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Abstract 

 
This paper continues investigating connections on a valuated binary tree. By defining three types of new 

connections, the paper derives several new properties for the new connections, and proves that odd integers 

matching to the new cases can be easily and rapidly factorized. Proofs are presented for the new properties 

and conclusions with detail mathematical reasoning and numerical experiments are made with Maple 

software to demonstrate the fast factorization by factoring big odd composite integers that are of the length 

from 101 to 105 decimal digits. Source codes of Maple programs are also list for readers to test the 

experiments. 
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1 Introduction  
 
By means of defining parallelism, connection and penetration, paper [1] investigated geometric relationships 

among nodes on a valuated binary tree, and it proved several properties about the connections and the 
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penetrations as well as some significant corollaries for fast factorization of special kind of big odd integers. The 

results together with the previous results obtained in the bibliographies [2] to [7] exhibit that the valuated binary 

tree method is a new systematic approach to analyze odd integers.  

 

This paper follows the study of paper [1], continues the investigation on the connections and their applications 

in factorization of odd composite integers. By defining three new types of the connections, the paper reasons 

and obtains several new properties and corollaries in analyzing the odd integers. 

 

2 Preliminaries 

 
The terms related with the valuated binary tree, subtree, root, node, son, father and ancestors as well as symbols 

used in this paper can be referred in [1]. Some cited lemmas were also seen in [1]. 

 

2.1 New lemmas 

 
Lemma 1 ([8]).  Let N be an odd integer on a tree; then N’s direct ancestor that is levels away from N is 

calculated by 1N NA f    if Nf   is even or N NA f  if Nf  is odd, where 
1

2
N

N
f 



 
  
 

. 

Lemma 2 Let 0i  , 0j  and 0   be integers; the equality 
2i

j


 
 

 
holds for either 

1
2

2i

j




 
 

 
 or 

1
2 1

2i

j




 
  

 
.  

 

Proof. See the following reasoning. 

 

1

1

1

1

2 2 ,0 2
2 2 2

2 1 2 ,2 2
2 2 2

i i

i i i

i i i

i i i

j j r
j r r

j j r
j r r

   

   









     
              

     

     
               

     

 

 

3 Connections Parallel to Borders 

 
The concept of the connection was introduced in [1]. This section mainly studies the connections parallel to the 

borders of a subtree.  

 

3.1 Three types of connections parallel to the borders 

 
Let TA be a valuated binary tree, X and Y be nodes of TA; assume 

ld is the distance from X (or Y) to the left 

border A

LB of TA and 
rd is the distance from X (or Y) to the right border A

RB of TA, as depicted with Fig. 1. The 

connection X

LP starting from X and formed with the nodes that are 
ld away from A

LB is called a connection 

parallel to A

LB  and the connection X

RP starting from Y and formed with the nodes that are 
rd away from A

RB is 

called a connection parallel to A

RB . Likewise, so are the connections Y

LP  and Y

RP defined. Since A is an ancestor 

of X and Y, connections parallel to the borders of TA are said to be type-1 connections. 

 

There is another kind of connections that are said to be type-2 ones. Seen in Fig. 2, X and Y are two nodes on the 

same level of TA. Then there is a connection, denoted by X

YRP , that is starting from X and parallel to the right 

border of TY; the distance from X

YRP to the right border of TY is the same as that from X to Y. There is also a 

connection, denoted by Y

XLP  that is starting from Y and parallel to the left border of TX. 
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Fig. 1. Type-1 connections parallel to borders 

 

 
 

Fig. 2. Type-2 connections parallel to borders 

 

The type-3 connections are related with two nodes X and Y that lie on different levels of TA, as seen in Fig. 3. 

This kind of connections looks like the type-2 ones but they are different from the distance defined from X to the 

right border of TY or from Y to the left border of TX. This time, the lower level is set to be a reference to calculate 

the distances. If ( , )

A

k jX N and ( , )

A

l sY N with 0k   and 0l k    , then the distance 
ld from Y to ( ,0)

XN  is 

defined to be the distance from Y to the left border of TX, and the distance 
rd from Y to 

( ,2 1)

XN  
is defined to be 

the distance from Y to the right border of TX. Of course, some other definitions might be given if only they could 

simplify the calculations. For convenience, the connection is simply called a type-3 connection starting from X 

or Y, respectively. 
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Fig. 3. Type-3 connections parallel to borders 

 

3.2 Properties and proofs 

 
Property 1. Let ( , )

A

k jX N be a node of TA. Denote X

LP and X

RP to be the two type-1 connections starting from X 

and parallel to the left and the right borders of 
AT , respectively. Assume L X

i Ln P and R X

i Rn P are respectively 

the ith nodes counted from X, where 0i  ; then  

 

( , ) 2 ( 1) 2 1L A k i

i k i jn N A j

    
 

 

and 

 

( ,2 2 )
2 ( 1) 2(2 2 ) 1 2 ( 1) 2(2 ) 1k i k

R A k i k i k k i k

i k i j
n N A j A j

  

  
            . 

