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1 Introduction

Non-linear differential equations can be seen in a lot of research fields which include mathematics,
physics, plasma physics, fluid mechanics, aerodynamics, atmosphere, ocean engineering, etc [1].
Research on the integrability of nonlinear differential equations not only helps us to understand
the movement laws of various substances in physical phenomena under nonlinear action, but also
plays an important role in the scientific explanation and engineering application of corresponding
physical phenomena.

So far, there are many definitions of the integrability. We say that a certain nonlinear system
is integrable, it must be specified in what sense. There are some definitions of integrability in
the following senses. For a finite-dimensional dynamic system, there are Liouvillian integrability
and Darboux integrability, strong integrability and weak integrability [2]. For nonlinear evolution
systems, there are inverse scattering (IST) integrability, Lax integrability, symmetric integrability,
Painlevé integrability [3] and so on. The connection between these integrability remains needing to
be studied. In most cases, a system is integrable under one sense, it does not mean that it is also
integrable under other senses. Therefore, research on every integrability of differential systems has
certain theoretical and practical application significance.

In this paper, we focus on generalized Weierstrass integrability. The definitions of generalized
Weierstrass integrability and Weierstrass integrability were introduced in [4, 5, 6, 7, 8, 9] and other
papers. Now we restate them here. We say that a differential system is generalized Weierstrass
integrable [4, 5, 6, 7, 8, 9] if it admits a first integral or an inverse integrating factor which is a
generalized Weierstrass polynomial. We say that the differential system is Weierstrass integrable
[4, 5, 6, 7, 8, 9] if it admits a first integral or an inverse integrating factor which is a Weierstrass
polynomial. The generalized Weierstrass integrability of the Liénard differential system has been
studied, see [5]. In [6], the Weierstrass and the generalized Weierstrass integrability of the Abel
differential equation have been considered. Related research can also be found in other papers
[7, 8, 9, 10, 11] and the references therein.

Generally speaking, we prefer to work with an inverse integrating factor than with a first integral,
because it has better properties than first integral. So it is significant for us to obtain the inverse
integrating factor of a system. In this paper we consider differential equations of the form ẋ = y = g(x, y)

ẏ =
n∑

i=0

fi(x)y
i = f(x, y)

(1.1)

where fi(x), i = 0, · · · , n, are meromorphic functions of x, and the dot denotes derivative with

respect to the time t, real or complex. When g(x, y) ≡ 1 of (1.1), (1.1) becomes the system in

[7]. The Weierstrass integrability of it has been studied in [7]. In [4], authors considered the

Weierstrass integrability of system (1.1), and presented the expression and the condition of the

existence of Weierstrass inverse integrating factor of system (1.1). In [4], the following inverse

integrating factor form is considered,

u(x, y)=
s−1∑
i=0

ui(x)y
i + ys. (1.2)

In this paper, we continue to consider the generalized Weierstrass integrability of system (1.1). We

focus on the inverse integrating factor of following form

u(x, y) =
s∑

i=0

ui(x)y
i, us(x) ̸≡ 0. (1.3)
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We obtain the condition and the corresponding expression of the generalized Weierstrass inverse
integrating factor and give the relationship between the two different forms of inverse integrating
factors. Finally, we make use of the results to obtain the traveling wave solutions or the equation
satisfied by the traveling wave solutions of Kudryashov-Sinelshchikov equation.

2 Generalized Weierstrass inverse integrating factors

Associated to system (1.1), there is the differential operator

X = g
∂

∂x
+ f

∂

∂y
.

The vector field of system (1.1) is denoted as P = (g, f).

For the integrity of this paper, we restate some definitions.

Definition 2.1. For system (1.1), If there is a non-constant continuous differentiable function u(x, y)
that satisfying Xu = u divP, then u(x, y) is an inverse integrating factor of system (1.1), where div
is the divergence operation.

For system (1.1), If there is a non-constant continuous differentiable function µ(x, y) that satisf-
ying div(µP ) = 0, then µ(x, y) is an integrating factor of system (1.1). It is easy to know that if
u(x, y) ̸= 0 is an inverse integrating factor of system (1.1), 1/u(x, y) has to be an integrating factor
of system(1.1).

