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Abstract 

 
Shannon’s entropy plays important role in the information theory. However, it can’t be applied to systems 

which have survived for some time. Therefore, the concept of residual entropy was developed. In this 

paper, the estimation of the entropy of a two-parameter inverse Weibull distribution based on the 

generalized type-II hybrid censored sample is considered. The Bayes estimator for the residual entropy of 

the Inverse Weibull distribution under the generalized type-II hybrid censored sample is given. 

Simulation experiments are conducted to see the effectiveness of the different estimators. 

 

 

Keywords:  Bayes estimation; entropy; inverse weibull distribution; generalized hybrid censoring; maximum 

likelihood estimation; residual entropy. 

 

1 Introduction 

 
There is a message (or more) in any communication channel, the sender hope to send it to the receiver. If the 

channel is perfect the message will arrive complete. But most likely, the channel suffers from a lot of noise such 

as bad line, data jam, etc. Then, we may need to measure how perfect communication over (through) an 
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imperfect communication channel. In other words, we need to be sure that the information which the message 

has carried is received completely. Entropy is a useful measure of uncertainty and dispersion, and it has many 

uses in communication theory. An early definition of information entropy was introduced by Shannon in [1], 

and it is usually referred to as Shannon’s entropy. 

 

Let 𝑋 be a random variable with cumulative distribution function (cdf) 𝐹(𝑥), and probability density function 

(pdf) 𝑓(𝑥), then the entropy 𝐻𝑋  of the random variable 𝑋 is defined as: 

 

𝐻𝑋 = 𝐻(𝑓) = −𝐸[ln 𝑓(𝑥)] = ∫ 𝑓(𝑥) log(𝑓(𝑥))𝑑𝑥.
∞

−∞

   (1) 

 

In this context, 𝐻𝑋  is a measure of the uncertainty associated with the probability density function 𝑓 . The 

Shannon’s entropy plays a vital role as a measure of uncertainty in different areas such as physics, electronics, 

engineering, and economics. 

 

Many authors worked on entropy’s estimation for different distributions. Cramer and Bagh in [2] discussed the 

entropy of Weibull distribution under progressive censoring. Cho et al. in [3] presented an estimator for the 

entropy function of Rayleigh distribution based on doubly-generalized type II hybrid censored samples. Cho et 

al. in [4] considered the estimation of the entropy of Weibull distribution based on the generalized progressively 

censored sample.  Ahmad in [5] derived the estimators for the entropy function of the Fréchet distribution under 

generalized type I hybrid censored samples. Mahmoud et al. in [6] derived the estimators for the entropy 

function of the Lomax distribution under generalized type I hybrid censored samples.  

Consider an inverse Weibull distribution with cdf:  

 

𝐹(𝑥; 𝛼, 𝜆) = 𝑒−(
𝜆

𝑥
)
𝛼
  , 𝑥 > 0, 𝛼 > 0, 𝜆 > 0,      (2) 

 

and pdf: 

 

𝑓(𝑥; 𝛼, 𝜆) = 𝛼𝜆𝛼𝑥−(𝛼+1)𝑒−(
𝜆

𝑥
)
𝛼
  , 𝑥 > 0, 𝛼 > 0, 𝜆 > 0.      (3) 

 

For the pdf (3), the entropy (1) simplifies to 

 

𝐻(𝑓) = 𝛾 (1 +
1

𝜆
) + log (

𝛼

𝜆
) + 1     (4) 

 

where 𝛾 is the Euler-Mascheroni constant. 

 

In the context of information theory, Shannon’s information measure is useful for measuring the uncertainty 

associated with some density function. However, this entropy is not useful for a system that has survived for 

some units of time. It means that, there are some units that have low uncertainty and others that have great 

uncertainty. Then, if the random variable 𝑋 represents the lifetime of a device, the characteristic of special 

interest is the residual life distribution, which is the distribution of the random variable (𝑋 − 𝑡) truncated at (𝑡 ≥
0). In other words, if a unit of life length 𝑋 is known to have survived to age 𝑡, it is the residual entropy of (𝑋 −
𝑡) that is of interest. Ebrahimi in [7] defines the residual entropy of a random variable 𝑋 with density function 𝑓 

as  

 

𝐻(𝑓, 𝑡) = −∫
𝑓(𝑥)

𝑆(𝑡)

∞

𝑥=𝑡

 𝑙𝑜𝑔
𝑓(𝑥)

𝑆(𝑡)
𝑑𝑥;        𝑆(𝑡) ≥ 0 

        (5) 

 

Where 𝑆(𝑡) is the survival function of 𝑋 . Using the relationship between the survival function and hazard 

function ℎ(𝑥), the residual entropy function can be expressed as 

 

𝐻(𝑓, 𝑡) = 1 −
1

𝑆(𝑡)
∫ 𝑓(𝑥) log (ℎ(𝑥))𝑑𝑥

∞

𝑡

. 
        (6) 
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In a lifetime experiment, it is most likely that the researcher terminates the experiment before the failure of all 

items. This is because of the waiting time for the last failure is unknown or that the items under study may be 

expensive. For these reasons the experimenter terminates the experiment before the last failure, and the data 

samples obtained from such situation are called censored samples. There are many types of censoring schemes. 