 

Proof. Assume 
ld and 

rd are the distances from X to the left and the right borders of
AT , respectively. Since  

 

( ,0) 2 ( 1) 1A k

kN A   , 

( ,2 1)
2 ( 1) 2(2 1) 1k

A k k

k
N A


    

 
 

and 

 

( , ) 2 ( 1) 2 1A k

k jN A j    , 

 

it follows 

 

( , )( ,2 1)
1 2

2

k

A A

k jk k

r

N N
d j




    , 

 

and  

 

( , ) ( ,0)
1 1

2

A A

k j k

l

N N
d j


    . 

 

Consider the case L X

i Ln P . Since X lies on level k of TA, L

in is on level k i of TA and it follows 
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( ,0) ( , )2( 1) 2 ( 1) 2 1L A k i A

i k i l k i jn N d A j N

         . 

 

Similarly, it yields 

 

( ,2 1)

( ,2 1) ( ,2 1)

( ,2 2 )

1 2( 1) 2(2 1)
2

2 ( 1) 2(2 2 ) 1

k i

k i k i

k i k

A R

ik i R A A k

r i rk i k i

k i k i k A

k i j

N n
d n N d N j

A j N



 



 

   

 

  


         

      

 

 

Example 1. Taking in T21 the node 83, it is seen that, 2ld  (from 81 to 83 ) and 3rd  (from 83 to 87). The 

connection starting from 83 and parallel to the left and the right borders of T21 are respectively  

 
83 {83,163,323,...}LP  and 83 {83,171,347,...}RP 

 
 

Because 

 

2 2

3 2

4 2

21 2

0 (2 0,1)

21 3

1 (2 1,1)

21 4

2 (2 2,1)

21 2 2 2

0 (2 0,2 2 1)

21 3 3 2

1 (2 1,2 2 1)

2 (2 2,2 2 1

2 (21 1) 2 1 83

2 (21 1) 2 1 163

2 (21 1) 2 1 323

2 (21 1) 2(2 2 1) 1 83

2 (21 1) 2(2 2 1) 1 171

L

L

L

R

R

R

n N

n N

n N

n N

n N

n N







  

  

  

     

     

     

       

       

 21 4 4 2

)
2 (21 1) 2(2 2 1) 1 347      

 
 

 
 

Fig. 4. Example of connections parallel to the two borders of T21 

 

Proposition 1. Let ( , )

A

k jX N with 0k  be a node of TA, X

LP and X

RP be defined as those in Property 1; assume 

L X

i Ln P and R X

i Rn P are respectively the ith nodes counted from X, where 0i  ; then it holds 

 
12(2 2 ) 2 (2 1)R L k i k k i

i in n      
 

 

2 (2 1)( 1)L k i

in X A   
 

 

and 

 

2 (2 1)( 1)R k i

in X A     

 

Proof. Direct calculation by Property 1 immediately yields 
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12(2 2 ) 2 (2 1)R L k i k k i

i in n      
 

 

Now by 2 ( 1) 2 1L k i

in A j    it follows 

 

1

1

1

0

1 0

1

2 1

1

1

0

2 ( 1) 2 1

2 ( 1) 2 1

2 ( 1)

2 ( 1)

2 ( 1)

......

2 ( 1)

2 (2 1)( 1)

L k i

i

L k i

i

L L k i

i i

L L k

L L k

L L k s

s s

L L k s

s

n A j

n A j

n n A

n n A

n n A

n n A

n n A



 











 



   



   



  



  

  

  



   

 

 

Since 0 ( , )2 ( 1) 2 1L k A

k jn A j N X      , it yields 

 

2 (2 1)( 1), 0L s s

sn X A s    
 

 

Likewise, it yields 

 

2 (2 1)( 1), 0R k s

sn X A s    
 

 

Remark 1. Proposition 1 shows that, the distance from L X

i Ln P to R X

i Rn P is  

 

1 2 2 1
2

R L
k i ki i

i

n n
d 
    

 
 

This is a quantity that merely depends on the level where X lies and the level where L

in lies. 

 

Proposition 2. Let ( ,0)

A

kX N with 0k  be a node on the left border of TA; denote 
0 1 2 1

, ,...,
kX X X XT T T


 to be the 2k

subtrees whose roots are respectively the 2k nodes on level k of TA. Assume R X

i Rn P is the ith node counted from 

X, where 0i   and X

RP is as defined in Property 1; then  

 

2 2

2 1

( ,2 2 )

,0

,

k k i

k i k

k

X
R A

i k i
X

T i k
n N

T i k







 

 
 

  
 

Proof. Taking 0j  in Property 1 immediately yields 

 

( ,2 2 )k i k

R A

i k i
n N  


 

 