Definition 2.2. [4-9]Let C[[x]] be the set of the formal power series in the variable x with coefficients
in C, and C[y] the set of the polynomials in the variable y with coefficients in C. A polynomial of
the form

n∑
i=0

fi(x)y
i ∈ C[[x]]C[y], (2.1)

is called a formal Weierstrass polynomial in y of degree n if and only if fn(x) = 1 and fi(0) =
0 for i < n. A formal polynomial whose coefficients are convergent is called Weierstrass polynomial.
A polynomial of the form (2.1) is called a formal generalizedWeierstrass polynomial in y of degree n if
and only if fn(x) ̸≡ 0. A formal polynomial whose coefficients are convergent is called generalized
Weierstrass polynomial.

Then our main results are listed as follows. The results of system (1.1) with n = s = 2 having
Weierstrass inverse integrating factors have been given in theorem 1.2 in [4].

Theorem 2.1. For system (1.1) with n = 2,
(1) When s = 1 and f0(x) = cf1(x)e

∫
f2(x)dx, where c is an arbitrary constant, then

u(x, y) = e
∫
f2(x)dxy + ce2

∫
f2(x)dx.

(2) When s = 2, system (1.1) has a Weierstrass inverse integrating factor if and only if
either f0(x) = f1(x) = 0, and then u(x, y) = y2,
or f0(x) = 0 and f1(x) ̸= 0 , and then

u(x, y) = y2 + (−e
∫
f2(x)dx

∫
f1(x)e

−
∫
f2(x)dsdx)y,

or f1(x) = 0 and f0(x) ̸= 0, and then

u(x, y) = y2 − 2e2
∫
f2(x)dx

∫
f0(x)e

−2
∫
f2(x)dsdx,
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or f0(x)f1(x) ̸= 0 with f0(x)f1(x)f2(x) + f ′
1(x)f0(x)− f ′

0(x)f1(x) ̸= 0 and

f ′
0(x)f1(x)

2f2(x) + f0(x)f1(x)
2f ′

2(x)− f ′′
0 (x)f1(x)

2 − 3f0(x)f
′
1(x)

2

+3f ′
0(x)f

′
1(x)f1(x) + f ′′

1 (x)f0(x)f1(x)− 2f ′
1(x)f0(x)f1(x)f2(x) = 0,

then u(x, y) = u0(x) + u1(x)y + y2, where u0(x) and u1(x) are listed as follows,

u0(x) =
f1(x)f0(x)

2

f0(x)f1(x)f2(x) + f0(x)f ′
1(x)− f ′

0(x)f1(x)
,

u1(x) =
f0(x)f1(x)

2

f0(x)f1(x)f2(x) + f0(x)f ′
1(x)− f ′

0(x)f1(x)
.

Proof. For system (1.1) with n = 2, when system (1.1) has the Weierstrass inverse integrating factor

of the form (1.3), based on the definition of inverse integrating factor, we can get the following

formula,
s∑

i=0

u′
i(x)y

i+1 +
s∑

i=0

iui(x)y
i−1

(
f2(x)y

2 + f1(x)y + f0(x)
)

= (2f2(x)y + f1(x)) (
s∑

i=0

ui(x)y
i).

(2.2)

Now, combining the coefficients of ys+1, ys, ys−i(i = 2, · · · , s− 1), y0 in (2.2), and letting them be
zeroes, we get

u′
s(x) + (s− 2)us(x)f2(x) = 0,

u′
s−1(x) + (s− 1)us(x)f1(x) + (s− 3)us−1(x)f2(x) = 0,

u′
s−2(x) + sus(x)f0(x) + (s− 2)

us−1(x)f1(x) + (s− 4)us−2(x)f2(x) = 0,
u′
s−i−1(x) + (s− i+ 1)us−i+1(x)f0(x) + (s− i− 1)

us−i(x)f1(x) + (s− i− 3)us−i−1(x)f2(x) = 0,
u1(x)f0(x)− u0(x)f1(x) = 0.

(2.3)

(1) When s = 1, by (2.3), we have

u′
1(x)− u1(x)f2(x) = 0,

u′
0(x)− 2u0(x)f2(x) = 0,

u1(x)f0(x)− u0(x)f1(x) = 0.
(2.4)

Solving (2.4), we obtain

u1(x) = e
∫
f2(x)dx,

u0(x) = ce2
∫
f2(x)dx,

f0(x) = cf1(x)e
∫
f2(x)dx,

where c is an arbitrary constant. Therefore, the Weierstrass inverse integrating factor of system
(1.1) is

u(x, y) = e
∫
f2(x)dxy + e2

∫
f2(x)dx

under the condition
f0(x) = cf1(x)e

∫
f2(x)dx.