If we terminate the experiment at a fixed 𝑎 pre-determined time 𝑇, we say that we have “type I censoring 

scheme”. If we terminate the experiment at the rth failure, we say that we have “type II censoring scheme”. In 

the reliability literature, two mixtures of both these censoring schemes have been discussed under the title 

“hybrid censoring schemes” (HCS). If the experiment terminates when either the pre-fixed number of failures 

(𝑟) has failed or a pre-specified censoring time T has been reached, this is called type I hybrid censoring scheme 

(Type-I HCS). We express the termination time of the experiment as 𝑇∗ = 𝑚𝑖𝑛{𝑋𝑟:𝑛, 𝑇}. If the experiment 

terminates when either the last of a pre-fixed failure numbers has failed or a pre-specified censoring time 𝑇 is 

reached, this is called type II hybrid censoring scheme (Type-II HCS). We express the termination time of the 

experiment as 𝑇∗ = 𝑚𝑎𝑥{𝑋𝑟:𝑛, 𝑇}. However, in type I hybrid censoring, there is high probability that the pre-

fixed time 𝑇 occurs before obtaining enough failures times to make inference. on other side, in type II hybrid 

censoring, we might take a long time to observe the desired number of failures. To overcome these 

disadvantages, Chandrasekar et al. in [8] introduced generalized type I and type II hybrid censoring schemes.  

 

Many authors have studied residual entropy function in different aspects. Ebrahimi and Pellerey in [9] proposed 

the Shannon residual entropy function as a measure of uncertainty. Belzunce et al. in [10] considered the 

residual entropy function. Drissi et al. in [11] consider the cumulative residual entropy. Baig and Dar in [12] 

studied the concept of Varma’s entropy for the life time distributions that generalizes the entropy measure. 

Kayal in [13] studied a generalized residual entropy of record values and weighted distributions. Rajesh et al. in 

[14] proposed the local linear estimators for the conditional residual entropy function in the case of complete 

and censored samples. 

 

In this paper, under the generalized type II hybrid censoring scheme (G-Type-II HCS), we derive and estimate 

the entropy and residual entropy of the inverse Weibull distribution. Also, we study the performance of the 

estimates using simulated data. The simulation contains different parameter values. The relative absolute bias 

and relative root MSE of the estimates have been obtained to assess the performance of the various estimates 

under different models. The rest of the paper is organized as follows; in section 2, we derive the residual entropy 

function associated with the Inverse Weibull model. In section 3, we discuss estimating the parameter of the 

inverse Weibull distribution under the G-Type-II HCS. In section 4, the maximum likelihood estimates of the 

entropy of the inverse Weibull distribution under G-Type-II HCS are obtained. In section 5, we derive the Bayes 

estimators for the residual entropy of an inverse Weibull distribution under the squared error loss (SEL) 

function. In section 6, some simulation studies are performed. Finally, the conclusions in section 7. 

 

2 Estimation of the Residual Entropy Function of Inverse Weibull 

Distribution 
 

The residual entropy measures the uncertainty contained in the conditional density of (𝑋 − 𝑡) given 𝑋 > 𝑡 about 

the predictability of remaining lifetime of the component. Moreover, −∞ < 𝐻(𝑓, 𝑡) < ∞,  and if 𝑡 = 0  the 

residual entropy reduces to Shnnons’s entropy which is defined over (0,∞), [see Pathiyil in [15]. 

 

Consider an inverse Weibull distribution with the pdf (3), survival function 

 

𝑆(𝑥; 𝛼, 𝜆) = 1 − 𝑒−(
𝜆

𝑥
)
𝛼
  
, 

      (7) 

 

and hazard function 

 

ℎ(𝑥; 𝛼, 𝜆) =
𝛼𝜆𝛼𝑥−(𝛼+1)𝑒−(

𝜆

𝑥
)
𝛼
  

1 − 𝑒−(
𝜆

𝑥
)
𝛼
  

. 

       (8) 

 

Then the residual entropy function associated with the inverse Weibull model is 
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𝐻𝐼𝑊 = 1 −
1

(1 − 𝑒−(
𝜆

𝑡
)
𝛼
  )

∫ (𝛼𝜆𝛼𝑥−(𝛼+1)𝑒−(
𝜆

𝑥
)
𝛼
  )  𝑙𝑜𝑔 [

𝛼𝜆𝛼𝑥−(𝛼+1)𝑒−(
𝜆

𝑥
)
𝛼
  

1 − 𝑒−(
𝜆

𝑥
)
𝛼
  

] 𝑑𝑥.
∞

𝑡

 

 

After some calculations the residual entropy function associated with the inverse Weibull model is 

 

𝐻𝐼𝑊 = 1 −
1

(1 − 𝜏)
[−𝜏(𝑙𝑜𝑔𝛼 + 𝛼𝑙𝑜𝑔𝜆)

− (𝛼 + 1) {−(1 − 𝜏)𝑙𝑜𝑔𝜆 −
1

𝛼
(−Υ − 𝛾 (0, (

𝜆

𝑡
)
𝛼

) − 𝜏𝑙𝑜𝑔 (
𝜆

𝑡
)
𝛼

)} + 𝛾 (2, (
𝜆

𝑡
)
𝛼

)

+ {(1 − 𝜏) log(1 − 𝜏) + 𝜏}], 

 

(9) 

 

where 𝜏 = 𝑒−(
𝜆

𝑡
)
𝛼

,Υ is Euler’s constant (≈ 0.577), and 𝛾(𝑠, 𝑧) = ∫ 𝑡𝑠−1𝑒−𝑡
𝑧

0
𝑑𝑡 is the lower incomplete gamma 

function. 