Now consider the ancestor of 
( ,2 2 )k i k

A

k i
N  

. When 0 i k   direct calculation shows 
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( ,2 2 )
1 2 ( 1) 2(2 2 )

2 ( 1) 2(2 2 )
2 2

k i k

A k i k i k
k i k k k i

i i

N A
A


 

  
     

       
      

 

and when i k it follows 

 

( ,2 2 )

1

1 1
2 ( 1) 2(2 1) 2 2 ( 1) 2(2 1) 1

2 2

k i k

A

k i k k k k

i i k

N
A A

 

 

   
             
     

 

By Lemma 1, on level k of TA, the ancestor of 
( ,2 2 )k i k

A

k i
N  

is 
( ,2 2 )k k i

A

k
N 

when 0 i k  , whereas it is 
( ,2 1)k

A

k
N


when 

i k . 

 

Proposition 2*. Let 
( ,2 1)k

A

k
X N


 with 0k  be a node on the right border of TA; denote

0 1 2 1

, ,...,
kX X X XT T T

  to be the 

2k subtrees whose roots are respectively the 2k nodes on level k of TA. Assume L X

i Ln P is the ith node counted 

from X, where 0i  and X

LP is as defined in Property 1; then  

 

2 1

0

( ,2 1)

,0

,

k i

k

X
L A

i k i

X

T i k
n N

T i k

 

 

 
 


 

 

Proof. Taking 2 1kj   in Property 1 immediately yields 

 

( ,2 1)k

L A

i k i
n N

 


 
 

Note that 

 

( ,2 1)

1

1 2 ( 1) 2(2 1)

2 2

1 1
2 ( 1) 2(2 ) 2 ( 1) 2(2 1) 2

2 2

2 ( 1) 2(2 1), 0

2 ( 1) 2(2 1) 1,1

2 ( 1),

k

A k i k
k i

i i

k k i k k i

i i

k k i

k k i

k

N A

A A

A i

A i k

A i k


 

 







     
   

    

   
            
   

    


      
  

 

 

it is known by Lemma 1 that, on level k of TA, the ancestor of
( ,2 1)k

A

k i
N

 
is 

( ,2 1)k i

A

k
N  

when 0 i k   whereas it is 

( ,0)

A

kN when i k . 

 

Example 2. Again taking in T21 as an example. Take 2k  and 0j  ; then  

 

2 2
0

2 1 2
2 2 1 22 2

2 2 2
2 2 2 32 2

2 3 2
3

21 21

0 (2,0)(2 0,2 2 )

21 21

1 (3,4)(2 1,2 2 )

21 21

2 (4,12)(2 2,2 2 )

21 21

3 (5,28)(2 3,2 2 )

81

169

345

697

R

X

R

X X

R

X X

R

X

n N N T

n N N T T

n N N T T

n N N T









 

 

 

 

   

    

    

   
 

 

Take 2k  and 3j  ; then 
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2
2 0 32 1

2
2 1 12 1

2
0

2
0

21 21

0 (2,3)(2 0,2 1)

21 21

1 (3,3)(2 1,2 1)

21 21

2 (4,3)(2 2,2 1)

21 21

3 (5,3)(2 3,2 1)

87

167

327

645

L

X X

L

X X

L

X

L

X

n N N T T

n N N T T

n N N T

n N N T

 

 

 

 

 

 

    

    

   

   

 

 
 

Fig. 5. Symmetric connections parallel to the borders of T21 

 

Remark 2. It can be seen that, by the identity 2 1 (2 2 ) 2 1k k k i k i      , 
2 1k iX  

and 
2 2k k iX 

are two symmetric 

nodes on level k of TA.  

 

Proposition 3. Let ( , )

A

k jX N  with 0k  be a node of TA, X

LP and X

RP be defined as those in Property 1; assume 

L X

i Ln P and R X

i Rn P are respectively the ith nodes counted from X, where 0i  ; then  

 

i

L

i Xn T


  and 
2 2k k i

i

R

i Xn T
 


 

 

where 
2

i i

j


 
  
 

 and symbol X means ( , )

A

kN  . 

 

Proof. Consider on level k of TA the ancestors of L

in  and R

in , respectively. By Property 1, it follows 

 

1 1

1 1
2 ( 1) 2 ( 1)

2 2 2 2

L L
k ki i

i i i i

n j n j
A A

 

    
         

    
 

and 

 

1

1
2 ( 1) 2(2 2 ) 1 2 ( 1) 2(2 2 )

2 2

R
R k i k i k k k k ii
i i i

n j
n A j A  



   
              

  
. 

