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Abstract 
 

This paper makes an investigation on geometric relationships among nodes of the valuated binary trees, 
including parallelism, connection and penetration. By defining central lines and distance from a node to a 
line, some intrinsic connections are discovered to connect nodes between different subtrees. It is proved that a 
node out of a subtree can penetrate into the subtree along a parallel connection. If the connection starts 
downward from a node that is a multiple of the subtree’s root, then all the nodes on the connection are 
multiples of the root. Accordingly composite odd integers on such connections can be easily factorized. The 
paper proves the new results with detail mathematical reasoning and demonstrates several numerical 
experiments made with Maple software to factorize rapidly a kind of big odd integers that are of the length 
from 59 to 99 decimal digits. It is once again shown that the valuated binary tree might be a key to unlock the 
lock of the integer factorization problem. 
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1 Introduction  
 
The idea using binary tree to study odd integers bigger than 1 was first put forward in WANG’s paper [1]. In 
that paper and its following studies, many new properties were discovered. For example, articles [2] and [3] 
discovered the properties of symmetric nodes and symmetric common divisors, article [4] disclosed the genetic 
properties of odd integers, and article [5] demonstrated the periodical divisibility traits along the leftmost path or 
the left side-path of the tree. All these new properties enable people to know the integers in a different point of 
view, as stated and investigated in paper [6]. 
 
Based on the new properties, fast approaches to factorize odd integers are disclosed. For example, article [7] 
presented an algorithm of O(log2N) searching steps (or O((log2N)4) bit operations) to factorize an odd integer N 

= pq with the divisor q being of the form 2 1a u   or 2 1a u    and the divisor p satisfying  1 2 1
a

p   or 
1 12 2 1a ap    , article [8] exhibited a fast approach to factorized big Fermat numbers, and article [9] 

introduced a method to estimate the divisors’ bounds for semiprimes or RSA numbers. Thereby, it is reasonable 
to believe that valuated binary tree might be a key to unlock the lock of the integer factorization problem.  
 
It is undoubted that knowing the distribution of all the multiples of an odd integer p bigger than 1 is surely 
helpful to factorize a composite odd integer that has p as a divisor. Under description of the valuated binary tree, 
say 

pT , the distribution of the multiples of the root p is critically important, as investigated in articles [4,5,6] 

and [7]. When a multiple, say m αp with odd integer 1α   and ( , ) 1α p , lies in the tree 
pT , m is very easy to 

be factorized by gcd( , )p m p because tracing upwards from m by 
2log α steps reaches p. Since unfortunately 

m is out of 
pT  in most cases, the research topic is naturally brought out on how to make m be related with an 

inner descendant of 
pT . This paper does such a research. The paper first defines several metric relations on the 

valuated binary tree from the point of view of geometry, then finds out the converting relations from an outer 
node to an inner node of a tree, and in the end the paper proves that there are a special kind of odd integers that 
can be factorized in O(log2N) searching steps.    
 
The paper is composed of five parts. The first is this introductory part, the second cites some old related 
preliminaries, the third gives some new definitions, the fourth presents new theorems together with their proof, 
and the last part introduces factorization of the special kind of odd integers. 
 

2 Preliminaries 
 
This section cites some definitions, notations and lemmas that have been defined, introduced or proved in the 
related previous publications that are necessary for later descriptions. Also, some new conclusions with their 
simple proofs are placed here. 
 

2.1 Definitions and notations  
 
A valuated binary tree T is a perfect full binary tree that each of its nodes is assigned a value. The terms binary 
tree and its root, nodes, father, left-son, right-son as well as subtrees can be seen in school-books of data 
structure, for example, Dinesh’s handbook [10] (Dinesh P. Mehta, Sartaj Sahni, 2005). Let N be an odd integer 
bigger than 1; an N-rooted tree, denoted by TN is a recursively constructed valuated binary tree whose root is the 
odd number N with 2 1N and 2 1N  being the root’s left and right sons, respectively. Each son is connected 

with its father with a path, but there is no path between the two sons. The father, grandfather and so forth are 
called direct ancestors; accordingly a path connecting a node with its direct ancestor or descendant is called a 
direct path, and it either starts or ends at the root. The number of nodes on a path is the length of the path. Nodes 
on the same level are brothers. T3 tree is the case N=3. For convenience, symbol 

( , )k jN is by default the node at 

position j on level k of T3, where 0k and 0 2 1  kj . An odd integer bigger than 1 is regarded to be a node 
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of a certain valuated binary tree. Symbol 
( , )
X
k jN is to denote the node at position j on level k of 

XT , where 

0,1,...k and 0,1,...,2 1 kj . When the index j is out of the range 0 2 1  kj , for example, 2, 1  j  or 

2 ,2 1 k kj , 
( , )
X
k jN is called an outer-node of TX. Symbol  Xx T means node x is a node of 

XT  while symbol 

 Xx T means x is not a node of 
XT . Symbol ( ) Xx l T means node x is in the left branch of 

XT  while symbol 

( ) Xx r T means node x is in the right branch of 
XT . Symbol α

XA  is X’s direct ancestor that is α levels over X. 

A walk of a node 
( , )
X
k jN means an operation on either the index k or j, for example, 

( , )

X

k σ j
N ,

( , )

X

k j ω
N and 

( , ) 

X

k σ j ω
N

are all results from the walk of 
( , )

X

k j
N . A tracing step or a searching step is the computation of a father based on a 

son or vice versa, or a node to its adjacent brother. 
 
Symbol A B means result B is derived from condition A or A can derive B out. In this whole article, symbol 

  x  denotes the floor function, an integer function of the real number x such that 1    x x x or equivalently 

1        x x x . Article [11] collected most necessary properties to refer. An odd interval [ , ]a b is a set of 

consecutive odd numbers that take a as lower bound and b as upper bound. Intervals in this whole article are by 
default the odd ones unless particularly mentioned. Symbol Z+ is the set of positive integers. 
 

2.2 Lemmas 
 
Lemma 1. [1,5,12]. The T3 Tree has the following fundamental properties. 
 
(P1). Every node is an odd integer and every odd integer bigger than 1 must be a node of the tree. Odd integer N 

with N >1 lies on level 2log 1  N . On the same level, there is not a node that is a multiple of another one. 

 
(P2). 