 

3 Generalized Type-II Hybrid Censoring 
 

Consider a life-testing experiment with 𝑛  identical units placed on a life-test at time 0. Assume that 

𝑋1, 𝑋2, … , 𝑋𝑛 denote the corresponding lifetimes from a distribution with cdf 𝐹(𝑥) and pdf 𝑓(𝑥). A G-Type-II 

HCS is described as follows; Fix an integer 𝑟 ∈ {1, 2, … , 𝑛} and fixed time points 𝑇1 and 𝑇2 ∈ (0,∞) such that 

𝑇1 < 𝑇2. If the 𝑟th failure occurs before time point 𝑇1, terminate the experiment at 𝑇1. If the 𝑟th failure occurs 

between 𝑇1 and 𝑇2 terminate the experiment at the time of the failure, 𝑋𝑟:𝑛. If the 𝑟th failure occurs after time 𝑇2, 

terminate the experiment at 𝑇2. This type of censoring, while shooting for a minimum number of failures, 𝑟, 
guarantees that the experiment will be completed by time 𝑇2. Thus 𝑇2 serves as the absolute maximum time that 

the experiment would not be allowed to go beyond time 𝑇2 [see, Balakrishnan and Kundu in [16]. In other 

words; 

 

- If the 𝑟th failure occurs before time 𝑇1 , terminate the experiment at  𝑇1, 

- If the 𝑟th failure occurs between time 𝑇1, and time 𝑇2 terminate the experiment at  𝑋𝑟, 
- If the 𝑟th failure occurs after time 𝑇2, terminate the experiment at 𝑇2 . 

 

In this type of HCS, the maximum time for the duration of the experiment is pre-fixed by 𝑇2, and this is an 

advantage from an experiment’s points view. We will observe one of the following forms of observations, under 

such a G-Type-II HCS: 

 

𝐶𝑎𝑠𝑒 𝐼: {𝑥1:𝑛 < 𝑥2:𝑛  < ⋯ < 𝑥𝑟:𝑛 < ⋯ < 𝑥𝑑1 ≤ 𝑇1)},   𝑖𝑓 𝑥𝑟:𝑛 < 𝑇1, 

 
𝐶𝑎𝑠𝑒 𝐼𝐼: {𝑥1:𝑛 < 𝑥2:𝑛  < ⋯ < 𝑇1 < ⋯ < 𝑥𝑟:𝑛 ) }, 𝑖𝑓 𝑇1 < 𝑥𝑟:𝑛 < 𝑇2, 

 

𝐶𝑎𝑠𝑒 𝐼𝐼𝐼: {𝑥1:𝑛 < 𝑥2:𝑛  < ⋯ < 𝑇1 < ⋯ < 𝑥𝑑2 ≤ 𝑇2 }, 𝑖𝑓 𝑥𝑟:𝑛 > 𝑇2. 

 
A schematic representation of the G-Type-II HCS is presented in Fig. 1. 

 

Let 𝑑1  and 𝑑2  be the number of observed failures up to time points 𝑇1  and 𝑇2  respectively. Then, under a 

generalized type-II hybrid censored sample, the likelihood functions for the three different cases describe above 

are as follows: 

 

Case I 

 
𝑛!

(𝑛−𝑑1)!
∏ 𝑓(𝑥i:𝑛 )
𝑑1
𝑖=1

[𝑆(𝑇1)]
𝑛−𝑑1;   for  𝑑1 = 𝑟, (𝑟 + 1), … , or 𝑛,  
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Case II  

 

𝑛!

(𝑛 − 𝑟)!
∏𝑓(𝑥i:𝑟  )

𝑟

𝑖=1

[𝑆(𝑥𝑟)]
𝑛−𝑟 , 

 

Case III 

 
𝑛!

(𝑛−𝑑2)!
∏ 𝑓(𝑥i:𝑛 )
𝑑2
𝑖=1

[𝑆(𝑇2)]
𝑛−𝑑2;  for  𝑑2 = 0, 1,2,… , or ( 𝑟 − 1) . 

 

Case I 

 
 

Case II 

 
 

Case III 

 
 

Fig. 1. Schematic representation of the G-Type-II HCS 
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4 Maximum Likelihood Estimation 
 

Assume that the lifetimes of the experimental units are i.i.d. inverse Weibull random variables with cdf (2) and 

pdf (3). If 𝑑1 and 𝑑2 denote the number of failures that occur by time points 𝑇1 and 𝑇2 respectively, then based 

on the three forms of the G-Type-II HCS, the likelihood functions of 𝛼 and 𝜆 are given by: then the likelihood 

function will take one of the following forms; 

 

Case I 

 

𝐿𝐼(𝛼, 𝜆) =
𝑛!