(2) When s = 2, by the first equation of (2.3), we have

u′
2(x) = 0.

So we can suppose u2(x) ≡ 1, The corresponding inverse integrating factor is the form (1.2). The
relevant results have been given and proved in [4], we will not prove it here.
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Owing to space limitation, we will provide system (1.1) with n = 1 and n = 3 admitting generalized
Weierstrass inverse integrating factor in another paper. Next we consider system (1.1) with n >
3 has a generalized Weierstrass inverse integrating factor. First, we introduce two lemmas as follows.

Lemma 2.2. Equation (2.5) can be written as (2.6)

n∑
i=0

u′
i(x)y

i+1 +
n∑

i=0

iui(x)y
i−1(fn(x)y

n + · · ·+ f1(x)y + f0(x))

= (nfn(x)y
n−1 + · · ·+ 2f2(x)y + f1(x))(

n∑
i=0

ui(x)y
i),

(2.5)

n∑
i=0

u′
i(x)y

i+1 + f0(x)

n−1∑
i=0

(i+ 1)ui+1(x)y
i

+
2n−2∑
i=0

yl
min{l,n}∑

i=max{0,l+1−n}

(2i− 1− l)ui(x)fl−i+1(x) = 0.

(2.6)

Relevant proof has been given in [4], we will not prove it here.

Lemma 2.3.

Sm,j(x) =

l−1∑
j=1

(l − 2j)fm−j(x)fm−l+j(x) = 0.(m, l ≤ n+ 2)

Relevant proof has been given in [4], we will not prove it here.

Based on Lemma 2.3, we can get easily

Sn+1,n+1(x) =

n∑
j=1

(n+ 1− 2j)fn+1−j(x)fj(x) = 0 (2.7)

and

Sn+2,n+2(x) =

n+1∑
j=1

(n+ 2− 2j)fn+2−j(x)fj(x) = 0. (2.8)

Theorem 2.4. System (1.1) with n > 3 has a Weierstrass inverse integrating factor of the form
(1.3), where

un−k+1(x) =
fn−k+1(x)

fn(x)
un(x), (k = 2, · · · , n− 2) (2.9)

u0(x) =
A(x)

n(n− 2)(n− 1)fn(x)4
, (2.10)

u1(x) =
B(x)

(n− 2)(n− 1)fn(x)3
, (2.11)

u2(x) =
(n− 2)f2(x)un(x) + u′

n(x)

(n− 2)fn(x)
, (2.12)

un(x) = ce
∫ C(x)

D(x)
dx
, (2.13)
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where
A(x) =

(
(n− 2)(n− 1)fn(x)

2 (f ′
n−2(x) + nfn(x)f0(x)

)
−(n− 2)2fn−1(x)

(
f ′
n−1(x)fn(x)− fn−1(x)f

′
n(x)

))
un(x)

+
(
2(n− 1)fn(x)

2fn−2(x)− (n− 2)fn−1(x)
2fn(x)

)
u′
n(x),

B(x) =
(
(n− 2)

(
fn(x)f

′
n−1(x)− f ′

n(x)fn−1(x)

+(n− 1)fn(x)
2f1(x)

))
un(x) + fn(x)fn−1(x)u

′
n(x),

C(x) = (n− 2) ((n− 2)f1(x)fn−1(x) + nf0(x)fn(x))
(
f ′
n(x)fn−1(x)

− fn(x)f
′
n−1(x)

)
,

D(x) = fn(x)
2 (n(n− 3)f0(x)fn−1(x) + 2(n− 1)f1(x)fn−2(x))

− (n− 2)fn(x)fn−1(x) (nf0(x)fn(x) + f1(x)fn−1(x)) .

Proof. For system (1.1), when it has a Weierstrass inverse integrating factor of (1.3), based on the

definition of inverse integrating factor, we can get the following formula,

s∑
i=0

u′
i(x)y

i+1 +

s∑
i=0

iui(x)y
i−1(fn(x)y

n + · · ·+ f1(x)y + f0(x))

= (nfn(x)y
n−1 + · · ·+ 2f2(x)y + f1(x))(

s∑
i=0

ui(x)y
i).