( , )k jN  is calculated by 

 
1

( , )
2 1 2 , 0,1, ..., 2 1


    

k k

k j
N j j  

 
(P3) Nodes 

( 1,2 )k jN and 
( 1,2 1) k jN  on the (k+1)th level are respectively left son and right son of node

( , )k jN on the 

kth level. The descendants of 
( , )k jN on the (k+i)th level  with 0i are

( ,2 ) ik i j ω
N ( 0 2 1  iω ), which are  

( ,2 ) ( ,2 1) ( ,2 2) ( ,2 ) ( ,2 2 1)
, , ,..., ,...,

         i i i i i ik i j k i j k i j k i j ω k i j
N N N N N

 
 
(P4) For given

( , ) 3k jN T , it holds 

 
1

( , ) ( , )
2 (2 1) 2



 
   

k σ

k j k σ j ω
N ω N

 
 
and 
 

1

( , ) ( , )
2 (2 1) 2



 
   

k σ

k j k σ j θ
N θ N

 
 
where integers 0σ , ω  and θ  satisfy 0 2 1   k σω j and 0  θ j . 

 
Lemma 2. [1,5,12]. Let T be X -rooted binary tree. Then 
 
(P1) On level k with 0,1,...k   , there are 2k  nodes. On the same level, there is not a node that is a multiple of 
another one.  
 
 
 



(P2) Node
( , )
X
k jN is computed by 

 

( , )
2 2 2 1; 0,1, 2,...; 0,1,..., 2 1      

X k k k

k j
N X j k j

 

(P3) Let p be an odd integer bigger than 1 and 

corresponding to node
( ,2 ) ik i j ω

N of 
3T , namely, 

 

(P4) For Tx and integer 0k , it holds 

 

1( 1,2 1 ) ( ,2 1 )
2    

 k k

X X k

k ω k ω
N N X

 
and 
 

1( 1,2 ) ( ,2 )
2  

 k k

X X k

k ω k ω
N N X  

 

where ω is an integer satisfying 0 2 ω
corresponding terms, namely, one term taking + requires the other terms to take +, or vice versa.
 

Lemma 3. Suppose 1N  is an odd integer; then 

Accordingly, n αN  with 1α   being an odd integer lies on 

 

Proof. By Lemma 1(P1), p lies on level 

n αN  lies on level 2log 1nk αN   
 

2 2 2 2 2 2log log log 1 log log 1 log                               k α α

 

3 Geometric Relationships on a Tree
 
By definition, a valuated binary tree consists of nodes and paths connecting sons with fathers and so forth with 
the direct ancestors. Geometrically, nodes are considered to place with rows and columns. For example, the first 
five rows of a valuated binary tree T can be either one of the two layouts illustrated in Fig.
 

Fig. 1
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2 2 2 1; 0,1, 2,...; 0,1,..., 2 1      
X k k k

N X j k j
 

be an odd integer bigger than 1 and 
( , ) k jp N ; then 

( , )
p
i ωN  of 

pT  (0 ;0 2 1)   i

3T , namely, ( , )

( , ) ( ,2 ) 
k j

i

N

i ω k i j ω
N N . 

2 X X kN N X  

 

2log 1
0 2

    
X k

ω  and the   symbols are mandatory to be the same in the 

corresponding terms, namely, one term taking + requires the other terms to take +, or vice versa.

is an odd integer; then 
( , ) k jN N in T3 with

2log 1   k N and  
N

j

being an odd integer lies on 
2log   k α or 

2log 1   k α . 

lies on level 
2log 1  p . Let 12 2 1kp j    ; then

1

2

p
j


 

log 1     . By properties of the floor function it holds 

2 2 2 2 2 2log log log 1 log log 1 log                               αNα N k α N k α  

Relationships on a Tree 

By definition, a valuated binary tree consists of nodes and paths connecting sons with fathers and so forth with 
the direct ancestors. Geometrically, nodes are considered to place with rows and columns. For example, the first 

can be either one of the two layouts illustrated in Fig. 1. 

 
 

Fig. 1. Different layouts of a tree 
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(0 ;0 2 1)   ii ω  is 

symbols are mandatory to be the same in the 

corresponding terms, namely, one term taking + requires the other terms to take +, or vice versa. 

2log 11
2

2

  


  NN
j . 

log 1

1
2

2
kp 

   . Thereby, 

By definition, a valuated binary tree consists of nodes and paths connecting sons with fathers and so forth with 
the direct ancestors. Geometrically, nodes are considered to place with rows and columns. For example, the first 



A row is conventionally called a level while a column has no alternative new name. By definition, there is a gap 
between two nodes. When the gap between arbitrary two adjacent levels is the same as that between arbitrary 
two adjacent columns, the tree is an equal
scientific research however it is usually draw
that nodes are in parallel distribution from level to level and from column to column. Except for the parallelism, 
there are other geometric relationships on a valuated binary tree, as
 

3.1 Central lines and connections 
 
Suppose p>1 is an odd integer and 

1(1,0) (2,1) (3,3) ( ,2 1)
{ , , ,..., ,...} 

 k

p p p p
l k

C N N N N

nodes in lC  is defined to be a left central line

central line, as shown in Fig. 2(a). InT

level k>0, the number of nodes between node

Statement that A is d away from B means 
entire level is a span of the tree on the level. A 

nodes between which there is no direct path. For example, connect two nodes that have the same distance to 

as shown in Fig. 2(b). Connections can connect nodes both inside and

all the nodes have the same distance to 

connections of rC can be defined likewise. Fig. 2 illustrates 

connection is the length of the connection.  
 

 
Fig. 2

 

3.2 Trace and penetration 
 
Lemma 1 (P1) indicates that, for an arbitrary odd integer 
distinct subtrees if two odd integers X 
X>3, a node x∈T3 might be x∈TX or x
of the paper, the root of a subtree is by default bigger than 3 unless it is particularly declared. By definition, a 
walk can go along a path, a connection, or a co
connections for a walk forms a trace and the number of non
example, if walking into subtree 1, 1NT , illustrated in Fig.
 
(1) Along trace N1,0→N0,0→N1,1 that is combined of path 
(2) Along trace (connection) N1,0→ N1,1

Wang et al.; ARJOM, 17(3): 134-153, 2021; Article no.ARJOM.