(𝑛 − 𝑑1)!
(∏𝛼𝜆𝛼𝑥𝑖

−(𝛼+1)
𝑒
−(

𝜆

𝑥𝑖
)
𝛼
  

𝑑1

𝑖=1

)(1 − 𝑒
−(

𝜆

𝑇1
)
𝛼
  
)

𝑛−𝑑1

, 

 

Case II 

 

𝐿𝐼𝐼(𝛼, 𝜆) =
𝑛!

(𝑛 − 𝑟)!
(∏𝛼𝜆𝛼𝑥𝑖

−(𝛼+1)
𝑒
−(

𝜆

𝑥𝑖
)
𝛼
  

𝑟

𝑖=1

)(1 − 𝑒
−(

𝜆

𝑥𝑟
)
𝛼
  
)

𝑛−𝑟

, 

 

Case III 

 

𝐿𝐼𝐼𝐼(𝛼, 𝜆) =
𝑛!

(𝑛 − 𝑑2)!
(∏𝛼𝜆𝛼𝑥𝑖

−(𝛼+1)
𝑒
−(

𝜆

𝑥𝑖
)
𝛼
  

𝑑2

𝑖=1

)(1 − 𝑒
−(

𝜆

𝑇2
)
𝛼
  
)

𝑛−𝑑2

. 

 

Additionally, the corresponding log likelihood functions are: 

 

Case I 

 

𝑙𝐼(𝛼, 𝜆) ≡ 𝑘1 + 𝑑1(𝑙𝑜𝑔𝛼 + 𝛼𝑙𝑜𝑔𝜆) − (𝛼 + 1)∑𝑙𝑜𝑔𝑥𝑖 −∑(
𝜆

𝑥𝑖
)
𝛼

+ (𝑛 − 𝑑1) log (1 − 𝑒
−(

𝜆

𝑇1
)
𝛼

) ,

𝑑1

𝑖=1

𝑑1

𝑖=1

 

 

Case II 

 

𝑙𝐼𝐼(𝛼, 𝜆) ≡ 𝑘2 + 𝑟(𝑙𝑜𝑔𝛼 + 𝛼𝑙𝑜𝑔𝜆) − (𝛼 + 1)∑𝑙𝑜𝑔𝑥𝑖 −∑(
𝜆

𝑥𝑖
)
𝛼

+ (𝑛 − 𝑟) log (1 − 𝑒
−(

𝜆

𝑥𝑟
)
𝛼

)

𝑟

𝑖=1

𝑟

𝑖=1

, 

 

Case III 

 

𝑙𝐼𝐼𝐼(𝛼, 𝜆) ≡ 𝑘3 + 𝑑2(𝑙𝑜𝑔𝛼 + 𝛼𝑙𝑜𝑔𝜆) − (𝛼 + 1)∑𝑙𝑜𝑔𝑥𝑖 −∑(
𝜆

𝑥𝑖
)
𝛼

+ (𝑛 − 𝑑2) log (1 − 𝑒
−(

𝜆

𝑇2
)
𝛼

)

𝑑2

𝑖=1

𝑑2

𝑖=1

, 

 

where 𝑘1, 𝑘2, and 𝑘3 are normalizing constants that don't depend on the parameters. 

 

Therefore, cases I, II, and III can be combined in a single formula written as: 

 

𝑙(𝛼, 𝜆) ≡ 𝐶 + ℓ 𝑙𝑜𝑔𝛼 + ℓ 𝛼 log 𝜆 − (𝛼 + 1)∑log 𝑥𝑖

ℓ

𝑖=1

−∑(
𝜆

𝑥𝑖
)
𝛼

+ (𝑛 − ℓ)𝑙𝑜𝑔 (1 − 𝑒
−(

𝜆

ℛ
)
𝛼

) ,

ℓ

𝑖=1

 (10) 

 

where ℓ = 𝑑1, ℛ = 𝑇1, 𝑎𝑛𝑑 𝐶 = 𝑘1  for case I, ℓ = 𝑟,ℛ = 𝑥𝑟 , 𝑎𝑛𝑑 𝐶 = 𝑘2  for case II and ℓ = 𝑑2, ℛ =
𝑇2, 𝑎𝑛𝑑 𝐶 = 𝑘3 for case III. 

 

The corresponding log likelihood equations are: 



 
 
 

Ahmad; ARJOM, 17(3): 21-34, 2021; Article no.ARJOM.65068 

 

 

 

27 
 
 

 

𝑑 ln 𝑙(𝛼, 𝜆)

𝑑𝛼
≡ ℓ (

1

𝛼
+ 𝑙𝑛𝜆) −∑log 𝑥𝑖

ℓ

𝑖=1

−∑(
𝜆

𝑥𝑖
)
𝛼

𝑙𝑜𝑔 (
𝜆

𝑥𝑖
)

ℓ

𝑖=1

+ (𝑛 − ℓ)
𝑒
−(

𝜆

ℛ
)
𝛼

(1 − 𝑒
−(

𝜆

ℛ
)
𝛼

)

(
𝜆

ℛ
)
𝛼

𝑙𝑜𝑔 (
𝜆

ℛ
) = 0, 

 

And 

 

𝑑 ln 𝑙(𝛼, 𝜆)

𝑑𝜆
≡
𝛼

𝜆

(

 
 
ℓ −∑(

𝜆

𝑥𝑖
)
𝛼ℓ

𝑖=1

− (𝑛 − ℓ) (
𝜆

ℛ
)
𝛼 𝑒−(

𝜆

ℛ
)
𝛼

(1 − 𝑒−(
𝜆

ℛ
)
𝛼

)
)

 
 
= 0. 