 

Thus the quantity 
12i

j


 
 
 

is the key to determine the ancestors. By Lemma 2, whether 
12i

j


 
 
 

is even, say 

1
2

2i

j




 
 

 
, or it is odd, say 

1
2 1

2i

j




 
  

 
, where 0  is an integer, it results in  

 

2 ( 1) 2 1L
i

i k

n
A A      

 

and 
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2 ( 1) 2(2 2 ) 1R
i

i k k k i

n
A A      

 
 

Referring to Lemma 2, it follows 

 

2 ( 1) 2 1
2

L
i

i k

in

j
A A

 
    

 
 

 

and 

 

2 ( 1) 2(2 2 ) 1
2

R
i

i k k k i

in

j
A A   

      
 

 

 

Since L
i

i

n
A and R

i

i

n
A are roots of subtrees from level k, the proposition is established. 

 

Remark 3. It is seen that 0i  when 2logi j    . There is always an 
0i such that 

0i i leads to 
0

L

i Xn T and 

2 1k

R

i Xn T


 , where 0 ( ,0)

A

kX N and 
2 1 ( ,2 1)k k

A

k
X N

 
 . 

 

Proposition 4. Let ( , )

A

k jX N  and 
( ,2 1 )k

A

k j
Y N

 
 with 0k   be two symmetric nodes on level k of TA. Let X

LP and 

X

RP  be the two type-1 connections starting from X and parallel respectively to the left and the right borders of 

AT , Y

LP and Y

RP  be the two type-1 connections starting from Y and parallel respectively to the left and the right 

borders of 
AT . Assume LX X

i Ln P , RX X

i Rn P , LY Y

i Ln P and RY Y

i Rn P are nodes on the connections, where 0i  ; then 

on level k i of TA, RX

in is symmetric to LY

in and LX

in is symmetric to RY

in .  

 

Proof. By Property 1, it follows 

 

( ,2 2 )
2 ( 1) 2(2 2 ) 1k i k

RX A k i k i k

i k i j
n N A j

 

  
      

 
 

and 

 

( ,2 1 )
2 ( 1) 2(2 1 ) 1k

LY A k i k

i k i j
n N A j

  
       . 

 

Let 2 1k j    ; then 2 1 2 2k i k i k j      . This immediately shows RX

in is symmetric to LY

in . Likewise, it 

can be proved that LX

in is symmetric to RY

in . 

 

Property 2. Let ( , )

A

k jX N  and 
( ,2 1 )k

A

k j
Y N

 
 with 0k  and X Y be two symmetric nodes on level k of TA; let

X

YRP be the type-2 connection starting from X and parallel to the right border of TY, 
Y

XLP  be the type-2 connection 

starting from Y and parallel to the left border of TX. Assume YL Y

i XLn P  and XR X

i YRn P ; then 

 

2 ( 1) 2(2 2 ) 1YL i k

in X j      

 

and 

 

2 ( 1) 2(2 2 ) 1XR i k

in Y j      

 

Proof. Let d be the distance from X to Y; then  

 

1 2 2
2

kY X
d j


     
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For integer 0i  , the node on level i and on the left border of TX is 

 

( ,0) 2 ( 1) 1X i

iN X    

 

The node on level i  and on the right border of TY is  

 

( ,2 1)
2 ( 1) 1i

Y i

i
N Y


    

 

There by, YL

in and XR

in are necessary to satisfy 

 

( ,0) 2( 1) 2 ( 1) 1 2(2 2 1)YL X i k

i in N d X j          

 

and 

 

( ,2 1)
2( 1) 2 ( 1) 1 2(2 2 1)i

XR Y i k

i i
n N d Y j


          

 

Proposition 5. Let ( , )

A

k jX N  and 
( ,2 1 )k

A

k j
Y N

 
 with 0k  and X Y be two symmetric nodes on level k of TA; 

let X

YRP and Y

XLP  be the connections as defined in Property 2. Assume YL Y

i XLn P  and XR X

i YRn P ; where 0i  ; then  

 

(1) YL

in and XR

in  are symmetric nodes in TA. 

(2) YL

s Xn T and XR

s Yn T when s k . 

(3) YL

in and XR

in are alternatively calculated by 

 

(2 1)( 1)YL i

in Y X     

 

and  

 

(2 1)( 1)XR i

in X Y     

 

Proof. By Property 2, it holds 

 

2 ( 1) 1 2(2 2 1)YL i k

in X j       

 

and 

 

2 ( 1) 2(2 2 2 ) 1XR i i k

in Y j       

 

Since X and Y are symmetric, it follows 10 2 1kj    , 1 2 2 1 2 1k kj     and 2 2 2 2 2 2 2i k i k ij      . It is 

sure that YL

i Xn T and XR

i Yn T  when i k , which validates the conclusion (2). 