A row is conventionally called a level while a column has no alternative new name. By definition, there is a gap 
two nodes. When the gap between arbitrary two adjacent levels is the same as that between arbitrary 

two adjacent columns, the tree is an equal-distanced tree. The equal-distanced tree is by default supposed in 
scientific research however it is usually drawn to layout in an isosceles triangle, as seen in Fig. 
that nodes are in parallel distribution from level to level and from column to column. Except for the parallelism, 
there are other geometric relationships on a valuated binary tree, as introduced next. 

lines and connections  

>1 is an odd integer and pT  is the p-rooted valuated binary tree; let 

{ , , ,..., ,...}  and 1(1,1) (2,2) (3,4) ( ,2 )
{ , , ,..., ,...} k

p p p p
r k

C N N N N ; then the path connecting 

left central line and the path connecting nodes in rC  is defined to be a 

pT , the root (0,0) pp N is regarded to be the end of both C

>0, the number of nodes between node ( , )
p
k jN and 1( ,2 1) k

p

k
N is defined to be the distance from 

means d is the distance between node A and B. The number of nodes on an 
of the tree on the level. A connection is a virtual (imaginary) path (line) to connect two 

nodes between which there is no direct path. For example, connect two nodes that have the same distance to 

). Connections can connect nodes both inside and outside of a tree. A connection on which 

all the nodes have the same distance to lC is a parallel connection of lC . Distance to 

can be defined likewise. Fig. 2 illustrates lC , rC and a connection. The number of nodes on a 

connection is the length of the connection.   

Fig. 2. Left-center line and right-center line 

Lemma 1 (P1) indicates that, for an arbitrary odd integer N≥3,TN is a subtree of T3. Obviously, T
 and Y satisfying X>3, Y>3  and X≠Y. Accordingly, for a subtree 
x∉TX. When x∉TX, it can walk into TX. For this reason, in later statements 

of the paper, the root of a subtree is by default bigger than 3 unless it is particularly declared. By definition, a 
walk can go along a path, a connection, or a combination of them. The ordered array of all paths and 
connections for a walk forms a trace and the number of non-repeat nodes on a trace is the length of the trace. For 

, illustrated in Fig. 3, node N1,0 can have at least four selective decisions: 

that is combined of path N1,0→N0,0 and path N0,0→N1,1; 

1,1; 
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A row is conventionally called a level while a column has no alternative new name. By definition, there is a gap 
two nodes. When the gap between arbitrary two adjacent levels is the same as that between arbitrary 

distanced tree is by default supposed in 
 2. It can be seen 

that nodes are in parallel distribution from level to level and from column to column. Except for the parallelism, 

rooted valuated binary tree; let 

; then the path connecting 

is defined to be a right 

lC and rC . On a 

from ( , )
p
k jN to lC . 

. The number of nodes on an 
is a virtual (imaginary) path (line) to connect two 

nodes between which there is no direct path. For example, connect two nodes that have the same distance to lC , 

outside of a tree. A connection on which 

rC  and parallel 

and a connection. The number of nodes on a 

 

TX and TY are two 
. Accordingly, for a subtree TX with 
. For this reason, in later statements 

of the paper, the root of a subtree is by default bigger than 3 unless it is particularly declared. By definition, a 
mbination of them. The ordered array of all paths and 

repeat nodes on a trace is the length of the trace. For 
can have at least four selective decisions:  



(3) Along trace (connection) N1,0→N2,1;
(4) Along trace N1,0→N2,1→N2,1 that is combined of path 
 

 
If the trace of a walk is parallel to lC  or 

trace has the shortest length. Obviously the penetration of a node into a tree is worth to investigate because it 
concerns something with the optimal problems of finding a shortest path
 

4 Main Results and Proofs
 
Property 1. In any valuated binary tree, 

 
Proof. By definition, the distance between 

 

Property 2. In T3, a connection that starts downwards from 

1( ,2 (2 1) )  k ik i j
N with 0i  is parallel to 

 

Proof. The condition 0k and 0 2 1  j

consider the case that 
( , )k jN is on the left of 

and 
rC  are respectively  

 

1 ( , )( ,2 1)
1 2

2

  


   
k k jkl k

k

N N
d j

 
and 
 

1 ( , )( ,2 ) 11 2 1
2





    

k k jkr k
k

N N
d j

 

Since the distances from 1( ,2 (2 1) )  k ik i j
N

Wang et al.; ARJOM, 17(3): 134-153, 2021; Article no.ARJOM.

; 
that is combined of path N1,0→N2,1 and connection N2,1→N2,1. 

 
 

Fig. 3. Traces of a walk 

lC or rC  of a tree, the walk is a parallel walk. A penetration is a walk whose 

trace has the shortest length. Obviously the penetration of a node into a tree is worth to investigate because it 
concerns something with the optimal problems of finding a shortest path. 

Main Results and Proofs 

In any valuated binary tree, 
lC  and 

rC  are in perpetuity parallel to each other.  

By definition, the distance between 
lC  and 

rC is in perpetuity 2. 

, a connection that starts downwards from 
( , )k jN ( 0,0 2 1   kk j ) and connects the node 

is parallel to 
lC  and 

rC .  

0 2 1  kj  is mandatory because 
lC starts downwards from 

is on the left of 
lC . Direct calculation shows that, the distances from 

11 2    l kd j
 

11 2 1    r kd j  

( ,2 (2 1) )  k i j
 to lC and rC  are respectively 
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of a tree, the walk is a parallel walk. A penetration is a walk whose 

trace has the shortest length. Obviously the penetration of a node into a tree is worth to investigate because it 

) and connects the node 

starts downwards from 
(1,0)N . Now 

. Direct calculation shows that, the distances from 
( , )k jN  to 

lC



1 1( ,2 1) ( ,2 (2 1) )

1

2

2

      






 

 

k i k ik i k i jl
k i

k

N N
d

j

 
and 
 

1 1( ,2 ) ( ,2 (2 1) )

1

2

2 1

     






 

  

k i k ik i k i jr
k i

k

N N
d

j

 
the property surely holds. 
 
For the case 

( , )k jN is on the right of 
lC , it holds

 

1( , ) ( ,2 1)
1 2 1

2

 


    
kk j kl k

k

N N
d j

1( , ) ( ,2 )
1 2

2


   

kk j kr k
k

N N
d j

1 1( ,2 (2 1) ) ( ,2 1)

1

2

2 1

      






 

  

k i k ik i j k il
k i

k

N N
d

j

1 1( ,2 (2 1) ) ( ,2 )

1

2

2

     






 

 

k i k ik i j k ir
k i

k

N N
d

j

 
Thereby the property holds. 
 