 

These equations cannot be solved analytically and we solve them numerically to obtain the maximum likelihood 

estimates �̂� and �̂� of α and λ respectively. 

 

Once we obtain the MLE  �̂�, and �̂�, the MLE of the entropy is obtained as: 
 

�̂�(𝑓) = 𝛾 (1 +
1

�̂�
) + log (

�̂�

�̂�
) + 1.  (11) 

 

5 Bayes Estimation 
 

We will derive in this section, the Bayes estimator for the residual entropy of an inverse Weibull distribution. To 

obtain the Bayes estimator of the residual entropy, first we will define the prior distributions of the shape (α) and 

the scale parameters (λ), and we will obtain the joint prior distribution of α and λ. Next, we will obtain the joint 

density of α, λ and the random variable X. Then, we will obtain the posterior distribution of α, λ given X. 

Finally, we will obtain the Bayes estimates of the residual entropy. 

 

5.1 Prior and posterior distributions 
 

Assume that α and λ are known a priori to have joint density of the form  

𝜋(𝛼, 𝜆) ∝ 𝑏𝑎 𝛼𝑎−1 𝑒−𝑏𝛼𝑑𝑐𝜆𝑐−1𝑒−𝑑𝜆 . 
 

This mean that they are independently distributed with gamma densities g(a,b) and g(c,d) respectively, with a, b, 

c, and d >0. In this case the joint density of the α, λ, and 𝑋 is 

 

𝜋(𝛼, 𝜆, 𝑋) ∝ 𝑏𝑎 𝛼𝑎−1 𝑒−𝑏𝛼𝑑𝑐𝜆𝑐−1𝑒−𝑑𝜆𝛼ℓ𝜆𝛼ℓ (∏𝑥𝑖
−(𝛼+1)

𝑒
−(

𝜆

𝑥𝑖
)
𝛼
  

ℓ

𝑖=1

)(1 − 𝑒−(
𝜆

ℛ
)
𝛼
  )

𝑛−ℓ

. 

 

= 𝛼ℓ+𝑎−1 𝜆𝛼ℓ+𝑐−1𝑒−(𝑏𝛼+𝑑𝜆) (∏𝑥𝑖
−(𝛼+1)

𝑒
−(

𝜆

𝑥𝑖
)
𝛼
  

ℓ

𝑖=1

)(1 − 𝑒−(
𝜆

ℛ
)
𝛼
  )

𝑛−ℓ

. 

 

Thus, we can obtain the posterior distribution of α and λ, given X, as follows: 

 

𝜋(𝛼, 𝜆|𝑋) ∝
𝜋(𝛼, 𝜆, 𝑋)

∫ ∫ 𝜋(𝛼, 𝜆, 𝑋)𝑑𝛼𝑑𝜆
∞

0

∞

0

. 

 

Based on the joint prior distribution (𝛼, 𝜆) , we will obtain the Bayes estimator (𝐻𝐹𝐺𝐻𝐶
∗ ) of the residual entropy. 

The Bayes estimate of the residual entropy under the GHCS model is  

 

𝐻𝐹𝐺𝐻𝐶
∗ =

∫ ∫ 𝐻(𝑓, 𝑡)
∞

0
𝜋(𝛼, 𝜆, 𝑋)𝑑𝛼𝑑𝜆

∞

0

∫ ∫ 𝜋(𝛼, 𝜆, 𝑋)𝑑𝛼𝑑𝜆
∞

0

∞

0

. (12) 
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6 Illustrative Example 

 
For illustrative purposes, we use a data set given by W.B. Nelson in 1972 a subset of which is reported in 

Lawless [17]. The data set, as explained by Lawless himself, “ is the results of a life test experiment in which 

pattern of a type of electrical insulating fluid were subject to a constant voltage stress”. The length of time (in 

minutes) until each unit broke down was: 0.27, 0.4, 0.69, 0.79, 2.75, 3.91, 9.88, 13.95, 15.93, 27.8, 53.24, 82.85, 

89.29, 100.58, 215.1. We imagined subjected this data to G-Type-II HCS. We take case I (𝑇1 = 4, 𝑇2 =
15, and 𝑟 = 5 ), case II (𝑇1 = 3, 𝑇2 = 30, and 𝑟 = 9 ), and case III (𝑇1 = 3, 𝑇2 = 60, and 𝑟 = 12 ). Table 1 

presents the estimation of the entropy of the G-Type-II HCS. 

 

7 Simulation Study 

 
Two simulation studies were carried out; the first one to assess the performance of different estimates of the 

entropy under GHSC II, and the second to study the performance of the estimates of the residual entropy using 

different values of the parameters.  