 

Note that 

 

( , ) 2 ( 1) 2 1A k

k jX N A j      

 

and 

 

( ,2 1 )
2 ( 1) 2(2 1 ) 1k

A k k

k j
Y N A j

 
        

 

Substituting these two into the expressions of YL

in  and XR

in  yields 
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2 ( 1) 2(2 2 2 1) 1YL k i k i

in A j j      
 

 

and 

 

2 ( 1) 2(2 2 2 2 ) 1XR k i k i k i

in A j j         

 

Let 2 2 2 1k i j j     ; then 2 2 2 2 2 1 (2 2 2 1) 2 1k i k i k i k i k ij j j j                and it yields 

 

2 ( 1) 2 1YL k i

in A    
 

 

and 

 

2 ( 1) 2(2 1 ) 1XR k i k i

in A         

 

Obviously, YL

i An T and XR

i An T if 0 2 1k i    . In fact, direct calculation shows 2 1k j     and

2 1k i j     when 0i  . This means 0

YL

An T  and 0

XR

An T . When 0i  , it yields by 10 2 1kj     
 

1 1

1

0 2 1 0 2 2 2

1 2 2 2 1 2 1

k i k i i

k i i k k i

j j



  

  

      

         
 

and accordingly, 

 

( , )

YL A

i k i An N T   

 

and 

 

( ,2 1 )k i

XR A

i Ak i
n N T

  
   

 

The conclusion (3) is simply proved by the following reasoning 

 

1

0

1

2 1

2

3 2

1

1

2 ( 1)

2 ( 1)

2( 1)

2 ( 1)

......

2 ( 1)

(2 1)( 1)

YL YL i

i i

YL

YL YL

YL YL

YL YL k

k k

YL k

k

n n X

n Y X

n n X

n n X

n n X

n Y X







  

  

  

  

  



   
 

 

1

0

1

2 1

2

3 3

1

1

2 ( 1)

2 ( 1)

2( 1)

2 ( 1)

...

2 ( 1)

(2 1)( 1)

XR XR i

i i

XR

XR XR

XR XR

XR XR k

k k

XR k

k

n n Y

n X Y

n n Y

n n Y

n n Y

n X Y







  

  

  

  

  



   
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Property 3. Let ( , )

A

k jX N and ( , )

A

l sY N  with 0k   and 0l k    be two nodes of 
AT ; assume 

XY T  and Y is 

to the right of TX. Let X

YRP be the type-3 connection starting from X and parallel to the right border of TY, 
Y

XLP  be 

the type-3 connection starting from Y and parallel to the left border of TX, as depicted in Fig. 3. Assume XL Y

i XLn P  

and YR X

i YRn P ; then for given an 0i   
 

2 (2 1)( 1)XL i

in Y X   
 

 

and 
 

(2 1)( 1) 2 ( 1) 1YR i

in Y X       

 

Proof. Let 
ld be the distance from Y to the left border of TX, and 

rd be the distance from Y to the right border of 

TX ; then 

 

2 ( 1) 1
1 2( 1) 2 ( 1) 1

2
l l

Y X
d d Y X


  

         

 

and 

 

2 ( 1) 1
1 2( 1) 2 ( 1) 1

2
r r

Y X
d d Y X


  

         

 

It follows  

 

2 ( 1) 1 2( 1) 2 (2 1)( 1)XL i i

i ln X d Y X           
 

and 

 

2 ( 1) 1 2( 1) (2 1)( 1) 2 ( 1) 1YR i i

i rn Y d Y X            

 

Example 3. Again taking in T21 as an example. Take 41X  and 85Y  ; then 

 
1 1

1

1 2

2

1 3

3

85 2 (2 1)(41 1) 165

85 2 (2 1)(41 1) 325

85 2 (2 1)(41 1) 645

XL

XL

XL

n

n

n

    

    

    
 

 
1 1

1

2 1

2

3 1

3

(2 1)(85 1) 2 (41 1) 1 169

(2 1)(85 1) 2 (41 1) 1 341

(2 1)(85 1) 2 (41 1) 1 685

YR

YR

YR

n

n

n

      

      

      
 

 

 
 

Fig. 6. Type-3 connections in T21 
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Property 3*. Let ( , )

A

k jX N and ( , )

A

l sY N  with 0k   and 0l k    be two nodes of 
AT ; assume 

XY T  and Y 

is to the left of TX. Let X

YLP be the type-3 connection starting from X and parallel to the left border of TY, 
Y

XRP  be 

the type-3 connection starting from Y and parallel to the right border of TX, as depicted in Fig. 7. Assume
YL X

i YLn P  and XR Y

i XRn P ; then for given an 0i   
 

(2 1)( 1) 2 ( 1) 1YL i

in Y X     
 

 

and 

 

2 (2 1)( 1)XR i

in Y X   
 

 

 
 

Fig. 7. Type-3 connections parallel to borders 

 

Proof. Let
ld be the distance from Y to the left border of TX and

rd be the distance from Y to the right border of 

TX ; then 

 

2 ( 1) 1
1 2( 1) 2 ( 1) 1

2
l l

X Y
d d X Y


  

         

 

and 

 

2 ( 1) 1
1 2( 1) 2 ( 1) 1

2
r r

X Y
d d X Y


  

         

 

It follows  

 

2 ( 1) 1 2( 1) (2 1)( 1) 2 ( 1) 1YL i i

i ln Y d Y X            

 

and 

 