Property 3. Let p>3 be an odd integer and 

and right central lines respectively; the connection that starts downwards from 

connects the node 1( ,2 (2 1) )  k i

p

k i j
N with i

 

Fig. 4
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( ,2 1) ( ,2 (2 1) )
1

    
 

k i k ik i k i j

 

( ,2 ) ( ,2 (2 1) )
1

   
 

k i k i j

 

lC , it holds 

11 2 1    l kd j  

11 2    r kd j  

1 1( ,2 (2 1) ) ( ,2 1)
1

      
 

k i k ik i j k i

 

1 1( ,2 (2 1) ) ( ,2 )
1

  

 
k i k ik i j k i

 

>3 be an odd integer and 
pT  be the p-rooted valuated binary tree with 

lC and 

and right central lines respectively; the connection that starts downwards from 
( , )
p
k jN ( 0k , 0 2 1  

0i   is parallel to 
lC  and 

rC , as illustrated in Fig. 4. 

 
 

Fig. 4. Connection parallel to Cl  and Cr 
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rC being the left 

0 0 2 1  kj ) and 
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Proof. Referring to the proof of Property 2, there are two cases to be considered. One is the case that 
( , )
p
k jN is on 

the left of 
lC  and the other is the case 

( , )
p
k jN is on the right of 

lC . For the case that 
( , )
p
k jN is on the left of 

lC , 

direct calculation shows that, the distances from 
( , )
p
k jN  to 

lC and 
rC  are respectively  

 

1 ( , )( ,2 1) 11 2
2

  


   
k

p p
k jkl k

k

N N
d j

 
 

1 ( , )( ,2 ) 11 2 1
2





    

k

p p
k jkr k

k

N N
d j

 
 

and the distances from 1( ,2 (2 1) )  k i

p

k i j
N  to 

lC and 
rC  are respectively 

 

1 1( ,2 1) ( ,2 (2 1) )

1

1
2

2

      






 

 

k i k i

p p

k i k i jl
k i

k

N N
d

j

 

1 1( ,2 ) ( ,2 (2 1) )

1

1
2

2 1

     






 

  

k i k i

p p

k i k i jr
k i

k

N N
d

j

 

 

Likewise, the case 
( , )
p
k jN is on the right of 

lC can be shown by following calculations. 

 

1( , ) ( ,2 1) 11 2 1
2

  


    
k

p p
k j kl k

k

N N
d j  

1( , ) ( ,2 ) 11 2
2





   

k

p p
k j kr k

k

N N
d j  

1 1( ,2 (2 1) ) ( ,2 1)

1

1
2

2 1

      






 

  

k i k i

p p

k i j k il
k i

k

N N
d

j

 

1 1( ,2 (2 1) ) ( ,2 )

1

1
2

2

     






 

 

k i k i

p p

k i j k ir
k i

k

N N
d

j

 

 
Hence the property holds. 
 
Remark 1. Property 2 and Property 3 are of the same essence because taking p=3 in Property 3 immediately 
yields Property 2.   
 

Property 4. Let p>3 be an odd number and 
pT  be the p-rooted valuated binary tree with 

lC  and
rC being the 

left and right central lines respectively; suppose 
( , ) 3 k jn N T  such that 

2 2log log 0       n p  and is ( )ld n  

away from 
lC . Then the connection 

nL  starting downwards from n and parallel to 
lC , as is illustrated with Fig. 

5, passes through 1( ,2 ( )) i
l

p

i d n
N  if n is on the left of 

lC  whereas it passes through 1( ,2 ( ) 2)  i
l

p

i d n
N  if n is on the right 

of 
rC , where integer 1i  and the node 1( ,2 ( )) i

l

p

i d n
N  or 1( ,2 ( ) 2)  i

l

p

i d n
N might be a virtual one. 



Fig. 5. Nodes of 

 

Proof. Let 
2log 1   nk n and  pk p

condition 
2 2log log 0       n p  means 

 

Since 
nL starts downwards from level k

 
Now referring to the proof of Property 3, it is seen that, for the case 

on level i  and is ( )ld n  away from 
lC satisfies 

 

1( ,2 1)
1 ( )

2

 


 
i

p

i

l

N x
d n  

 
That is  
 

1 1( ,2 1) ( ,2 ( ))
2( ( ) 1)  

   i i

p p
li i d n

x N d n N

 
Likewise, for the case n is on the right of 

 

1( ,2 1)
1 ( )

2

 


 
i

p

i

l

y N
d n  

 
Namely 
 

1 1( ,2 1) ( ,2 ( ) 2)
2( ( ) 1)   

   i i

p p
li i d n

y N d n N

 
Property 5. Let p>3 be an odd number and 

left and right central lines respectively; Given a node 

the connection starting downward from 

penetrating at most 
2log 1  n levels, 
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Nodes of Tp on connection from T3 to Tp 

2log 1   k p be respectively the levels of T3 where n 

means n lies on the same level as p lies or on a lower level.  

nk  of T3, it is sure 1i if node 
( ,*) 
p
i pN T  is on 

nL .  

Now referring to the proof of Property 3, it is seen that, for the case n is on the left of 
lC , the node 

lC satisfies  

1 1( ,2 1) ( ,2 ( ))  
   i i

l

p p

i i d n
x N d n N

 

is on the right of 
lC , the node  py T  that is ( )ld n  away from 

lC satisfies

1 1( ,2 1) ( ,2 ( ) 2)   
   i i

l

p p

i i d n
y N d n N

 

3 be an odd number and 
pT  be the p-rooted valuated binary tree with 

lC and 

left and right central lines respectively; Given a node n  of T3 satisfying
2 2log log 0       n p

the connection starting downward from n and parallel to 
lC  and 

rC , as is illustrated with Fig.

levels, 
nL goes into Tp. 
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 and p lie. The 

, the node  px T that is 

satisfies 

lC and 
rC being the 

log log 0        ; suppose 
nL is 

, as is illustrated with Fig. 6; then after 



Fig. 6

 

Proof. Let 
pk and 

nk  be the levels where 

lC and 
rC  respectively. Consider the case 

into 
pT  when the span on a level of the right branch of 

surely true if ( ) pn r T . If  pn T , let k k

arbitrary level σ i of 
pT  with 0i ; then there are 

Thereby, if 12 ( )  σ i
rd n , namely,   i d n

the critical case; then 
0 2log ( ) 2    ri d n

( ) 2 2 nk
rd n . Thereby,  

 

0 2 2 2log ( ) 2 log ( ) 1 2 1 log                 r r n ni d n σ

 
that is  
 

0 2log 1   i n
 

 

Similarly, the conclusion holds when n 

 

Example 1. Take in T3 a node p=27 and 

{55,109,217,433,865,...}rC and ( ) 5ld n

passes through 27
(1,4) 61,N 27

(2,5) 115N

27
(4,11) 27439 N T . It is sure 

nL goes into 

 

Fig. 7
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Fig. 6. Connection goes from T3 into Tp 

be the levels where p and n lies in T3; denote ( )ld n and ( )rd n to be the distances from 

respectively. Consider the case n is on the right of
rC . The proof is based on the fact that 

when the span on a level of the right branch of 
pT is bigger than ( )rd n . Obviously, the Property is 

 n pk k σ . Then n lies on the level matching to level σ

0 ; then there are 12  σ i nodes from 
rC to the rightmost node on the level. 

