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Abstract 

 
In this study, we proposed a family of distribution called the Pseudo Lindley family of distributions. The 

limiting behaviors of the density and hazard rate function of the new family are examined. Statistical 

properties of the proposed family of distributions derived include quantile function, moments, order statistics, 

and Renyi’s entropy. The maximum likelihood method was employed in obtaining the parameter estimates of 

the Pseudo Lindley family of distribution. Bivariate extension of the proposed family is discussed. Some 

special members of the family are obtained. The shape of the density function of special members could be 

unimodal, bathtub shaped, increasing and decreasing.   

 

 

Keywords: Pseudo lindley; T-R{Y} family; maximum likelihood; entropy; order statistics, bivariate 

distribution. 
 

1 Introduction 

 
The Probability Distribution function (pdf) of two parameter Pseudo-Lindley distribution with scale and shape 

parameter  ,   respectively is given by.  

Original Research Article 



 

 
 

 

Uwadi and Nwezza; ARJOM, 17(5): 35-49, 2021; Article no.ARJOM.68427 
 

 

 
36 

 

 
 1

, , 0, 1

xx e
f x x

  
 



 
                                                 (1.1) 

 

The cumulative distribution function (cdf) corresponding to (1.1) is  
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If 1   , X  now follows a Lindley distribution. 

 

The Pseudo – Lindley distribution was proposed by Zeghdoudi and Nedjar [1].The properties of Pseudo – 

Lindley distribution were studied by Zeghdoudi and Nedjar [2]. In the last decade many generalizations of 

different distributions and their applications have been proposed in literature to take care of data sets that do not 

follow known standard distribution. To make a distribution more flexible, it is usually generalized. This work 

we will make attempt to generate a family of distribution called Pseudo-Lindley family of distribution  using the 

T-R {Y} framework by Alzaatreh et al [3]. Following the technique proposed by Aljarrah et al [4], Alzaatreh et 

al [4] defined the cdf of a random variable X  as 
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ξ
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where  XF x is the cdf of the new family,  Tf x is the pdf of the generator,  ;RF x ξ  is the cdf  of the baseline 

distribution .   ;Y RQ F x ξ  is the quartile function of random variable Y expressed as function of  ;RF x ξ  

the cdf of the base line distribution which depends on  1r   parameter vector ξ  . In this work, our generator 

 Tf x is the pdf of a Pseudo – Lindley distribution.  .YQ is the quantile function of a standard exponential 

distribution.  

 

We define the Pseudo-Lindley–G family by integrating the Pseudo-Lindley cdf in (1.1) as follows 
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From (1.4) we have  
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 The pdf of the Pseudo – Lindley family is obtained by differentiating (1.5) with respect to x . 

 

          
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

   
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
        ξ ξ ξ ξ                   (1.6) 

where  ;Rf x ξ is pdf of the baseline distribution. Hereafter a random variable X  with density function (1.6) 

is denoted by  X PsL R exponential . The survival function corresponding (1.5) is   
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While the hazard rate function  hrf  X is given by 
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The rest of the paper is organized as follows. In Section 2 we present the statistical properties of the new family 

of distribution such as limiting behaviors, quantile function and moments while Section 3 is centered on the 

entropy of the proposed family of distribution. The distribution of order statistics and estimation of parameters 

of this new family are presented in Section 4 and 5 respectively. A bivariate extension of the generated family is 

given in Section 6. New generated distributions from the proposed family are given in Section 7 and Section 8 

concludes the article. 

 

2 Statistical Prpoerties 

 
The statistical properties of the  PsL R exponential family are studied in this section. 

 

2.1 Limiting behaviors 

 

We now examine behaviors of the cdf, , pdf,  XS x  and  Xh x , as 0x  and as x  

 

 Proposition 1: The limiting behaviors of (1.5), (1.6), (1.7) and (1.8) as 0x  are given by 
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Proposition 2: The limiting behaviors of (1.5), (1.6),(1.7) and (1.8) as 0x  are given  
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 ; , , 0Xh x   ξ  as x
 

 

2.2 Shapes 

 

The shapes of the density and  Xh x can be described analytically. The critical points of the density function of 

 PsL R exponential  family are the roots of the equation. 
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There may be more than one root to (2.1). If 0x x is a root of (2.1), then it corresponds to a local maximum, 

local minimum or a point of inflexion depending on whether    0 00, 0x x      or  0 0x  where  
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The critical points of the hazard rate function are obtained from the equation 
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The roots of (2.2) may be more than one. If 0x x is a root of (2.2), then it corresponds to a local maximum, 

local minimum or a point of inflexion depending on whether    0 00, 0x x      or  0 0x  , where  
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2.3 Useful expansions 