(2.14)

Computing the coefficients of ys+n−1 in (2.14) and letting them be zeroes, we get

sus(x)fn(x) = nus(x)fn(x),

So s = n. Using Lemma 2.2, (2.14) can be written as

n∑
i=0

u′
i(x)y

i+1 + f0(x)
n−1∑
i=0

(i+ 1)ui+1(x)y
i

+

2n−2∑
i=0

yl
min{l,n}∑

i=max{0,l+1−n}

(2i− 1− l)ui(x)fl−i+1(x) = 0.

(2.15)

Now we prove (2.9). Computing the coefficients of yl,(l = n+ 2, · · · , 2n− 2) in (2.15), we have

n∑
i=l+1−n

(2i− 1− l)ui(x)fl−i+1(x) = 0. (2.16)

Letting l = 2n− k, (k = 2, · · · , n− 2), (2.16) becomes

n∑
i=n+1−k

(2i− 2n+ k − l)ui(x)f2n−k+1−i(x) = 0. (2.17)

Similarly, writing i = n− j, (2.17) can be

k−1∑
j=0

(k − 2j − 1)un−j(x)fn−k+j+1(x) = 0,
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that is,

(k − 1)(un(x)fn−k+1(x)− un−k+1(x)fn(x))

+

k−2∑
j=1

(k − 2j − 1)un−j(x)fn−k+j+1(x) = 0.
(2.18)

Next, we prove (2.9) by mathematical induction method.

When k = 2, using (2.18), we can have

un(x)fn−1(x)− un−1(x)fn(x) = 0,

so

un−1(x) =
fn−1(x)un(x)

fn(x)
. (2.19)

We assume (2.9) is true for k = 3, · · · , n− 3. So, one has the formula

un−k+1(x) =
fn−k+1(x)

fn(x)
un(x).(k = 3, · · · , n− 3) (2.20)

For k = n− 2, using (2.18), we get

(n− 3)(un(x)f3(x)− u3(x)fn(x)) +

n−4∑
j=1

(n− 2j − 3)un−j(x)f3+j(x) = 0. (2.21)

Substituting (2.19) and (2.20) into (2.21), we get

(n− 3)(un(x)f3(x)− u3(x)fn(x))

+
un(x)

fn(x)

n−4∑
j=1

(n− 2j − 3)fn−j(x)f3+j(x) = 0.
(2.22)

By Lemma 2.3 , (2.22) becomes

(n− 3)(un(x)f3(x)− u3(x)fn(x)) = 0,

that is

u3(x) =
f3(x)

fn(x)
un(x).

This concludes the proof of (2.9).

Computing the coefficient of yn+1, yn, yn−1 in (2.15), we get

u′
n(x) +

n∑
i=2

(2i− 2− n)ui(x)fn−i+2(x) = 0, (2.23)

u′
n−1(x) +

n∑
i=1

(2i− 1− n)ui(x)fn−i+1(x) = 0, (2.24)

u′
n−2(x) + nun(x)f0(x) +

n−1∑
i=0

(2i− n)ui(x)fn−i(x) = 0. (2.25)
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Now, with the aids of (2.8) and (2.9), (2.23) becomes

u′
n(x) + (2− n)fn(x)u2(x) +

n−1∑
i=3

(2i− n− 2)ui(x)fn−i+2(x)

+(n− 2)un(x)f2(x)

=u′
n(x) + (2− n)u2(x)fn(x)−

un(x)

fn(x)

n−1∑
i=3

(n+ 2− 2i)fi(x)fn−i+2(x)

+(n− 2)un(x)f2(x)

=u′
n(x)−

un(x)

fn(x)
(

n+1∑
i=1

(n+ 2− 2i)fi(x)fn+2−i(x)− nf1(x)fn+1(x)

−(n− 2)f2(x)fn(x)− (2− n)fn(x)f2(x) + nfn+1(x)f1(x))

+(2− n)u2(x)fn(x) + (n− 2)un(x)f2(x)

=u′
n(x) + (2− n)u2(x)fn(x) + (n− 2)un(x)f2(x)−

un(x)

fn(x)
Sn+2,n+2(x)

=u′
n(x) + (2− n)u2(x)fn(x) + (n− 2)un(x)f2(x)

=0.