 

7.1 Simulation study for the entropy 

 
Different sets of values of  𝛼 , 𝜆, 𝑇1, 𝑇2 , and 𝑟 were used to carry out the assessment. Using Inverse Weibull 

distribution, a generalized type II hybrid censored data can be generated as describe next.  Start by generated 

random sample of size n from the inverse Weibull distribution and let 𝑥1:𝑛, … , 𝑥𝑛:𝑛 be the order statistic of this 

sample. Now, let 𝑑1 and 𝑑2 are the number of failures before 𝑇1 and 𝑇2 respectively. If  𝑥𝑟:𝑛 < 𝑇1 then we have 

case I and the corresponding generalized hybrid censor sample would be (𝑥1:𝑛 < 𝑥2:𝑛  < ⋯ < 𝑥𝑟:𝑛 < ⋯ <
𝑥𝑑1 ≤ 𝑇1 ). If 𝑇1 < 𝑥𝑟:𝑛 < 𝑇2  then we have case II and the corresponding generalized hybrid censor sample 

becomes ( 𝑥1:𝑛 < 𝑥2:𝑛  < ⋯ < 𝑇1 < ⋯ < 𝑥𝑟:𝑛) . If  𝑥𝑟:𝑛 > 𝑇2  then we have case III where we stop the 

experiment at 𝑇2, and the corresponding generalized hybrid censor sample become (𝑥1:𝑛 < 𝑥2:𝑛  < ⋯ <  𝑇1  <
 … < 𝑥𝑑2 ≤ 𝑇2). In each case the process is replicated 10,000 times. The associated ML estimates are computed 

and the ML estimates of the entropy are derived. Finally, different schemes are taken into consideration to 

compute the relative absolute bias, relative root mean square error (RRMSE) of all estimates, and these values 

are tabulated in Table (2). We note the following from Table 1. 

 

 The relative absolute bias (Rbias) and relative root mean square error (RRMSE) values of ML estimates 

of  �̂�(𝑋) at 𝛼 = 9, and 𝜆 = 3 has the smallest value among other value use.  

 The Rbias and RRMSE values of ML estimates of  �̂�  at 𝛼 = 10, and 𝜆 = 2  has the smallest value 

compared to the RBias and RRMSE of ML estimates for the corresponding other sets of parameters. 

 The Rbias and RRMSE values of ML estimates of  �̂�  at 𝜆 = 3, and 𝛼 = 11  has the smallest value 

compared to the RBias and RRMSE of ML estimates for the corresponding other sets of parameters. 

 For a fixed  , the RBias values increase generally as the shape parameter 𝛼 increase. 

 In general, for a fixed 𝛼, 𝜆, 𝑛, and 𝑇1 the RBias values of   �̂�(𝑋) increase as the stopping time point  𝑇2 

increases. 

 The RBias and RRMES values of  �̂�(𝑋) decrease as the sample size 𝑛 increase. 

  

7.2 Simulation study for residual entropy 

 
In this section, we assess the performance of the estimates of the residual entropy that are obtained using 

simulated data under GHCS Type II. The simulation encompassed different sample sizes, parameter values of 

the inverse Weibull distribution, and time point 𝑇2, using the same 𝑇1 for all. In each case, we replicate the 

process 1000 times. Using Equation (12), all Bayes estimates are computed with respect to the prior distribution 

using the Mathematica ® 12 software for evaluating the integration for numerator and denominator numerically. 

For the hyperparameters of the prior distribution the values 𝑎 = 𝑏 = 𝑐 = 𝑑 = 1 were used. Bayes estimates of 

residual entropy are derived with respect to the squared error loss (SEL) function. Finally, different schemes 

have been taken into consideration to compute the relative absolute bias (RBias), and relative root mean square 

error (RRMSE) values of all estimates and these values are tabulated in Table (3). We present the following 

discussions based on RBias and RRMSE; 
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 The RBias and RRMSE values of the residual entropy estimates (𝐻𝐹𝐺𝐻𝐶
∗ ) at 𝛼 = 𝜆 = 2 have the smallest 

values among other values use. 

  For a fixed 𝛼, 𝜆, 𝑟, 𝑛, and 𝑇1, it seems that the RBias values increase as the stopping time 𝑇2 increase. 

 In most times, for a fixed 𝛼, 𝜆, 𝑟, 𝑛, and 𝑇1, it seems that the RRMSE values decrease as the stopping time 

𝑇2 increase. 

 For a fixed 𝜆 the RBias values increase in general as the shape parameter 𝛼 increase. 

 For a fixed 𝛼 the RBias values increase in general as the scale parameter 𝜆 increase. 

 The RBias and RRMES values of  𝐻𝐹𝐺𝐻𝐶
∗  become samlller as sample size 𝑛 increase. 

 

8 Summary 

 
In this article, we derived the entropy estimators for inverse Weibull distribution using ML estimation from 

generalized type II hybrid censored samples. Also, simulation studies were carried out to assess the effect of 

different choices of censoring parameters (𝑛, 𝑇1,  𝑇2  and 𝑟) of the estimates of entropy. Furthermore, we derived 

the residual entropy function of the inverse Weibull distribution based on generalized type II hybrid censored 

samples. Again, simulation studies were carried out to study the performance of the estimates of the residual 

entropy using different values of the censoring parameters. while we focused on the estimation of the entropy 

and residual entropy of the inverse Weibull distribution, the estimation of the entropy and the residual entropy 

functions from other distribution is the subject of a forthcoming paper. 