2log ( ) 1    ri d n σ , 
nL  goes into Tp. Take 

0 2log ( ) 1    ri d n

log ( ) 2    i d n σ . Since n lies on level 
nk in T3, it knows 

ld n

0 2 2 2log ( ) 2 log ( ) 1 2 1 log                 r r n nσ d n σ k σ k n
 

 is on the left side of lC . 

=27 and n=61, as shown in Fig. 7; then 
2log 5  n , 

2log 4  p

( ) 5ld n by Property 4. Construct a connection
nL by Property 4; then 

115 , 27
(3,7) 223N and 27

(4,11) 439N , among which 27
(3,7) 27N T

goes into 
23T by penetrating at most

2log 1 4   n levels. 

 
 

Fig. 7. Penetration of a node into a tree 
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to be the distances from n to 

. The proof is based on the fact that 
nL goes 

. Obviously, the Property is 

σ  of 
pT . Take an 

to the rightmost node on the level. 

log ( ) 1    ri d n σ to be 

( ) 2 1 nk
ld n and 

log 4  p ,
rC of T27 is 

by Property 4; then 
nL

27
(3,7) 27223 N T and 
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Theorem 1. Let m and n be two odd integers bigger than 3; then there always a trace that leads m to walk into 

nT  or n to walk into 
mT . 

 
Proof. Without loss of generality, assume m n . Then by Properties 4 and 5, n is surely able to walk into

mT . 

By Lemma 2, m can first walk along a parallel connection to the level where n lies, then penetrates into
nT .  

 

Property 6. Let p>3 be an odd number, 
pT  be the p-rooted valuated binary tree with 

lC and 
rC being the left-

center and right-center lines respectively; suppose 
3n T  is a node that is ( )ld n and ( )rd n away from

lC and
rC , 

respectively; assume 
ls and

rs are n’s left son and right son respectively, as illustrated in Fig. 8; then 

2( ( ) 1) r ls d n and 2( ( ) 1) r rs d n are respectively ( )ld n  and ( )rd n  away from 
lC and

rC  if n lies on the left 

of 
lC , whereas 2( ( ) 1) l ls d n and 2( ( ) 1) l rs d n are respectively ( )ld n  and ( )rd n  away from 

lC and
rC  if n 

lies on the right of 
lC . 

 

 
 

Fig. 8.  n and 2( ( ) 1)r ls d n   are equal-distanced from Cl 

 

Proof. Here the proof is for the case n lies on the left of 
lC . Assume 

( , ) 2( ( ) 1)  
n nk J ln N d n , where 

( , ) n nk J lN C ; then 
( , ) ( 1,2 1)2 1    

n n n nk J k J lN N C ,
ls and

rs are on level 1nk . Considering  

 

( , )

( , )

( 1,2 1)

2 1 2( ( ) 1) 2 1 2( ( ) 1)

2( 2( ( ) 1)) 1 2( ( ) 1)

2 2( ( ) 1)) 1

2( ( ) 1)) 

        

     

   

  

n n

n n

n n

r r l l

k J l l

k J l

k J l

s n s d n n d n

N d n d n

N d n

N d n

 

 
it knows that 2( ( ) 1) r ls d n is ( )ld n away from 

lC . 

 
Similarly, other cases can be proved. 
 
Remark 2. There is a more geometric proof for Property 6 shown here. n’s being ( )ld n  away from 

lC  leads to 

ls  being 2 ( )ld n  away from 
lC . Accordingly, from 

ls  to 
lC , there is one that is ( )ld n taway from 

lC . That one 

is sure ( ) 1ld n  away from 
rs  and is expressed by 2( ( ) 1) r ls d n . 

 

Property 7. Let m be an odd integer and
2log   β m ; suppose integer α satisfies α β ; then 

(2 1, )2 (2 1) ( ) 
     α β α χ m

α β χ J mm m N l T , where integer 0χ . 
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Proof. First, α β is mandatory because 2 (2 1) 2     α β α χ α χ
mm m m T in the case α β . Now let 

2 (2 1)   α β α χn m m  and 2 1 1 1
2 2

2

     
  α β χ α β m

J m ; then  

 
2 2 2

2 2 1 1

2

2 2 2 2

1
2 ( 1) 2(2 2 ) 1

2

2 ( 1) 2 1

      

      

 

    


     

   

α β χ α β χ α β χ α β

α β χ α β χ α β

α β χ

n m m m

m
m m

m J

 

 

Now it is to show 20 2 1   α β χJ  and 
(2 , )  m

α β χ Jn N . In fact, 
2log   β m  yields 12 1 2 1   β βm , 

namely, 12 1 2 1      β βm . Multiplying each term of this inequality by 12  α β yields  

 
1 1 1 12 2 2 2 2            α α β α β α α βm  

 

Since 1 1
2 2 1

2
 
  β βm , it is sure 

 
2 1 1 1 1 1 2 12 2 2 2 2 1 2 2 2                   α β χ α α β β β α α β α β χJ  

 
Subtracting 22 1  α β χ from the right side term yields 

 
1 1 2 1 2

1 1 2 1

2 1 2 2 2 (2 1)

2 2 2 2 0

       

     

     

    

β α α β α β χ α β χ

β α α β α β χ
 

 
Next is to show 2 1 1 12 2 2 2 0        α β χ α α β β by using proof of contradiction. In fact, assume 

2 1 1 12 2 2 2 0        α β χ α α β β ; then  

 
2 1 1 1

1 1 1

2 2 2 2

2 2 2 1

     

      

  

   

α β χ α β β α

α β χ β β α
 

 
which is contradictory to 1 α β and 0χ . 

 
As a result, 
 

20 2 1   α β χJ  
 
which shows 
 

(2 1, )2 (2 1) ( ) 
     α β α χ m

α β χ J mm m N l T
 

 

Property 7*. Let m be an odd integer and 
2log   β m ; then 2 (2 1) ( )   σ σ β χ

mm m l T , where 0σ  and 

0χ  are integers. Particularly, 2(2 1)  β
mm m T , 12(2 1)  β

mm m T and 2(2 1)  β δ
mm m T  with

0δ . 