Therefore,

u2(x) =
(n− 2)f2(x)un(x) + u′

n(x)

(n− 2)fn(x)
,

that is (2.12).

Similarly, with the aids of (2.7) and (2.9), (2.24) can be rewritten as

u′
n−1(x) + (1− n)u1(x)fn(x) + (n− 1)un(x)f1(x) + (3− n)u2(x)fn−1(x)

−
n−1∑
i=3

(n+ 1− 2i)ui(x)fn−i+1(x)

=u′
n−1(x) + (1− n)u1(x)fn(x) + (n− 1)un(x)f1(x) + (3− n)u2(x)fn−1(x)

−un(x)

fn(x)

n−1∑
i=3

(n+ 1− 2i)fi(x)fn−i+1(x)

=u′
n−1(x) + (1− n)u1(x)fn(x) + (n− 1)un(x)f1(x) + (3− n)u2(x)fn−1(x)

−un(x)

fn(x)
(

n∑
i=1

(n+ 1− 2i)fi(x)fn+1−i(x)− (1− n)f1(x)fn(x)

−(n− 1)f1(x)fn(x)− (n− 3)fn−1(x)f2(x))

=u′
n−1(x) + (1− n)u1(x)fn(x) + (n− 1)un(x)f1(x) + (3− n)u2(x)fn−1(x)

−un(x)

fn(x)
(Sn+1,n+1(x)− (n− 3)fn−1(x)f2(x) )

=u′
n−1(x) + (1− n)u1(x)fn(x) + (n− 1)un(x)f1(x) + (3− n)u2(x)fn−1(x)

−un(x)

fn(x)
(3− n)fn−1(x)f2(x)

=0.

(2.26)
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Substituting (2.12) and (2.19) into (2.26), we have

u1(x) =
B(x)

(n− 2)(n− 1)fn(x)3
,

where
B(x) =

(
(n− 2)

(
fn(x)f

′
n−1(x)− f ′

n(x)fn−1(x)

+(n− 1)fn(x)
2f1(x)

))
un(x) + fn(x)fn−1(x)u

′
n(x),

that is (2.11).

Similarly, (2.25) can be rewritten as

u′
n−2(x) + nf0(x)un(x) +

n−1∑
i=3

(2i− n)ui(x)fn−i(x) + (2− n)u1(x)fn−1(x)

+(4− n)u2(x)fn−2(x)− nu0(x)fn(x)

=u′
n−2(x)−

un(x)

fn(x)

n−1∑
i=3

(n− 2i)fi(x)fn−i(x) + (2− n)u1(x)fn−1(x)

+nf0(x)un(x)− nu0(x)fn(x) + (4− n)u2(x)fn−2(x)

=u′
n−2(x)−

un(x)

fn(x)
(

n−1∑
i=1

(n− 2i)fi(x)fn−i(x)− (n− 2)f1(x)fn−1(x)

− (n− 4)f2(x)fn−2(x)) + nf0(x)un(x)− nfn(x)u0(x)

+(2− n)u1(x)fn−1(x) + (4− n)u2(x)fn−2(x)

=u′
n−2(x)−

un(x)

fn(x)
(Sn,n(x)− (n− 2)f1(x)fn−1(x)− (n− 4)f2(x)fn−2(x))

+nf0(x)un(x)− nfn(x)u0(x) + (2− n)u1(x)fn−1(x) + (4− n)u2(x)fn−2(x)

=u′
n−2(x)−

un(x)

fn(x)
((2− n)f1(x)fn−1(x)− (n− 4)f2(x)fn−2(x))

+nf0(x)un(x)− nfn(x)u0(x) + (2− n)u1(x)fn−1(x)

+(4− n)u2(x)fn−2(x)

=0.

(2.27)

Substituting (2.12), (2.11) and (2.9) with k = 3 into (2.27), we have

u0(x) =
A(x)

n(n− 2)(n− 1)fn(x)4
,

where
A(x) =

(
(n− 2)(n− 1)fn(x)

2(f ′
n−2(x) + nfn(x)f0(x))

−(n− 2)2fn−1(x)(f
′
n−1(x)fn(x)− fn−1(x)f

′
n(x))

)
un(x)

+
(
2(n− 1)fn(x)

2fn−2(x)− (n− 2)fn−1(x)
2fn(x)

)
u′
n(x),

that is (2.10).