 
The following expansions are considered useful in obtaining the moments, order statistics and entropy function 

of the  PsL R exponential family of distributions 
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The power series raised to any positive integer expansion by Grandshteyn and Ryzhik [5].  
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where coefficients ,n ic  1,2i   for ,0 0

n

nc a  are easily obtained from the recurrence equation 
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2.4 Other representations 

 

If X follows a  PsL R exponential family of distribution, a double mixture form of the 

 PsL R exponential family is obtained using (2.3) and (2.4) 
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In literature, if  F x is any arbitrary cdf of a random variable, then for 0      G x F x


     and 
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1

g x f x F x





    are the cdf and pdf of exponentiated-G distribution introduced by Mudholkar and 

Strvastava [6]. The concept of exponetiated-G distribution is used to derive a very useful linear representation of 

the pseudo  PsL R exponential distribution. 
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Hence 2.8 can be written as 
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Where  .Yh  follows the exponentiated-G distribution, (2.9) is the major result in this section. The statistical 

properties of PsL-R{exponetial} family can now be easily derived using the properties of exponentiated- G 

 .Yh  which has been studied widely in literature. 

 

2.5 Quantile function 

 

The quantile function of a random variable  ~X PsL R Exponential distribution defined by 

 Q p X  where 0 1p   can be obtained by inverting (1.5) and its is given by 
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where  .RQ is the quantile function of the baseline distribution, W (.) is the negative branch of Lambert W 

function. The first three quartiles of the proposed family can be obtained by substituting for 
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(2.10) can be used for simulating the PsL-R{exponential} random variable. If p   has a uniform  0,1U  

distribution, then X given by 
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has the density in (1.6)  

 

Skewness and kurtosis are used to measure the degree of long tail and the degree of tail heaviness respectively 

of a distribution.  Quantile based measures of skewness and kurtosis are respectively calculated using the 

relationships of Galton [7] and Moor [8]. These measures of skewness and kurtosis exist for distributions 

without moments and are less sensitive to outliers Alizadeh et al [9].Using the quantile function in (2.10), the 

Galton’s  skewness and Moor’s kurtosis of the proposed family are given by (2.12) and (2.13).  
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       
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If  0 0S or S   we say that the distribution is right or left skewed. If 0,S  then the distribution is 

symmetric. For the kurtosis K , as K  increases the tail of the distribution becomes heavier.  

 

2.6 Moment 

 

Let iY  and i kY   be random variables with exponentiated-G distribution with power parameters  1i  and 

 2i k   respectively. The first formula for the nth moment of  ~X PsL R Exponential family 

follows from (2.9) 
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Moments of some expo-G distributions are given by Nadarajah and Kotz [10] which can be used to obtain 

 nE X  

 

Secondly, the moment can be obtained from (2.10) above as  
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2.7 Moment generating function 

 

The moment generating function    tx
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family of distributions can be obtained by (2.9)  
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where  
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 are the corresponding mgfs of iY  and i kY   
 

Secondly the mgf can be derived from (2.10)  
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Where  



 

 
 

 

Uwadi and Nwezza; ARJOM, 17(5): 35-49, 2021; Article no.ARJOM.68427 
 

 

 
42 

 

   
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3 Entropy   

 

The Entropy of a random variable X  with density function  f x  is the measure of variation of the uncertainty 

Renyi [11]. A large entropy value indicates greater uncertainty in the data. The Renyi entropy of random 

variable with density  f x  is defined as 
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for 0,r   and 1  . The Renyi entropy for  ~X PsL R Exponential family is given by the following 

theorem. 

 

Theorem 2: If a random variable X follows  ~X PsL R Exponential family, then the Renyi entropy of   

X   RI   is given by 
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Proof. 
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From (4.2) we have  

 

 
 

 
 

  

 
 1

1
; , , ; 1 log 1 ;

1

1 ;

X R R

R

f x f x F x

F x



 

 

  
 

 



  
    

   

   

ξ ξ ξ

ξ

                         (3.4) 

 

Using the power series in (2.6), (2.3) and (2.4) to simplify (4.3) we have 
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Shannon’s entropy for a random variable X with pdf  f x  is defined as  logE f x   . The Shannon 

entropy for  PsL R Exponential family is given by 
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Following similar algebraic manipulations done in (3.4) we have (3.6) reduces to                                            
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4 Order Statistics 

 
Order statistics has application in many areas of statistical theory and practice. Let 1 2, ..... nX X X   denote a 

random sample from the Pseudo –Lindley-R {exponential} family. The pdf  :i nf x of the ith  order statistics 

:i nX  can be written as 
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Let    Xf x f x  and    XF x F x substituting for  Xf x and  XF x  in pdf of :i nX  for 