2 ( 1) 1 2( 1) 2 (2 1)( 1)XR i i

i rn X d Y X           

 

Proposition 6. Let ( , )

A

k jX N and ( , )

A

l sY N  with 0k  and 0l k    be two nodes of 
AT ; assume 

XY T  and Y 

is to the right of TX. Let X

YRP be the type-3 connection starting from X and parallel to the right border of TY, 
Y

XLP  be 

the type-3 connection starting from Y and parallel to the left border of TX. Assume XL Y

i XLn P  and YR X

i YRn P ; then
XL

i Xn T with max( , )i k  while YR

s Yn T with s l ; and it holds 
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1 2 ( 1)XL XL i

i in n X 

     

 

and 

 

1 ( ,2 1)
2 ( 1) (2 1)( 1), 0YR YR i YR X j

i i jn n Y n N Y j 
          

 

Proof. First, 0l k    implies 0 l   because it is contradictory that 0l k l k    . Now by Property 3, it 

holds  

 

1 1 2 ( 1)
2 ( 1)

2 2

XL

i

i i

n Y X
X


   

    

 

and 

 

1 1 2 ( 1) 2
( 1)

2 2

YR

i

i i

n Y X
Y

    
    

 

Note that, referring to 
ld and 

rd defined in the proof of Property 3, it follows 

 

 

2( 1) 2 ( 1) 1ld Y X      

 

and 

 

 

2( 1) 1 2 ( 1)rd Y X      

 

As a result, it leads to  

 

 

1

1 1
2 ( 1)

2 2

XL

i l

i i

n d
X



 
    

 

and 

 

 

1

1
1

2 2

YR

i r

i i

n d
Y




    

 

 

Since  

 

( ,0)( ,2 1) ( ,0)

2
1 1

1 1 1 1

1 1

1 1

1 1
2 2

2 1 2 ( 1) 1
2 1 1 2 2 ( 1)

2

2 1 2 2 (2 1 1) 2 2 2

1 1
2 2

2 2

X X X

l

l
l

l

l k l l l

l

i l il

i i

N N Y N
d

X
d X

d

d

  


 

 






 

   

   

 

 
   

   
       

         


   

 

 

and 
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( ,2 1)

2
1 1

1 1 1 1

1 1

1 1 1

1 1

1 1 1

1 1
2

2 1 2 ( 1) 1
1 1 2 2 ( 1) 1

2

1 2 2 ((2 1) 1) 1 2 2 2 1 2 2 1

1 1
2 2

2 2 2

1 1
2 2

2 2 2

X

r

l
l

r

l k l k l

r

l i ir

i i i

l i i r

i i i

Y N
d

X
d X

d

d

d






   








 

    

   

  

   

  


  

   
       

             

    

      

 

 

 

it yields 

 

1 1

2 1 2 1
2 ( 1) 2 ( 1)

2 2 2

XL l

i

i i i

n
X X


 

 

 
       

 

and 

 

1 1

2 2 1 1
1 1

2 2 2

l YR

i

i i i

n
Y Y



 

 
       

 

Obviously, on level  of 
XT , the ancestor of XL

in is to the right of ( ,0)

XN   and it lies in 
XT if 

max( , ) max( , )i l k     . Similarly, the ancestor of YR

in is to the left of Y and it lies in
YT if i l . 

 

Next the proof of the two equalities is just a simple reasoning like those in the proof of Proposition 1. 

 

Proposition 6*. Let ( , )

A

k jX N and ( , )

A

l sY N  with 0k  and 0l k    be two nodes of 
AT ; assume 

XY T  and 

Y is to the left of TX. Let X

YLP be the type-3 connection starting from X and parallel to the left border of TY, 
Y

XRP  be 

the type-3 connection starting from Y and parallel to the right border of TX. Assume YL X

i YLn P  and XR Y

i XRn P ; then
YL

s Yn T with s l while XR

i Xn T with max( , )i k  ; and it holds 

 

1 2 ( 1)XR XR i

i in n X 

     

 

and 

 

1 ( ,0)2 ( 1) (2 1)( 1)YL YL i YL X j

i i jn n Y n N Y          

 

Proof. (Omitted) 
 

4 Applications in Integer Factorization 
 
Connections make an outer node of a subtree be related with an inner node of the subtree; since it is easy for an 

inner node to trace up to reach its root, this thereby enables certain properties of the outer node to be associated 

with (transmitted to) the root of the subtree in the least searching steps. This section demonstrates such an 

operation.  
 

4.1 General rule 
 

The propositions proven previously reveal that, a node c on a connection starting from a node o can penetrate 

into an r-rooted subtree, as shown in Fig. 8, and the nodes o, c and r are related with the following equality 
 

2 (2 1)c r o     
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Fig. 8. Triangle relationship of connections 
 

This relationship can be said to be a triangle relationship of connections and it can derive many amazing results 

by means of evaluating different values to r and o. This idea is the general rule of connecting different nodes in 

a valuated binary tree. 