 

Table 1. Estimation of entropy as an example 
 

 𝑻𝟏 𝑻𝟐 𝒓 �̂� RBiase 
�̂� 

MSE 
�̂� 

RRMSE 
�̂� 

CaseI 4 15 5 -2.24984 0.30465 0.01840 0.07866 

CaseII 3 30 9 -2.29531 0.23630 0.01283 0.06101 

CaseIII 3 60 12 -2.34251 0.22941 0.01273 0.05923 
 

Table 2. Entropy estimates and relative root MSEs for �̂�, �̂�, and �̂� for selected values of 𝜶, 𝝀, 𝒓 = 𝟓𝟎, 

𝑻𝟏 = 𝟕 and 𝑻𝟐. 
 

λ α n 𝑻𝟐 RBias 

   �̂� 

RRMSE 

�̂� 

RBias 

𝜶 

RRMSE 

     �̂� 

RBias 

    𝝀 

RRMSE 

     �̂� 

2 8 200 10 0.017000 0.000170 0.006112 0.000061 0.000341 0.0000034 

   11 0.020323 0.000203 0.006820 0.000068 0.000248 0.0000024 

   12 0.024865 0.000249 0.007856 0.000079 0.000116 0.0000011 

   13 0.020823 0.000208 0.006989 0.000070 0.000291 0.0000029 

  150 10 0.028254 0.000283 0.009521 0.000095 0.000375 0.0000037 

   11 0.027108 0.000271 0.009161 0.000092 0.000386 0.0000039 

   12 0.028659 0.000287 0.009459 0.000095 0.000279 0.0000027 

   13 0.032927 0.000329 0.010635 0.000106 0.000294 0.0000029 

  100 10 0.039407 0.000394 0.013614 0.000136 0.000589 0.0000059 

   11 0.043453 0.000435 0.014522 0.000145 0.000479 0.0000048 

   12 0.041407 0.000414 0.014087 0.000141 0.000576 0.0000057 

   13 0.046863 0.000469 0.015118 0.000151 0.000291 0.0000029 

 9 200 10 0.033728 0.000337 0.006249 0.000062 0.000285 0.0000028 

   11 0.038436 0.000384 0.006660 0.000067 0.000094 0.0000000 

   12 0.031290 0.000313 0.006070 0.000061 0.000460 0.0000046 

   13 0.043495 0.000435 0.007507 0.000075 0.000254 0.0000025 

  150 10 0.055771 0.000558 0.009616 0.000096 0.000225 0.0000022 

   11 0.052818 0.000528 0.009432 0.000094 0.000462 0.0000046 

   12 0.045529 0.000455 0.008311 0.000083 0.000312 0.0000031 

   13 0.130440 0.000498 0.008874 0.000089 0.000297 0.0000029 

  100 10 0.082880 0.000829 0.014479 0.000145 0.000401 0.0000040 

   11 10.95300 0.109530 0.014495 0.000145 3.565230 0.0356523 
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λ α n 𝑻𝟐 RBias 