Now computing the coefficients of yn in (2.15), we have

u1(x)f0(x) = u0(x)f1(x). (2.28)

Substituting (2.11), (2.10) into (2.28), we have

u′
n(x)−

C(x)

D(x)
un(x) = 0.
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It is easy to get

un(x) = ce
∫ C(x)

D(x)
dx
,

where c is an arbitrary constant and

C(x) = (n− 2) ((n− 2)f1(x)fn−1(x) + nf0(x)fn(x))
(
f ′
n(x)fn−1(x)

− fn(x)f
′
n−1(x)

)
,

D(x) = fn(x)
2 (n(n− 3)f0(x)fn−1(x) + 2(n− 1)f1(x)fn−2(x))

− (n− 2)fn(x)fn−1(x) (nf0(x)fn(x) + f1(x)fn−1(x)) ,

that is (2.13).

Theorem 2.5. The differential equations of the form ẋ = p(x)y + q(x),

ẏ =
n∑

i=0

fi(x)y
i,

(2.29)

where p(x) ̸= 0 and fi(x), i = 0, · · · , n, are meromorphic functions of x, and the dot denotes derivative
with respect to the time t, real or complex, can be transformed into the system (1.1) doing the change

of variables y = 1
p(x)

u− q(x)
p(x)

.

Proof. Let y = 1
p(x)

u− q(x)
p(x)

, we have

ẋ = p(x)(
1

p(x)
u− q(x)

p(x)
) + q(x) = u.

Because u = (y + q(x)
p(x)

)p(x) = p(x)y + q(x), we have

u̇ = p′(x)y + p(x)y′ + q′(x)

= p′(x)( 1
p(x)

u− q(x)
p(x)

) + q′(x) + p(x) (fn(x)y
n + · · ·+ f1(x)y + f0(x))

= p′(x)
p(x)

u− p′(x)q(x)
p(x)

+ q′(x) + p(x)(fn(x)(
1

p(x)
u− q(x)

p(x)
)n + · · ·

+f1(x)(
1

p(x)
u− q(x)

p(x)
) + f0(x))

= bn(x)u
n + · · ·+ b1(x)u+ b0(x).

Therefore, (2.29) can be rewritten as  ẋ = u,

u̇ =
n∑

i=0

bi(x)u
i.

It is the form of system (1.1), thus it will have a series of related results of Theorem 2.4.

If system (1.1) is generalized Weierstrass integrable, it means that system (1.1) has the inverse
integrating factor of the form

u1(x, y) =

s∑
i=0

ui(x)y
i, us(x) ̸≡ 0.

Let

u1(x, y) = us(x)

s∑
i=0

ui(x)

us(x)
yi = us(x)u2(x, y), (2.30)

where u2(x, y) is the form (1.2). We have the following result.
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Theorem 2.6. Suppose u1(x, y) is an inverse integrating factor, u2(x, y) is an inverse integrating
factor of system (1.1) if and only if us(x) is a first integral of system (1.1).

Proof. u1(x, y) is an inverse integrating factor of system (1.1), so

Xu1(x, y) = u1(x, y) divP. (2.31)

Plugging (2.30) in (2.31), we have

us(x)Xu2(x, y) + u2(x, y)Xus(x) = us(x)u2(x, y) divP. (2.32)

If u2(x, y) is an inverse integrating factor of system (1.1). then

Xu2(x, y) = u2(x, y) divP.

Substituting the above formula into (2.32), we have

u2(x, y)Xus(x) = 0.

Therefore, us(x) is a first integral of system (1.1).

If us(x) is a first integral of system (1.1), we have

Xus(x) = 0. (2.33)

By (2.30), we have

Xu2(x, y) = X
u1(x, y)

us(x)
=

us(x)Xu1(x, y)− u1(x, y)Xus(x)

us(x)2
. (2.34)

Substituting (2.33) into (2.34), we have

Xu2(x, y) =
Xu1(x, y)

us(x)
=

u1(x, y) divP

us(x)
= u2(x, y) divP.

Therefore u2(x, y) is an inverse integrating factor of system (1.1), The proof is finished.