 

Proof. Taking  σ α β in Property 7 immediately turns 2 (2 1)  α β α χm m into 2 (2 1)  σ σ β χm m . The 

particular case 2(2 1)  β
mm m T , is shown in the following reasoning.  
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1

1 1 1

1

2(2 1) 2

2 2 2

1
2 ( 1) 2(2 ) 1

2



  



   

   


    

β β

β β β

β β

m m m m

m m

m
m

 

 

Obviously, if 11
0 2 2 1

2


   β βm then 1

( 1,2 )
2

2(2 1) 
 

   
β

β m
m m

β
m m N T . Note that 

 

2

1

1

1

1

log

2 1 2 1

1
2 1 2

2

1
2 2 1

2

1
0 2 2 1

2









   

    


   


      


    

β β

β β

β β

β β

β m

m

m

m

m

 

 
Consequently, it follows 
 

1
( 1,2 )

2

2(2 1) 
 

   
β

β m
m m

β
m m N T  

 

Actually, 1
( 1,2 )

2


 β

m
m

β
N lies on level 1β in the left branch of 

mT . 

 
The particular case 12(2 1)  β

mm m T is shown as follows 

 

2

1

1 1 1 1

1 1

log

1
2 2 1

2

1
2 2 2 2 2 1

2

1
2 2 2 1

2



   

 

   


      


      


    

β β

β β β β β

β β β

β m

m

m

m

 

1

1 2

2 2 2 2

2 1

1
( 2,2 )

2

2(2 1) 2 2

2 2 2 2

1
2 ( 1) 2(2 ) 1

2



 

   

 


 

    

     


    

 
β

β β

β β β β

β β

m
m m

β

m m m m m

m m m m

m
m

N T

 

 

It can be seen that, 1 1
( 2,2 )

2
 

 β

m
m

β
N  lies on level 2β in the right branch of 

mT . 

 
The case 2(2 1)  β δ

mm m T  is shown as follows. 
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1

1

1

1

1
2 1 2

2

1
2 2 1

2

1
2 2 2 2 2 1

2

1
2 (2 1) 2 2 2 1 2 1

2





   

   


  


      


      


        

β β

β β

β δ β β δ β δ β

β δ β δ β δ β β δ

m

m

m

m

 

1

1 1 1

1

1
( 1,2 )

2

2(2 1) 2

2 2 2

1
2 ( 1) 2(2 ) 1

2



  

     

  


  

   

   


    

 
β δ

β δ β δ

β δ β δ β δ

β δ β δ

m
m m

β δ

m m m m

m m

m
m

N T

 

 

It can be seen that, the bigger δ is, the closer 1
( 1,2 )

2
 

  β δ

m
m

β δ
N is to the right branch of 

mT . 

 
Property 8. Let p>3 be an odd integer and 

pT  be the p-rooted valuated binary tree with 
lC and 

rC being the left 

and right central lines respectively; suppose n αp with 1α being an odd integer is a node of T3, nL  is the 

connection starting downwards from n and parallel to 
lC ; then each node on 

nL is a multiple of p. 

 

Proof. By Lemma 3, p lies at position 1
2

2


  pk

p

p
J on level 

2log 1   pk p  of T3. Assume n lies at 

position 
nJ  on level 

nk  of T3, namely, 
( , )

n nk Jn N . Then by 1α  and Lemma 1(P1), 1 n pk k and 

1
2

2


  nk

n

n
J . By Lemma 2(P3), 

lC  and 
rC  are represented in T3 by 

 

1( 1,2 ) ( 2,4 1) ( 2,8 3) ( ,2 2 1)
{ , , ,..., ,...}       

 i i
p p p p p p p p

l k J k J k J k i J
C N N N N  

1( 1,2 1) ( 2,4 2) ( 3,8 4) ( ,2 2 )
{ , , ,..., ,...}       

 i i
p p p p p p p p

r k J k J k J k i J
C N N N N  

 

Assume  p nk σ k ; then the node on 
lC and on level

nk is 1( ,2 2 1) σ σ
n pk J

N  and its distance to 
( , )

n nk Jn N is given 

by 
 

1 ( , )( ,2 2 1)
| | 1

2

 


 
σ σ

n nn p
k Jk J

N N
d  

 
That is 
 

1| 2 2 1 | 1    σ σ
p nd J J  

1

1

1
( , )( ,2 2 1)

1
( , )( ,2 2 1)

2 2 ,

2 2 2,







 



 

   
 

   

σ σ
n nn p

σ σ
n nn p

σ σ
p n k Jk J

σ σ
n p k Jk J

J J N N
d

J J N N
 

 

Now take an arbitrary node on 
lC , say 1( ,2 2 1)  i i

p pk i J
N with i σ ; it can be seen that, when 

1 ( , )( ,2 2 1) 
σ σ

n nn p
k Jk J

N N , the node 1( ,2 2 1)
2( 1)  

 i i
p pk i J

N d is the node on 
nL that has distance d to 
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1( ,2 2 1)  i i
p pk i J

N , whereas when 1 ( , )( ,2 2 1) 
σ σ

n nn p
k Jk J

N N , the node 1( ,2 2 1)
2( ( ) 1)  

 i i
p p

nk i J
N d k  is the node on 

nL that has distance � to 1( ,2 2 1)  i i
p pk i J

N . 

 

Note that, for the case 1 ( , )( ,2 2 1) 
σ σ

n nn p
k Jk J

N N , it holds 

 

1

1

( ,2 2 1)

1

( ,2 2 1)

1 1 1

1 1 1

1 1 1

1

2( 1)

2(2 2 1)

2 2(2 2 1) 1 2 2 2 2

2 2 2 2 1 2 2 2 2

2 2 2 2 2 2 1

2 (2 2 1) 2





  



  

   

   

   

  

 

    

        

        

      

   

i i
p p

i i
p p

p

p

p

p p

k i J

σ σ
p nk i J

k i i i σ σ
p p n

k i i i σ σ
p p n

k i i i σ σ
p p n

k k σi
p

N d

N J J

J J J

J J J

J J J

J
1 1 1

1 1 1

1 1 1

2 2 2 2 1

2 (2 2 1) 2 (2 2 1) 2 2 1

2 (2 2 1) 2 (2 2 1) (2 2 1)

(2 2 )

  

   

  

    

        

        

  

p

p p p

p p n

k σ σ σ
p n

k k k σi σ
p p n

k k ki σ
p p n

i σ

J J

J J J

J J J

p αp

 

 

while for the case 1 ( , )( ,2 2 1) 
σ σ

n nn p
k Jk J

N N it holds 

 