 PsL R Exponential  distribution. Using (2.4) and (2.5), the ith  order statistics for 

 PsL R Exponential  family of distributions is given by  
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5 Maximum Likelihood Estimation   

 

Given that 1 2, ... nx x x  are observed values from  PsL R Exponential family with parameters ,  and 

ξ .The likelihood function of ,  and ξ is given by 
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Let  , ,L x and l  ξ . The log likelihood function can be expressed as 
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Differentiating l  partially with respect to , and  ξ  we have 
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6 Bivariate Extension 

 
We introduce the bivariate extension of the proposed model in this section. A joint cdf of the proposed model is 

given by 
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 , ;RF x y ξ is the bivariate continuous distribution of the baseline distribution with marginal cdf’s  
1

;RF x ξ

and  
2

;RF x ξ . We call the (7.1) Bivariate Pseudo-lindley-R{exponential} distribution. The marginal cdfs are 

given by 

 

 
      

1 1
log 1 ; 1 ;

1
R R

X

F x F x
F x



 



  
 

ξ ξ
  

 

and  

 

 
      

2 2
log 1 ; 1 ;

1
R R

Y

F y F y
F y



 



  
 

ξ ξ

 
 

The joint pdf of ( ,X Y ) is obtained from  
 2

,

,

,
,

X Y

X Y

F x y
f x y

x y




 
 

 

          
1

, , , ; , , 1 log 1 , ; 1 , ;X Y R Rf x y A x y F x y F x y


   



        ξ ξ ξ

 
 

Where 

 

 

 
    

  
   

 
  

   

1 log 1 , ; , ; , ;
, ; , ,

1 , ;

, ; , ;1
, ;

1 , ;

R R R

R

R R

R

R

F x y F x y F x y
A x y

x yF x y

F x y F x y
f x y

x yF x y

 
  



      
 

 
 

 

ξ ξ ξ
ξ

ξ

ξ ξ
ξ

ξ
 

 

The marginal pdfs are  
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The conditional cdf’s are 
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The conditional density functions are 
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7 Special Pseudo – Lindley –R {Exponential} Distribution 

 
By considering different R distributions we present some members of the proposed family of distributions. 

 

7.1 The pseudo-lindley-weibull {exponential} distribution 
 
The cdf and pdf of Pseudo-Lindley-Weibull{Exponential} distribution is obtained from (1.5) and (1.6) 
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 For 1   , Pseudo-Lindley-Weibull{Exponential}  becomes Lindely Weibull distribution with parameters 

,a  and b . Cakmakyapan and Ozel [12]. The plots of the shapes of are Pseudo-Lindley-Weibull{Exponential} 

shown in Fig. 1 below. The plot in Fig. 1 shows that the density function of Pseudo-Lindley-

Weibull{Exponential}  distribution can be unimodal and increasing, while the hrf  is also increasing.  

  

 
 

Fig. 1. Pdf plot of PsL-W{exponential} distribution for selected parameter values 

 

 
 

Fig. 2. hrf plot of PsL-W {exponential} distribution for selected parameter values 
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 7.2 The pseudo-lindley-power {exponential} distribution 

 

Letting the baseline distribution to be a power distribution with cdf  ; ;0

c
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F x x d
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R c
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   .The cdf and pdf of Pseudo-Lindley-Power{Exponential} distribution are given by 

 

 

log 1 1

; , , 1

c c

X

x x

d d
F x c d



 




       
                                    

                                

and  

 

   

1
1

; , , 1 log 1 1

c cc

X c

cx x x
f x c d

d d d




  




        

                      

               

 

The density function can be left-skewed, right-skewed, and symmetric and bathtub shaped, while the hrf is 

bathtub shaped and increasing. 

 

 
 

Fig. 3. Pdf and hrf plot of PsL-W {exponential} distribution for selected parameter values 

 

 

8 Conclusion    

 
There has been growing interest recently on generating families of distributions which are more flexible in 

modeling reliability and survival data. This paper adds to the growing literature in generalized family of 

distributions. We introduce a family of distributions called Pseudo-Lindley family of distribution based on the 

T-R{Y} framework proposed by Alzaatreh et al. [3]. The limiting behavior of the proposed family is examined 

and pdf expressed as exponentiated-G family. Some properties of the new family studied include quantile 

function, moments, entropy and order statistics. Maximum likelihood estimation method was used to derive the 

maximum likelihood estimates of parameters of the new family of distribution. Bivariate extension of Pseudo-

Lindley family of distribution was also obtained. Plots of special members of the family showed that the density 
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could be right-skewed, left-skwed, symmetric and increasing, while the hazard rate function could be bathtub 

shaped and increasing.   
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