ3, then the admittance region of motion is just the
open interval (ρ2, ρ3) and the initial condition ρ0 must be held in it. We will have a planar
motion whose radial displacement starts from ρ0 and oscillates-theoretically restless, due to
the vacuum assumption- between ρ2 and ρ3.

3. If ρ2 = ρ3 are both real, then the quantity under square root in (6.4) can be written as
(ρ1 − ρ) ·D2 where D is a real constant.Then the admissible region of motion is ρ<ρ1 which
is of course out of sense, due to the practical inconsistence of ρ1.

4. If the roots ρ2 and ρ3 are complex conjugate pair, then the quantity under square root in
(6.4) can be written as (ρ − ρ1) · C2 where C is another real constant, so that the radical
reality simply requires ρ > ρ1. In such a case time succeeds to be an ordinary integral and
the body will do a progressive free motion, i.e. will not describe any revolution at all, but
will escape far from the Earth. Such a case would then concern long-run explorations, and
then is out of our purpose.

Therefore we are going to take into account the scenario outlined in item 2).
Integrating (6.4), we get:

t(ρ) = t0 ±
1√
|E0|

[h(ρ)− h(ρ0)] (6.5)

8See e.g. later at the sample problem, sect.13
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Where:

h(ρ) = −
(
ρ21 + (ρ2 + ρ3) ρ1 − ρ2ρ3

)√
(ρ2 − ρ1) ρ3

F

(
sin−1

(√
ρ1 (ρ− ρ3)

k (ρ− ρ1) ρ3

)∣∣∣∣∣ k
)
+

−
√

(ρ2 − ρ1) ρ3E

(
sin−1

(√
ρ1 (ρ− ρ3)

k (ρ− ρ1) ρ3

)∣∣∣∣∣ k
)
+

+
(ρ1 − ρ3) (ρ1 + ρ2 + ρ3)√

(ρ2 − ρ1) ρ3
Π

(
kρ3
ρ1

; sin−1

(√
ρ1 (ρ− ρ3)

k (ρ− ρ1) ρ3

)∣∣∣∣∣ k
)
+

−

√
ρ (ρ− ρ2) (ρ3 − ρ)

ρ− ρ1

and:

k =
ρ1(ρ3 − ρ2)

(ρ1 − ρ2)ρ3
(6.6)

The negative k value cannot create difficulty being available an analytic continuation of elliptic
integrals of first kind also to negative modulus values (see [27] pag. 593 formulae 17.4.17 and
17.4.18 and pag. 600).

Our first step to solve the radial time problem led us to get time as an addition (6.5) of elliptic
integrals of first, second, third kind - i.e. E,F,Π - whose modulus k is completely defined by the
three real roots of the ρ-cubic.

7 Construction of the Inverse Function ρ = ρ(t)

The t(ρ), (6.5) cannot be inverted in any way nor by elementary nor by known special functions;
furthermore the Lagrange series reversion theorem would be complicated in that it is defined around
a certain point c of the interval in which the function is defined. Typically the point c = 0 is used
for easier calculations, but this cannot be done in this case since the vector radius ρ magnitude
never takes the null value.

Nevertheless, it is quite easy to compute the period of ρ(t) inverse of (6.5) by integrating (6.4)
between ρ = ρ2 and ρ = ρ3.

Defining:

q(ρ) =
1√
|E0|

ρ3/2√
(ρ− ρ1)(ρ− ρ2)(ρ3 − ρ),

then the a.m. period will be given by:

T = 2

∫ ρ3

ρ2

q(ρ)dρ =
2√
|E0|

[h(ρ3)− h(ρ2)] = −2h(ρ2)√
|E0|

namely:

√
|E0|ρ3 (ρ2 − ρ1)

2
· T =

[
ρ21 + ρ1ρ2 + (ρ1 − ρ2) ρ3

]
K (k)+

+ (ρ2 − ρ1) ρ3E (k) + (ρ3 − ρ1) (ρ1 + ρ2 + ρ3)Π (kρ3/ρ1|k)
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In order to perform the inversion of (6.5) let us employ the Fourier series, i.e. we are going to
construct the Fourier expansion of the function ρ = ρ(t) founding on our knowledge of its period T
and of its9 inverse t(ρ) = ρ−1(t).