1

1

( ,2 2 1)

1

( ,2 2 1)

1 1 1

1 1 1

1 1 1

1

2( 1)

2(( 2 2 2) 1)

2 2(2 2 1) 1 2 2 2 2

2 2 2 2 1 2 2 2 2

2 2 2 2 2 2 1

2 (2 2 1) 2





  



  

   

   

   



 

     

        

        

      

   

i i
p p

i i
p p

p

p

p

p

k i J

σ σ
n pk i J

k i i i σ σ
p n p

k i i i σ σ
p n p

k i i i σ σ
p p n

k ki
p

N d

N J J

J J J

J J J

J J J

J
1 1 1

1 1 1

1 1 1

2 2 2 2 1

2 (2 2 1) 2 (2 2 1) 2 2 1

2 (2 2 1) 2 (2 2 1) (2 2 1)

(2 2 )

    

   

  

    

        

        

  

p p

p p p

p p n

σ k σ σ σ
p n

k k k σi σ
p p n

k k ki σ
p p n

i σ

J J

J J J

J J J

p αp

 

 

It is seen that, either 1 ( , )( ,2 2 1) 
σ σ

n nn p
k Jk J

N N  or 1 ( , )( ,2 2 1) 
σ σ

n nn p
k Jk J

N N  leads to that a node on 
nL  is of the form 

(2 2 ) i σ p αp , which is a multiple of p. 

 

Property 8*. Let p>3 be an odd integer; then there are always odd integers of the form (2 2 ) i σ p αp that are 

descendant nodes of 
pT , where 1α is an odd integer and 

2log    i σ p .  

 

Proof. Property 4 ensures n αp  reaches a descendant of 
pT  after penetrating downwards along a parallel 

connection by 
2 2 2 2log 1 log log 1 log              αp α p p steps. The reasoning processes in proving property 

8 show that the descendant is of the form (2 2 ) i σ α p and 
2log    i σ p .   
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5 Applications in Integer Factorization 
 
Property 7, Property 7*, and Property 8* indicate that an odd integer of the form (2 2 ) α β γ p must be a 

descendant of the p-rooted tree, where 1γ and 3p are positive odd integers, α β . This on the other hand 

mean that an odd integer m that has a divisor of the form 2 2 α β γ can be factorized very soon. This section 

proves the related results.
 

 

5.1 Corollaries 
 
Corollary 1. The divisor p of odd positive composite integer m pq  can be found out in at most 

2(1 log )O q

searching steps provided that 2 1 αq with integers 2log
1

2

 
  
 

m
α . 

 
Proof. Referring to the particular cases in Property 7* knows that, an arbitrary positive odd integer 1n results 

in 12(2 1) (2 1)      β δ β δ
nn n n T , where 

2log   β n and 0δ . This is equivalent to (2 1) χ
nn T with 

integer
2log 1   χ n . By m pq , 2 1 αq and 2log

1
2

 
  
 

m
α , it follows 

 
2 2

log log1
2 22

2

log
2 1 2 1 1 log

2

 
 

                     

m m m
q m q m p p

 
 

Let 2
2

log
log

2

 
    

 

m
p δ with 0δ ; then it is known 

 

2

2 1

log 1

0


  

 
    

 

α

p

m pq

q
m T

α p δ

δ
 

 

Since m and p lie respectively on level 
2log 1  m and level 

2log 1  p of T3, the difference is  

 

2 2 2 2log log log log 1                 q m p q
 

 

Namely, it takes at most 
2log 1  q searching steps for m to trace up to q. 

 

Remark 3. The conclusion    q m p in the reasoning process is the key. Accordingly, Corollary 1still 

holds if the condition 2log
1

2

 
  
 

m
α is substituted with 

2log 1   α p  because  

 
2 2log 1 log

2log 1 2 1 2 1 2 1 1
                

p pαα p q p q p  

 
Corollary 2. The divisor p of odd positive composite integer 9 m pq  can be found out in at most

2(1 log )   O q searching steps provided that 22 2 1  α β αq with integers 2log
1,

2

 
   

 

m
α β . 

Proof. The given conditions yield  
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2 2

2 2

2

log log
2

2 2

log log1
2 2

2 2 1

2 2 1 2 (2 1) 1

2 (2 1) 1 2 (2 1) 1 2 ( 1) 1

1 1 1 1
2 (1 ) 2 (1 ) 1

3



   
    

   

 
 

 

  

     

        

       

α β α

m m
α α

α α

m m
α α α

α α

q

m

q

m m m m

 

 
which means 
 

2 2
2 2

log log
log log

2 2

 
          

 

m m
p q p m p p  

 

Let 2
2

log
log

2

 
      
 

m
β δ p ω ; then integers 0ω , 0δ and 2log 222 2 1 2 2 1

p ω αα β α α         . By Property 

7 it follows 
 

2log 2
(2 2 1) ( )

       
p ω α α

pm pq p l T  

 

Since m and p lie respectively on level 
2log 1  m and 

2log 1  p , it takes 
2 2 2log log log 1            m p q

steps for m to trace up to q.  
 

Remark 4. By substituting the condition 2log

2

 
  
 

m
β with 2log   β p , Corollary 2 still holds because 

2 2

2 2

2

log 2 log

log 1 log

2 2 1

2 2 1 2 (2 1) 1

2 (2 1) 1 2 (2 1) 1 2 ( 1) 1 2 1



       

  

  

     

          

α β α

p α p αα α

p pα α α

q

p p

 

 
Corollary 3. The divisor p of odd positive composite integer m pq can be found out in at least 

2(log )O q and 

at most 
2( log )  O m searching steps provided that 2 2  α βq γ with integers

2log    α β p  and odd 

integer 1γ . 

 

Proof. By Property 8*, an arbitrary odd integer of the form (2 2 )  α βm p γp must be a descendant node of 

pT . By 
2log    α β p , it follows 12 2 2     β β βq γ γ p . Since obviously 

3


m
q , it yields 

 

2 2 2 2 2log log log log 3 log 1
3

 
               
 

m
q m m  

 

Note that, p and m lie respectively on level 
2log 1  p  and level 

2log 1  m of T3, the difference between the 

two levels satisfies   
 

2 2 2 2 2 2log log log log log 1 log                           p q m p q m  

 
and the corollary is validated. 
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5.2 Numerical experiments 
 
Numerical experiments are made with Maple software. Table 1 lists the experimental results. In the table, the 
column ‘Big Number N’ is the big odd composite number to be factorized, the column ‘nDigits’ is the number 
of decimal digits, the column ‘sDivisor’ is the found divisor of N, the column ‘Tsteps’ is the number of 
searching steps calculated theoretically from the previous corollaries and the column ‘Rsteps’ is the real 
searching steps recorded by the computer. It can be seen that the real searching steps are exactly match to the 
theoretical steps. For readers to know the algorithms more deeply, the Maple programs are list in the appendix 
section. Readers can test them with the programs. 
 