3 Application on a Kudryashov-Sinelshchikov equation

We consider the following Kudryashov-Sinelshchikov equation

ut + auux + buxxx + k (uuxx)x +muxuxx + nuxx + f
(
u2
x + uuxx

)
= 0,

where u denotes the density and a, b, k,m, n and f are real parameters. It is a nonlinear partial
differential equation that describes the pressure waves in a mixture liquid with gas. Research
on the spread of the pressure waves is one of the most important problems in physics. Finding
exact solutions of the nonlinear differential equations plays an essential role in the study of the
corresponding nonlinear physical phenom- ena because it can help us understand the physical
phenomena. Up to now, researchers have succeeded in applying several methods to study the
Kudryashov-Sinelshchikov equation and getting some results. Some traveling wave solutions, periodic
solutions, group invariant solutions, analytical power series solutions and other exact solutions have
been obtained [12, 13, 14, 15].

Here, we consider the equation with coefficient k = 0 and bm ̸= 0 that is

ut + auux + buxxx +muxuxx + nuxx + f
(
u2
x + uuxx

)
= 0. (3.1)
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We suppose the wave transformations

u(x, t) = u(ξ), ξ = x− ct, (3.2)

where c ∈ R is the wave speed. Plugging (3.2) into (3.1) and integrating the equation once, (3.1)
can be converted into the following form,{

u̇ = v,

v̇ = −m
2b
v2 −

(
f
b
u+ n

b

)
v +

(
c
b
u− a

2b
u2

)
.

(3.3)

(3.3) is the form of system (1.1) with n = 2. where

f2(u) = −m

2b
, f1(u) = −f

b
u− n

b
, f0(u) =

c

b
u− a

2b
u2.

Based on Theorem 2.1, we can have the following results.

(1) When s = 1 and f0(u) = f1(u) = 0, we have a Weierstrass inverse integrating factor

µ(u, v) = e−
m
2b

uv + e−
m
b
u. (3.4)

In fact, (3.3) becomes {
u̇ = v,
v̇ = −m

2b
v2.

(3.5)

According to the Weierstrass inverse integration factor (3.4), it is easy to know the solution of (3.5)
is

−e
m
2b

uv + ln
∣∣∣v + e−

m
2b

u
∣∣∣+ m

2b
u = c0,

where u′ = v and c0 is an arbitrary constant. Then, we get an equation satisfied by traveling wave
solutions

−e
m
2b

uu′ + ln
∣∣∣u′ + e−

m
2b

u
∣∣∣+ m

2b
u = c0.

(2) When s = 2 and f0(u) = f1(u) = 0, we have a Weierstrass inverse integrating factor

µ(u, v) = v2. (3.6)

In fact, (3.3) becomes {
u̇ = v,
v̇ = −m

2b
v2.

(3.7)

According to the Weierstrass inverse integration factor (3.6), it is easy to know the solution of (3.7)
is

−m

2b
u− ln v = c1,

where u′ = v and c1 is an arbitrary constant. Solving it, we can obtain the exact solution of the
corresponding (3.1)

u =
2b

m
ln |ξ|+ c2 =

2b

m
ln |x|+ c2,

where c2 is an arbitrary constant.

(3) When s = 2 and f0(u) = 0, we have a Weierstrass inverse integrating factor

µ(u, v) =
2fmu− 4bf + 2nm

m2
v + v2. (3.8)

In fact, (3.3) becomes {
u̇ = v,

v̇ = −m
2b
v2 −

(
f
b
u+ n

b

)
v.

(3.9)
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According to the Weierstrass inverse integration factor (3.8), it is easy to know the solution of (3.9)
is

−m

2b
u+ ln

∣∣∣∣ 1

16b2f2m2u+ 8b2m3fv − 32b3f2m+ 16b2fnm2

∣∣∣∣ = c3,

where u′ = v and c3 is an arbitrary constant. Solving it, we can obtain the exact solution of the
corresponding (3.1),

u = c4e
− 2f

m
ξ +

2bf −mn

fm
= c4e

− 2fx
m +

2bf −mn

fm
,

where c4 is an arbitrary constant.
(4) When s = 2 and f1(u) = 0, we have a Weierstrass inverse integrating factor

µ(u, v) =
am2u2 − (2m2c+ 2abm)u+ 2mbc+ 2ab2

m3
+ v2. (3.10)

In fact, (3.3) becomes {
u̇ = v,
v̇ = −m

2b
v2 +

(
c
b
u− a

2b
u2

)
.