Let us define:

t+(ρ, ρ0, t0) = t0 +
1√
|E0|

[h(ρ)− h(ρ0)]

t−(ρ, ρ0, t0) = t0 −
1√
|E0|

[h(ρ)− h(ρ0)]

If ρ0 ∈ [ρ2, ρ3] is the starting condition, then during a period T the satellite will perform an ordered
motion as ρ0 → ρ3 → ρ2 → ρ0; accordingly the instant of time the satellite leaves the major
deferent ρ = ρ3 is t̂1 = t+(ρ3, ρ0, t0)and that when leaves the minor deferent for return at ρ0 will be
t̂2 = t−(ρ2, ρ3, t̂1). Therefore, putting ζn = 2πn/T we have: ân = Tan/2 and b̂n = Tbn/2 so that:

â0 =

∫ T

0

ρ(t)dt = 2

∫ ρ3

ρ2

s
∂ρ−1(s)

∂s
ds = 2

∫ ρ3

ρ2

sq(s)ds

where the change of variable has been done t = ρ−1(s) so that dt = ∂ρ−1(s)
∂s

ds = q(s)ds. Furthermore
we have:

ân =

∫ ρ3

ρ0

sq(s) cos
(
ζnt

+(s, ρ0, t0)
)
ds−

∫ ρ2

ρ3

sq(s) cos
(
ζnt

−(s, ρ3, t̂1)
)
ds+

+

∫ ρ0

ρ2

sq(s) cos
(
ζnt

+(s, ρ2, t̂2)
)
ds =

[
s

ζn
sin
(
ζnt

−(s, ρ3, t̂1)
)]ρ2
ρ3

+

− 1

ζn

∫ ρ2

ρ3

sin
(
ζnt

−(s, ρ3, t̂1)
)
ds+

[
s

ζn
sin
(
ζnt

+(s, ρ0, t0)
)]ρ3
ρ2

+

− 1

ζn

∫ ρ3

ρ2

sin
(
ζnt

+(s, ρ0, t0)
)
ds

But being: t−(ρ2, ρ3, t̂1)− t−(ρ3, ρ3, t̂1) = T/2:[
s

ζn
sin
(
ζnt

−(s, ρ3, t̂1)
)]ρ2
ρ3

=

=
ρ2
ζn

sin
(
ζnt

−(ρ2, ρ3, t̂1)
)
− ρ3
ζn

sin
(
−nπ + ζnt

−(ρ2, ρ3, t̂1)
)
=

=
1

ζn
sin
(
ζnt

−(ρ2, ρ3, t̂1)
)
[ρ2 − (−1)nρ3]

With t+(ρ3, ρ0, t0)− t+(ρ2, ρ0, t0) = T/2:[
s

ζn
sin
(
ζnt

+(s, ρ0, t0)
)]ρ3
ρ2

=
1

ζn
sin
(
ζnt

+(ρ2, ρ0, t0)
)
[(−1)nρ3 − ρ2]

Our conclusion is:

ân =
1

ζn
[ρ2 − (−1)nρ3]

[
sin
(
ζnt

−(ρ2, ρ3, t̂1)
)
− sin

(
ζnt

+(ρ2, ρ0, t0)
)]

+

− 1

ζn

[∫ ρ2

ρ3

sin
(
ζnt

−(s, ρ3, t̂1)
)
ds+

∫ ρ3

ρ2

sin
(
ζnt

+(s, ρ0, t0)
)
ds

]
=

= − 2

ζn
cos(ζnt̂1)

∫ ρ3

ρ2

sin

(
ζn

h(s)√
|E0|

)
ds

9Notice that herefrom and later we use the notation f−1(t) instead of Inv(f(t))
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An analogous treatment will lead to:

b̂n =
1

ζn
[ρ2 − (−1)nρ3]

[
cos
(
ζnt

+(ρ2, ρ0, t0)
)
− cos

(
ζnt

−(ρ2, ρ3, t̂1)
)]

+

− 2

ζn
sin(ζnt̂1)

∫ ρ3

ρ2

sin

(
ζn

h(s)√
|E0|

)
ds = − 2

ζn
sin(ζnt̂1)

∫ ρ3

ρ2

sin

(
ζn

h(s)√
|E0|

)
ds

Notice that b̂n and ân are not independent:

b̂n = tan(ζnt̂1)ân, ân = −2 cos(ζnt̂1)

ζn

∫ ρ3

ρ2

sin

(
ζn

h(s)√
|E0|

)
ds

In such a way the radial time law is be expressed by:

ρ(t) =
2

T

[
â0
2

+

+∞∑
n=1

[
ân cos(ζnt) + b̂n sin(ζnt)

]]
Then finally:

ρ(t) =
2

T

[
â0
2

+

+∞∑
n=1

ân

cos(ζnt̂1)
cos[ζn(t− t̂1)]

]
(7.1)

The radial speed ρ̇(t) is provided by the series:

ρ̇(t) = − 2

T

+∞∑
n=1

ânζn

cos(ζnt̂1)
sin[ζn(t− t̂1)] (7.2)

In order to analyze the amplitude of ρ̇(t) , being ρ̇(ρ) = 1/q(ρ), putting to zero its derivative with
respect to ρ, we get

−(ρ1 + ρ2 + ρ3)ρ
2 + 2(ρ1ρ2 + ρ1ρ3 + ρ2ρ3)ρ− 3ρ1ρ2ρ3 = 0

whose only solution ρ̄ ∈ [ρ2, ρ3] is:

ρ̄ =
ρ2ρ3 + ρ1 (ρ2 + ρ3) +

√
ρ21ρ

2
2 − ρ1 (ρ1 + ρ2) ρ3ρ2 + (ρ21 − ρ2ρ1 + ρ22) ρ

2
3

ρ1 + ρ2 + ρ3

so that:

− 1

q(ρ̄)
≤ ρ̇(r) ≤ 1

q(ρ̄)
, Aρ̇ =

1

q(ρ̄)
(7.3)

where Aρ̇ is the relevant amplitude of ρ̇ .

8 Orbital Shapes

Whilst radius changes during time according to the previous laws, the azimuth will change and in
order to detect how it does, we start from the equation (5.2); we get:

dt =
1

k0
ρ2dθ (8.1)

Comparing with (6.4) and eliminating time, one obtains the link between the infinitesimal changes
of θ and ρ as a function of ρ only:

dθ

dρ
= ± k0√

|E0|
1√

ρ(ρ− ρ1)(ρ− ρ2)(ρ3 − ρ)
(8.2)
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Integrating:

θ(ρ) = θ0 ±
k0√
|E0|

[f(ρ)− f(ρ0)]

where:

f(ρ) = − 2√
ρ3(ρ2 − ρ1)

· F

(
sin−1

(√
ρ1(ρ− ρ3)

(ρ− ρ1)ρ3k

)∣∣∣∣∣ k
)

which can be inverted as:

ρ(θ) = ρ3 ·
1− k · sn2 (g(θ), k)

1− (ρ3/ρ1)k · sn2 (g(θ), k)
(8.3)

with:

g(θ) =
(
√

|E0|/k0)(θ − θ0) + f(ρ0)

2

√
ρ3(ρ2 − ρ1)

The function ρ = ρ(θ) is periodic with an angular period given by:

T̂ = 2k0

∫ ρ3

ρ2

q(ρ)

ρ2
dρ = −2k0f(ρ2)√

|E0|
=

4k0K(k)√
|E0|ρ3(ρ2 − ρ1)

Therefore T̂ ̸= 2π so that the mobile trajectory will not be closed-as in the keplerian case- because
at each turn (i.e. when θ is added of 2π), ρ does not take again the same value: then there is a
displacement which is building up during the revolutions and this will produce the orbital drifting.

9 A Further Inversion: Azimuth-time Law θ = θ(t)

With reference to the approach given above, let us compute the Fourier expansion of θ(t); defining
α̂n = Tαn/2 e β̂n = tan(ζnt̂1)α̂n we get:

α̂0 = 2

∫ ρ3

ρ2

q(s)

s2
ds =

4K(k)√
|E0|ρ3(ρ2 − ρ1)

α̂n =
4 cos(ζnt̂1)

ζn

∫ ρ3

ρ2

1

s3
sin

(
ζn

h(s)√
|E0|

)
ds

By means of such coefficients we can expand in Fourier series the function 1/ρ2(t), and multiplying
by k0 and integrating, we get θ(t):

θ(t)− θ0 =
2k0
T

[
α̂0

2
ψ +

+∞∑
n=1

α̂n

ζn cos(ζnt̂1)
sin[ζn(ψ − t̂1)]

]ψ=t

ψ=t0

,

or:

θ(t)− θ0 =
2k0
T

[
α̂0

2
(t− t0) +

+∞∑
n=1

α̂n
ζn

· sin[ζn(t− t̂1)]− sin[ζn(t0 − t̂1)]

cos(ζnt̂1)