 

4.2 Factorization of odd integers 

 
With the triangle relationship of the connections, this section shows a divisor of the form 2 1,2 1   ,

2 (2 1)     or 2 (2 1)    can be easily found out in a positive composite odd integer, as the following 

corollaries state. 

 

Corollary 1. Let 3m pq   be an odd composite positive integer and the divisor p is of the form 2 1   with 

integer 0  ; then p can be found out in 2( log 2)O p    searching steps. 

 

Proof. By Lemma 1, m lies on level 2log 1k m    of T3. If m lies on the left border of T3, construct a sequence 

RM  by 

 
2 1 2 2 2{ 2 (2 1), 2 (2 1),..., 2 (2 1),...}k k k i

RM m m m          

 

If it lies on the right border of T3, construct 
LM by  

 
1 1 1 2 1{ 2 (2 1), 2 (2 1),..., 2 (2 1),...}k k k i

RM m m m          

 

If it is an intermediate node, construct  

 
1 1 1 2 1{ 2 (2 1), 2 (2 1),..., 2 (2 1),...}k k k i

lM m m m          

 

or  

 
2 1 2 2 2{ 2 (2 1), 2 (2 1),..., 2 (2 1),...}k k k i

rM m m m          
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It can be seen by Proposition 1 that, for each case there must be an  such that gcd( , )p m m , where 
22 (2 1)km m 



    or 12 (2 1)km m 



   . Since 2 1p   , it follows 2log 2p     . 

 

Corollary 2. Let 3m pq   be an odd composite positive integer and the divisor p is of the form 2 1  with 

integer 0  ; then p can be found out in at most 2( log 1)O p    searching steps. 

 

Proof. By Lemma 1, m lies on level 2log 1m    of T3. Consider the case that it is an intermediate node.  

Refer to the proof of Corollary 1 and construct  

 
2 2{ 2(2 1),..., 2(2 1),...}i

lM m m    
 

 

it is seen that must be an   such that gcd( , )p m m , where 2 22 (2 1)m m 

     or 22(2 1)m m 

    . 

 

Remark 4. Corollaries 1 and 2 look very trivial because they seem so elementary that any one might be able to 

think of the constructions. However, they are here derived theoretically from Proposition 1. In other words, they 

are rather theoretical results than something someone thinks of.    

 

Corollary 3. Suppose the divisor p of the positive composite odd n pq is of the form 2 (2 1)    , where 

0  , 0  are integers, and 1q  , 1  are odd integers; then q can found out in at least 
2(log )O p  and at most 

22log 1
(( ) )

2

p
O


searching steps.  

 

Proof. Take the triangle formula 2 (2 1)( 1)XL i

in Y X    established in Property 3 as an example to have an 

analysis. Let 1 2X s  , where 0  and s is a positive odd integer. For convenience denote XL

in by n; then   

2 (2 1)in Y s     
 

Take an arbitrary positive odd integer Y satisfying Y s  and 2 1Y X  ; denote 2 2i u         ; then  

 

( 2 2 )in s us           
 

By Property 3, there is an
0i such that XL

i Xn n T  when 
0 0i i  . Consequently, n is a descendant of X. Thus X 

can be found by searching in the direct ancestors of n , and then s can be found by 
1

2

X
s




 . Note that, there are 

2 2log logn X         levels from n to X, and it takes  steps to calculate s with X. It is sure that the total 

searching steps are 

 

2 2( log log )t n X           
 

Since 

 

2 2 2 2

1
log log (2 1) log ( ) log

2
X s s s


 

 
               

 
 

 

it follows 

 

2 2 2 2 2( log log ) (log log 1 ) (log 1 )t n s n s u                      

 

Next is to show 
2log u  . This can be done with the proof by contradiction. Assume

2log u  ; then it follows 

2log 2 2 1 1 1u u X s us X n            
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which is a contradiction. Consequently, under the condition 
2log u  , it holds  

 

22
2

log 1
log ( )

2

u
u t


   

 

The corollary surely holds by substituting s with q and u with p in the above reasoning process. 

 

Corollary 4. Suppose the divisor p of the positive composite odd n pq is of the form 2 (2 1)    , where 

0, 0   are integers, and 1q  , 1  , 1  are odd integers; then q can found out in at most 
2(log )O p

searching steps. 

 

Proof. Take the triangle formula 2 (2 1)( 1)XL i

in Y X    established in Property 3 as an example. Assume 

1 2X s   and Y s , where integer 0   and 1  , 1  are odd integers; denote XL

in  by n. Then 

 

( 2 (2 1) )in s us       

 

where 2 (2 1)iu      . 

 

Since 
Xn T  for some i , tracing up from n surely reaches X and thus s is the common divisor of 1X  and n. 