(3.11)

According to the Weierstrass inverse integrating factor (3.10), it is easy to know the solution of
(3.11) is

−1

2
ln |v2 + am2u2 − (2m2c+ 2abm)u+ 2mbc+ 2ab2

m3
| − m

2b
u = c5,

where u′ = v and c5 is an arbitrary constant. Then, we can obtain an equation satisfied by traveling
wave solutions.

u′2 = − a

m
u2 +

2cm+ 2ab

m2
u− 2cbm+ 2ab2

m3
+ c6e

−m
b
u.

Let c6 = 0, that is

u′ = ±
√

− a

m
u2 +

2cm+ 2ab

m2
u− 2cbm+ 2ab2

m3
.

Next, we will obtain the solutions of it in two cases.
(a)When a

m
> 0, the exact solution of the corresponding (3.1) is

u =

√
c2m4 − 4abcm3 − a2b2m2 sin

(
c7
√

a
m

±
√

a
m
ξ
)
− abm+ cm2

am2
,

that is

u =

√
c2m4 − 4abcm3 − a2b2m2 sin

(
c7
√

a
m

±
√

a
m
(x− ct)

)
− abm+ cm2

am2
,

where c7 is an arbitrary constant.
(b)When a

m
< 0, the exact solution of the corresponding (3.1) is

u− m

a

√
a2m2u2 − (2acm2 − 2a2bm)u+ 2abcm+ 2a2b2

m4

=− m

a
c8e

ξ +
cm− ab

am
,

that is

u− m

a

√
a2m2u2 − (2acm2 − 2a2bm)u+ 2abcm+ 2a2b2

m4

=− m

a
c8e

x−ct +
cm− ab

am
,

where c8 is an arbitrary constant.
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(5) When s = 2 and f1(u)f0(u) ̸= 0, we have n = 0 and the Weierstrass inverse integrating
factor is

µ(u, v) =
E(u, v)

−amu3 + (2mc− 2ba)u2
, (3.12)

where
E(u, v) = −a2u5 + 4acu3 − 4c2u2 + (4fcu3 − 2afu4)v

+ (2mcu2 − 2bau2 − abu3)v2.

In fact, (3.3) becomes {
u̇ = v,

v̇ = −m
2b
v2 −

(
f
b
u
)
v +

(
c
b
u− a

2b
u2

)
.

(3.13)

According to the Weierstrass inverse integration factor (3.12), it is easy to know the solution of
(3.13) is

1

2
ln | F (u, v)

−amu3 + (2mc− 2ba)u2
|

− 4fcu3 − 2afu4√
G(u, v)

arctan
(4mcv − 4abv)u2 + (4fc− 2amv)u3 − 2afu4√

G(u, v)

−
∫ u

0

a2mu5 +
(
2a2b− 4amc

)
u4 +

(
4mc2 − 4abc

)
u3

−2a2bu5 + (8abc− 8bc2)u3
du = c9,

where c9 is an arbitrary constant and

F (u, v) = (4acu3 − 4c2u3 − a2u5) + (4fcu3 − 2afu4)v

+ (2mcu2 − 2abu2 − amu3)v2,

G(u, v) = 4(2mcu2 − 2abu2 − amu3)(4acu3 − 4c2u3 − a2u5)

− (4fcu3 − 2afu4)2.

Because u′ = v, we get an equation satisfied by traveling wave solution.

In summary, according to the Weierstrass inverse integration factor, we obtain the traveling wave
solutions or the equation satisfied by the traveling wave solution of (3.1).

4 Conclusions

In this paper, we consider the generalized Weierstrass integrability of a class of second order
nonlinear differential equations by presenting the existence conditions and the expressions of generali-
zed Weierstrass inverse integrating factors. The relationship between the generalized Weierstrass
inverse integrating factor and the Weierstrass inverse integrating factor is also presented. At last,
an application is considered, the traveling wave solutions or the equation satisfied by the traveling
wave solutions of a Kudryashov-Sinelshchikov equation are obtained, which will be helpful for further
research on the Kudryashov-Sinelshchikov equation.
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