]
(9.1)

Angular speed and acceleration do change in time during satellite revolutions according to:

θ̈(t) = −2k0
T

+∞∑
n=1

α̂nζn · sin[ζn(t− t̂1)]

cos(ζnt̂1)
(9.2)
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Remembering ζn = 2πn/T we have θ̈(t) = 0 for t = t̂1 and t = t̂1+T/2 corresponding to a minimum
and to a maximum of θ̇(t) respectively:

2k0
T

[
α̂0

2
+

+∞∑
n=1

α̂n

cos(ζnt̂1)

]
≤ θ̇(t) ≤ 2k0

T

[
α̂0

2
+

+∞∑
n=1

(−1)nα̂n

cos(ζnt̂1)

]

The signal amplitude is then:

2Aθ̇ = −4k0
T

+∞∑
n=0

α̂2n+1

cos(ζ2n+1t̂1)
(9.3)

As it concerns the tangential velocity vθ defining γ̂n = Tγn/2 we get:

γ̂0 = 2

∫ ρ3

ρ2

q(s)

s
ds = 4 · ρ1K(k) + (ρ3 − ρ1)Π (kρ3/ρ1|k)√

|E0|ρ3(ρ2 − ρ1)

γ̂n =
2 cos(ζnt̂1)

ζn

∫ ρ3

ρ2

1

s2
sin

(
ζn

h(s)√
|E0|

)
ds

Therefrom:

vθ(t) =
2k0
T

[
γ̂0
2

+

+∞∑
n=1

γ̂n

cos(ζnt̂1)
cos[ζn(t− t̂1)]

]
(9.4)

As usually we have:

2k0
T

[
γ̂0
2

+

+∞∑
n=1

γ̂n

cos(ζnt̂1)

]
≤ vθ(t) ≤

2k0
T

[
γ̂0
2

+

+∞∑
n=1

(−1)nγ̂n

cos(ζnt̂1)

]

Therefore this signal amplitude will be given by:

2Avθ = −4k0
T

+∞∑
n=0

γ̂2n+1

cos(ζ2n+1t̂1)

10 The Keplerian Problem as a Benchmark of Our Inversion
Method

In this section we are giving a theoretical contribution about the method explained above: its
validation by the classic keplerian benchmark.

In radial sense the keplerian motion equation is:

d

dt

(
ρ̇2

2
+

k20
2ρ2

− µ

ρ

)
= 0

We have:

ϵ0 =
ρ̇20
2

+
k20
2ρ20

− µ

ρ0

Therefore:
ρ̇2

2
+

k20
2ρ2

− µ

ρ
= −|ϵ0|

Therefore:

dt = ± ρdρ√
−2|ϵ0|ρ2 + 2µρ− k20
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which can be written as:

dt = ± 1√
2|ϵ0|

ρdρ√
(ρ− ρ1)(ρ2 − ρ)

So that:

t− t0 = ± 1√
2|ϵ0|

[H(ρ)−H(ρ0)]

with:

H(ρ) = −
√

(ρ− ρ1) (ρ2 − ρ)− 1

2
(ρ1 + ρ2) tan

−1

(
−2ρ+ ρ1 + ρ2

2
√

(ρ− ρ1) (ρ2 − ρ)

)
Function ρ(t) will have a period given by:

T =
2√
2|ϵ0|

[ lim
ρ→ρ2

H(ρ)− lim
ρ→ρ1

H(ρ)] =
π(ρ1 + ρ2)√

2|ϵ0|
The instant of time when the satellite leaves the major deferent ρ2 towards the minor, i.e. ρ1 is:

t̂1 = t0 +
T

4
− H(ρ0)√

2|ϵ0|
As previously we have:

â0 =
π(3ρ21 + 2ρ2ρ1 + 3ρ22)

4
√

2|ϵ0|
So that:

ân = −2 cos(ζnt̂1)

ζn

∫ ρ2

ρ1

sin

[
ζn

(
H(s)− T/4√

2|ϵ0|

)]
ds, b̂n = tan(ζnt̂1)ân

The solution can be expanded in Fourier series and referring to the previous notation we have:

α̂0 =
2π√

2ρ1ρ2|ϵ0|
, α̂n =

4 cos(ζnt̂1)

ζn

∫ ρ2

ρ1

1

s3
sin

[
ζn

(
H(s)− T/4√

2|ϵ0|

)]
ds

The roots of the quadratic equation obtained putting −2|ϵ0|ρ2 + 2µρ− k20 = 0 are:

ρ1,2 =
µ±

√
µ2 − 2|ϵ0|k20
2|ϵ0|

,

so that:

ρ1 · ρ2 =
k20
2|ϵ0|

, ρ1 + ρ2 =
µ

|ϵ0|
, ρ21 + ρ22 =

µ2 − |ϵ0|k20
|ϵ0|2

and summarizing:

â0 =
π(3µ2 − 2|ϵ0|k20)

(2|ϵ0|)5/2
, α̂0 =

2π

k0
Finally:

γ̂0 =
2π√
2|ϵ0|

, γ̂n =
2 cos(ζnt̂1)

ζn

∫ ρ2

ρ1

1

s2
sin

[
ζn

(
H(s)− T/4√

2|ϵ0|

)]
ds

By above we are allowed to obtain the time laws ρ̇(t), θ(t), θ̇(t) e vθ(t). The trajectory’s polar
equation will be given by:

θ − θ0 =
k0√
2|ϵ0|

∫ ρ

ρ0

ds

s
√

(s− ρ1)(ρ2 − s)
=

=
2k0√

2|ϵ0|ρ1ρ2

[
sin−1

(√
ρ2(ρ1 − s)

s(ρ1 − ρ2)

)]ρ
ρ0

= 2

[
sin−1

(√
ρ2(ρ1 − s)

s(ρ1 − ρ2)

)]ρ
ρ0
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The period of function ρ(θ) is:

T̂ =
2k0√
2|ϵ0|

∫ ρ2

ρ1

ds

s
√

(s− ρ1)(ρ2 − s)
= 2π

Putting:

ĝ(θ) = θ − θ0 + 2 sin−1

(√
ρ2(ρ1 − ρ0)

ρ0(ρ1 − ρ2)

)
We get:

ρ(θ) =
2ρ1ρ2

cos(ĝ(θ))(ρ2 − ρ1) + ρ1 + ρ2
=

=

2ρ1ρ2
ρ1 + ρ2

1 +
ρ2 − ρ1
ρ1 + ρ2

cos(ĝ(θ))
=

k20/µ

1 + e cos(ĝ(θ))

which is the well-known polar law of a keplerian orbit but generalized to the case of a starting point
at the perigee (θ0 = 0 and ρ1 = ρ0) and where:

e =
ρ2 − ρ1
ρ1 + ρ2

is the ellipse’s eccentricity.

11 Sample Problem and Output Analysis

In this section we will apply the main formulae found above for the J2 problem to a practical case.
First of all we consider a satellite in its unperturbed motion along a keplerian orbital ellipse; such a
status is the startup condition. At a certain instant, which is our time origin, we imagine the bulge
potential will act perturbing the previous dynamics.

Accordingly, let the satellite move along a keplerian ellipse of eccentricity e = 0.3 on the Earth
equatorial plane with a specific angular momentum of k0 = 95000 Km2/s. Start at t0 = 0 s with
θ0 = 40 deg, we have:

ρ0 =
k20/µ

1 + e cos(θ0)
≈ 18410.7 Km

ρ̇0 =
µ

k0
e sin(θ0) ≈ 0.8091 Km/s

θ̇0 =
µ

k0ρ0
(1 + e cos(θ0)) ≈ 0.0161 deg /s

Let it be:

P3(ρ) = −ρ3 + 2µ

|E0|
ρ2 − k20

|E0|
ρ+

2µη

|E0|
Accordingly |E0| ≈ 16.023 Km2/s2 and solving P3(ρ) = 0 we found the roots:

ρ1 ≈ 1.94542 Km, ρ2 ≈ 17416.1 Km, ρ3 ≈ 32335.3 Km

General bounded motion has then both lower and upper bounds: so that the particle cannot
approach near than some minimum or move farther than some maximum distance. Furthermore
the angular velocity has a constant sign, same as that of the moment of momentum throughout
the motion. As anticipated, the first root is lost because falls within the Earth. Following our
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notations, we forecast a bounded trajectory confined in an annulus between ρ2 e ρ3 with two time
laws θ(t) ∈ [0, 2π] and ρ(t) ∈ [ρ2, ρ3] with period T ≈ 39048.1 s. The time scanned is approximately
2.4 days corresponding to slightly less than 5 turns.
The main outputs of this paper are the analytic ones in framed formulae. We also performed
analytical computations of them obtaining some interesting plots listed below. They have been
omitted here, but the interested readers can in any case ask the mailing author for them and for
the relevant program scripts in Matlab. So they will appreciate how much our analytical outputs
comply with the numerical computations which are within everyone’s grasp.