The searching step from n to X is 2 2log logt n X        . It can be proven 2logt u    . In fact, assumption of

2logt u    yields 

 

2 2 2

2 2 2

2 2 2

2 2

log log log

log log log

1 log log log

log log 1 0

t n X u

n u X

n u X

s X

            

            

         

           
 

It is contradictory because 2 2 2 22 1 log log (2 1) log logX s X s s                        . 

 

Take the triangle formula 2 (2 1)( 1)XL i

in Y X     in Property 3* can also derive this corollary.  

 

4.3 Numerical experiments 

 
Experiments for testing Corollary 4 are made to factorize odd integers that are of the length from 101 to 105 

decimal digits. Table 1 lists the experimental results. In the table, the column ‘Big Number N’ is the big odd 

composite number to be factorized, the column ‘nDigits’ is the number of decimal digits, the column ‘Found 

Divisor’ is the found divisor of N, the column ‘Tsteps’ is the number of searching steps calculated theoretically 

from the previous corollaries and the column ‘Rsteps’ is the real searching steps recorded by the computer. It 

can be seen that the real searching steps are within the bounds of the orifical searching steps in each case. For 

readers to know the algorithms more deeply, the Maple programs are list in the appendix section. Readers can 

test them with the programs.  

 

Table 1. Experimental Results for Testing Corollary 4 

 

Big Number  

N 

nDigits Found Divisor Tsteps Rsteps 

384382692938461041576641924646972711

3749717844838367462865827 

294279838982465729587923898718346875

2803 

101 73777946855370122040579650

04755144379743 

201 138 

472373911803885589134770263222665653

3509413030690503381040945 

102 11066692028305518306086947

507132716570077 

204 138 
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Big Number  

N 

nDigits Found Divisor Tsteps Rsteps 

163836521093280851652408996506181118

49897 

209030087090003249475422808302558123

7222750184138026035088341 

979607639233983863356170660728144150

147127 

103 25822281399379542714202877

516643005397757 

205 140 

192061675199323399490464762999390147

2266235295055415248292245 

995835162689969024668781364943956474

4978023 

104 47217885987436878105970976

0304329243474189 

204 144 

454498542002546219985842043143542132

16503497614531938387270234 

041366691345735139671704580663847398

7045863 

105 37774308789949502484776780

82434633948186509 

206 147 

 

5 Assessments, Conclusions and Future Work 

 
5.1 Assessments of the new results 

 
Referring to paper [1], it is seen that three corollaries were proven and those corollaries were quite like the 

corollaries proven in 4.2. Nevertheless, there are differences. Comparing Corollary 1 of this paper to that 

Corollary 1, it can be seen that, the two corollaries state two different results in finding a divisor of a positive 

odd integer that has a divisor of the form 2 1  . For an odd composite positive integer 3m pq   whose divisor 

p is of the form 2 1  , this Corollary 1 shows p can be found out in 2( log 2)O p    searching steps, whereas that 

Corollary 1 showed q could be found out within 
2(1 log )O p under the condition 2log

1
2

m


 
  
 

. Obviously, 

this Corollary 1 is more flexible and applicable. It can also be seen that, this Corollary 3 is more flexible than 

that Corollary 3 although the two corollaries state the same topic in finding a divisor of a positive odd integer 

that has a divisor of the form 2 (2 1)    . Finally, in paper [1] there was no Corollary 4, which is actually 

more extensive than Corollary 3. Consequently, it can be concluded that, the investigation in this paper is more 

subtle and beneficial for the researching purpose.   

 

5.2 Conclusions and expectations 

 
The valuated binary tree method demonstrated more and more attractive and reliable results in analyzing odd 

integers. Especially the application of geometric means enables it easy and clear to set up kinds of relationships 

among subtrees and nodes. This derives a very simple and fast way tp factorize the kind of odd composite 

integers. However, one thing should be told the readers here. That is that failures occur in factoring an n pq

when both p and q are of the form 2 (2 1)    . This remains further studies. Hope more young to join the 

work.  
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Appendix  

 
Maple Source Codes 

 
SubRoutine Father (Calculate the father of a node Son) 

 Father: =proc( Son) 

 local X, r; 

 r: =modp(Son,4);  

if r=1 then X: = (Son+1)/2; 

else X: = (Son -1)/2; 

fi 

End proc 

 

MainRoutine Findq (Calculate the divisor q of odd composite integer N) 

Findq: =proc(N) 

local X,T, AA, g, p,q, Tsteps, Rsteps:=0, len; 

  AA: =Father(N); 

  g: =gcd (AA, N); 

  while g=1 do 

   Rsteps: =Rsteps+1; 

   T:=AA; 

   X:=T-1; 

   g: =gcd (X, N); 

 AA: =Father(T); 

  od; 

q: =g; p: =N/q; 

  Tsteps: =floor(evalf(log2(p)) 

 lprint (“Find q=”, q, “Tsteps=”, Tsteps, “Rsteps=”, Rsteps); 

End proc 
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