Table 1. 
 
Big Number N nDigits sDivisor Tsteps Rsteps 
1361129467683753874933991060479210657
3720569303980406995753 

59 80000000000000001239 126 126 

1004336277661868922213726306090627668
58404681029709092356097 

59 61897001964269013744
9562111 

106 106 

3697086064679224675734480111663181901
6393505518278570670458580224861 

68 21729518917671154277
8874311843 

126 126 

1559155429592009364435823204937723814
2052981863686538114062107392351 

68 91638919976965192288
826967713 

126 126 

2156795733372051183573360314936866748
15718346332418321765033807708157 

69 12676506002282294014
96702681091 

126 126 

2760698538716225514973902344910793166
8458716142620601169954803000803329 

71 16225927682921336339
1578010288127 

126 126 

1013453127459823122874618528109162771
39253536353869833593151553211936321 

71 59565421307610088978
0265054949823 

126 126 

2607406049708142190423610481163987976
7654369539753705042663627621537194650
5523582892895109067 

93 16225927682921336339
1578010288127 

200 199 

2734063405978764905465627783897026706
6753924081589598660106153660338579389
7980093024134417319198667 

99 17014118346046923173
1687303715884105727 

200 199 

4679981866866785826334486242139186024
8509227422788545866476175829541061193
5326445796738078604349487 

99 46597757852200185432
64560743076778192897 

196 195 

 

6 Conclusions and Future Work 
 
By means of defining connection and penetration in a valuated binary tree, nodes out of a tree can be related 
with those in a tree and some outer properties are brought into the tree so that more properties of nodes are 
discovered. This broadens the studies on a tree. Research in this paper validates such means. It is seen from 
previous research and the research in this paper that, there is always a proper approach to factorize rapidly a 
certain kind of special odd integers. The theoretical analysis and numerical experiments in this paper once again 
demonstrate this point of view. However something is still very rough and there is still work to make it refinery. 
For example, the traits of ,α β  in the three corollaries still need further investigating to make their limits more 

accurate. This remains future studies to make them clear. Meanwhile, this paper merely draws a rough outline in 
studying the connections and penetrations, more subtle contents need further studying. Hope more young to join 
the work.

 
 

Acknowledgement 
 
The research work is supported Natural Science Foundation of Guangdong Province under Grant No. 
2018A0303130082. 



 
 
 
 

Wang et al.; ARJOM, 17(3): 134-153, 2021; Article no.ARJOM.69077 
 
 

 
152 

 

Competing Interests 
 
Authors have declared that no competing interests exist. 
 

References 
 
[1] Wang X. Valuated binary tree: A new approach in study of integers. International Journal of Scientific 

and Innovative Mathematical Research. 2016;4(3),63-67.  
DOI: http://dx.doi.org/10.20431/2347-3142.0403008 
 

[2] Wang X. Amusing properties of odd numbers derived from valuated binary tree. IOSR Journal of 
Mathematics. 2016;12(6 Ver5):53-57.  
 

[3] Wang X. Two more symmetric properties of odd numbers. IOSR Journal of Mathematics. 2017;13(3 
Ver.II):37-40. 
DOI: https://dx.doi.org/10.9790/5728-1303023740  
 

[4] Wang X. Genetic traits of odd numbers with applications in factorization of integers. Global Journal of 
Pure and Applied Mathematics. 2017;13(2):493-517.  
DOI: http://www. ripublication.com/gjpam17/gjpamv13n2_29.pdf 
 

[5] Wang X. T3 tree and its traits in understanding integers. Advances in Pure Mathematics. 2018;8(5):494-
507.  
DOI: https://doi.org/10.4236/apm.2018.85028 

 
[6] Wang X, Guo H. Some divisibility traits on valuated binary trees.  International Journal of Applied 

Physics and Mathematics. 2019;9(1):1-15.  
DOI: https://doi:org/10.17706/ijapm.2019.9.4.173-181 

 
[7] Wang X. Fast approach to factorize odd integers with special divisors. Journal of Mathematics and 

Statistics. 2020;16(1):24-34.  
DOI: https://doi.org/10.3844/jmssp.2020.24. 34  
 

[8] Wang X. Algorithm available for factoring big Fermat numbers. Journal of Software. 2020;15(3):86-97.  
DOI: 10.17706/jsw.15.3.86-97 
 

[9] Wang X. Bound estimation for divisors of RSA modulus with small divisor-ratio. International Journal of 
Network Security. 2021;23(3):412-425 

 
[10] Dinesh PM, Sahni S. Handbook of data structures and applications. Chapman & Hall/CRC; 2005. 
 
[11] Wang X. Frequently-used properties of the floor function. International Journal of Applied Physics and 

Mathematics. 2020;10(4):135-142.  
DOI: http://doi.org/ 10.17706/ijapm. 2020.10.4.135-142  
 

[12] Wang X, Zheng S. Some miscellaneous properties of valuated binary tree. Journal of Mathematics 
Research. 2021;13(3):1-12.  
DOI: https://doi.org/10.5539/jmr.v13n3p1 

 
 
 
 
 
 
 
 



 
 
 
 

Wang et al.; ARJOM, 17(3): 134-153, 2021; Article no.ARJOM.69077 
 
 

 
153 

 

Appendix  
 

Maple Source Codes 
 

SubRoutine Father (Calculate the father of a node Son) 
Father:=proc( Son) 
 local X, r; 
 r:=modp(Son,4);  

if r=1 then X:= (Son+1)/2; 
else X:= (Son -1)/2; 
fi 

End proc 
 

MainRoutine FactIt (Calculate the small divisor of N) 
FactIt:=proc(N) 

local X, AA, g, p, q, Tsteps, Rsteps:=0, len; 
  AA:=Father(N); 
  g:=gcd(AA,N); 
  while g=1 do 
   Rsteps:=Rsteps+1; 
   X:=AA; 
   AA:=Father(X); 
   g:=gcd(AA,N); 
  od; 

p:=g; 
  q:=N/p; 
 Tsteps:=floor(evalf(log2(q)) 
 lprint(“Find p=”, p , “ Tsteps=”, Tsteps, “Rsteps=”, Rsteps); 
End proc 
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