1. Radial distance. The radial distance ρ(t) of the satellite from the Earth oscillates between
the boundaries ρ1 and ρ2 indefinitely, according to (7.1)

2. Radial speed. Of course the ρ̇ sign changes for being the orbit not a crcle and then formula
(7.2) forecasts alternate signs for time derivative of distance particle - Earth. The derivative’s
null values refer to those satellite times when the particle touches the deferent circles.

3. Azimuth versus time. The azimuth is computed, see (9.1), by means of inverse functions
and then it starts again from zero at the end of each turn of 0.48 days.

4. Tangential speed versus time. This behavior is coming from formula (9.4)

5. Angular velocity. As told before, the sense of orbital trajectory is always the same so that
the time derivative of azimuth is always greater than zero.

6. Trajectory. We saw a typical bounded set of orbits with θ advancing as ρ oscillates between
inner and upper circle, according to (8.3). In the classic-no bulge-non relativistic Kepler
problem, a particle eternally follows the same perfect ellipse. The presence of the bulge acts
as if a third force attracting the particle were added to keplerian gravitation, especially for
small radii. This third force causes the quasi-elliptical orbit of the particle to be not fixed
but to undergo a precession in the direction of its rotation, so forming a small rose. This
effect was also measured in the planets Mercury, Venus and Earth under the attraction of
the Sun mass which is flattened too. The same precession effect is found in the mathematical
model of General Relativity in which the bulge is not taken into account at all, but only the
space-time curvature and the orbit comes as geodesic path within it.

12 Conclusions

The report analyzes the possibility of inverting and solving the motion equations when the Earth’s
oblateness rules a satellite’s orbit. During our treatment several assumptions have been sparsely
done and which we collect below:

1. Attractor constant density.

2. Axisymmetric spheroidal attraction, i. e. not dependent on azimuth.

3. Satellite not too close to the planet: ρ >> R.

4. Potential higher order terms beyond J2 really negligible.

5. Effects of atmospheric drag ignored.

6. Effects of Sun radiation pressure ignored.

7. Satellite motion bounded (total negative energy).

8. Neglected any gravitational effect by the satellite on the spheroid and those of any other
celestial body (Sun, Moon) on the satellite.

9. The spherical frame of reference origin is taken at the centre of spheroidal mass whose only
motion is therefore just the rotation -around its North-South axis- responsible of the flatness.
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10. Each computation can be carried out knowing at all 7 quantities, namely: ρ0, ρ̇0, θ0, ω0, as
it concerns the satellite startup and: µ,R, J2, as it concerns the spheroid.

On such assumptions, the following conclusions have been met. New formulae have been obtained for
solutions describing the ”planarized” motion of a particle attracted in vacuo by an oblate gravitating
spheroid. Our solutions do not stem from a perturbative approach but have been carried out facing
the problem as a whole in its nonlinear nature and then leading to elliptic integrals of I, II, III kind.
They therefore cannot be inverted by means of any special functions: nevertheless such inverse
have been given by constructing their period and their Fourier expansion: then the planarized J2
problem is fully solved in the sense of Liouville having we obtained the Fourier series expansion of
the inversions.

Our approach has been successfully validated by applying it to the basic keplerian case as a
benchmark. A sample problem has been finally presented where the obtained outputs have been
discussed in their physical meaning.

According to General Relativity, following the Schwarzschild model of a M-spherical non rotating
attractor, the particle motion analysis in a (ρ, θ) frame leads to a dynamical forcing term given by:

µ

(
1

ρ2
+ 3

k2

c2ρ4

)
per unity attracted mass, instead of (5.1):

µ

(
1

ρ2
+ 3

η

ρ4

)
Therefore the oblateness -modeled in J2 fashion- drives in a classical context to an ODE system
having the same mathematical structure of the Schwarzschild planetary motion solution (1916)
which allowed to explain the 43”/century precession which had been outside the possibilities of
any pre-relativistic calculation. Of course our inversions can easy be used -after little adjustment-
in order to perform some practical evaluation cases in Schwarzschild context, free from numerical
methods and selecting how many terms to include in expansions for ρ(t) and θ(t).
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