   �̂� 

RRMSE 

�̂� 

RBias 

𝜶 

RRMSE 

     �̂� 

RBias 

    𝝀 

RRMSE 

     �̂� 

   12 10.95300 0.109536 0.013107 0.000131 3.558980 0.0355898 

   13 10.95200 0.109520 0.015009 0.000150 3.567500 0.0356754 

 10 200 10 0.208273 0.002083 0.006840 0.000068 0.000237 0.0000023 

   11 0.190718 0.001907 0.006386 0.000064 0.000209 0.0000020 

   12 0.193213 0.001932 0.006359 0.000064 0.000091 0.0000000 

   13 0.189880 0.001899 0.006411 0.000064 0.000275 0.0000027 

  150 10 0.278510 0.002785 0.009217 0.000092 0.000306 0.0000031 

   11 0.296618 0.002966 0.009640 0.000096 0.000291 0.0000029 

   12 0.275783 0.002758 0.008994 0.000090 0.000109 0.0000011 

   13 0.281380 0.002814 0.009346 0.000093 0.000380 0.0000038 

  100 10 0.425896 0.004259 0.014185 0.000142 0.000555 0.0000056 

   11 0.404701 0.004047 0.013503 0.000135 0.000536 0.0000054 

   12 0.454614 0.004546 0.014602 0.000146 0.000353 0.0000035 

   13 0.390345 0.003903 0.013189 0.000132 0.000482 0.0000048 

 11 200 10 0.076735 0.000767 0.007317 0.000073 0.000216 0.0000022 

   11 0.061274 0.000613 0.006283 0.000063 0.000278 0.0000028 

   12 0.083022 0.000830 0.007690 0.000077 0.000167 0.0000017 

   13 0.081228 0.000812 0.007708 0.000077 0.000285 0.0000029 

  150 10 0.093312 0.000933 0.008906 0.000089 0.000140 0.0000014 

   11 0.108285 0.001083 0.010045 0.000100 0.000159 0.0000016 

   12 0.103150 0.001032 0.009654 0.000097 0.000072 0.0000000 

   13 0.094844 0.000948 0.009132 0.000091 0.000210 0.0000021 

  100 10 0.148410 0.001484 0.014488 0.000145 0.000533 0.0000053 

   11 0.151440 0.001514 0.014419 0.000144 0.000333 0.0000033 

   12 0.141503 0.001415 0.013830 0.000138 0.000489 0.0000049 

   13 0.151267 0.001513 0.014475 0.000145 0.000371 0.0000037 

3 8 200 10 1.466000 0.014660 0.007931 0.000079 1.687800 0.0168780 

   11 1.466600 0.014666 0.007806 0.000078 1.687400 0.0168740 

   12 1.466600 0.014666 0.007806 0.000078 1.687400 0.0168740 

   13 0.009320 0.000093 0.007347 0.000073 0.000068 0.0000000 

  150 10 0.011011 0.000110 0.009221 0.000092 0.000162 0.0000016 

   11 0.012852 0.000129 0.010054 0.000101 0.000189 0.0000019 

   12 0.013829 0.000138 0.010838 0.000108 0.000030 0.0000000 

   13 0.013783 0.000138 0.010732 0.000107 0.000068 0.0000000 

  100 10 0.018095 0.000181 0.014830 0.000148 0.000279 0.0000028 

   11 0.017844 0.000178 0.014480 0.000145 0.000007 0.0000000 

   12 0.017319 0.000173 0.014541 0.000145 0.000444 0.0000044 

   13 0.018284 0.000183 0.014810 0.000148 0.000111 0.0000011 

 9 200 10 0.011150 0.000112 0.007285 0.000073 0.000045 0.0000000 

   11 0.012255 0.000123 0.007942 0.000079 0.000045 0.0000000 

   12 0.010871 0.000109 0.007424 0.000074 0.000250 0.0000025 

   13 0.008610 0.000086 0.006255 0.000063 0.000235 0.0000024 

  150 10 0.012394 0.000124 0.008886 0.000089 0.000503 0.0000050 

   11 0.015300 0.000154 0.010201 0.000102 0.000179 0.0000018 

   12 0.017135 0.000171 0.011118 0.000111 0.000196 0.0000020 

   13 0.014070 0.000141 0.009530 0.000095 0.000205 0.0000021 

  100 10 0.019491 0.000194 0.013556 0.000136 0.000357 0.0000036 

   11 0.019661 0.000197 0.013608 0.000136 0.000351 0.0000035 

   12 0.022523 0.000225 0.015173 0.000152 0.000378 0.0000038 

   13 0.019950 0.000200 0.013885 0.000139 0.000486 0.0000049 

 10 200 10 0.012495 0.000125 0.007037 0.000070 0.000338 0.0000034 

   11 0.014010 0.000140 0.007479 0.000075 0.000154 0.0000015 

   12 0.011203 0.000112 0.006380 0.000064 0.000252 0.0000025 

   13 0.011818 0.000118 0.006658 0.000067 0.000265 0.0000027 

  150 10 0.017985 0.000180 0.009766 0.000098 0.000230 0.0000023 



 
 
 

Ahmad; ARJOM, 17(3): 21-34, 2021; Article no.ARJOM.65068 

 

 

 

31 
 
 

λ α n 𝑻𝟐 RBias 

   �̂� 

RRMSE 

�̂� 

RBias 

𝜶 

RRMSE 

     �̂� 

RBias 

    𝝀 

RRMSE 

     �̂� 

   11 0.017619 0.000176 0.009591 0.000096 0.000318 0.0000032 

   12 0.014677 0.000147 0.008549 0.000085 0.000401 0.0000040 

   13 0.016022 0.000160 0.008986 0.000090 0.000338 0.0000034 

  100 10 0.025386 0.000254 0.014017 0.000140 0.000386 0.0000039 

   11 0.024162 0.000242 0.013544 0.000135 0.000447 0.0000045 

   12 0.025809 0.000258 0.014229 0.000142 0.000356 0.0000036 

   13 0.025559 0.000256 0.014084 0.000141 0.000360 0.0000036 

 11 200 10 0.013288 0.000133 0.007204 0.000072 0.000157 0.0000016 

   11 0.013189 0.000132 0.007110 0.000071 0.000129 0.0000013 

   12 0.012310 0.000123 0.006714 0.000067 0.000084 0.0000000 

   13 0.013685 0.000137 0.007381 0.000074 0.000172 0.0000017 

  150 10 0.016727 0.000167 0.009107 0.000091 0.000148 0.0000015 

   11 0.018324 0.000183 0.009907 0.000099 0.000240 0.0000024 

   12 0.016584 0.000166 0.009191 0.000092 0.000271 0.0000027 

   13 0.016723 0.000167 0.009180 0.000092 0.000207 0.0000021 

  100 10 0.026002 0.000260 0.014317 0.000143 0.000506 0.0000051 

   11 0.034429 0.000344 0.014472 0.000145 0.000394 0.0000039 

   12 0.032598 0.000326 0.013882 0.000139 0.000330 0.0000033 

   13 0.035905 0.000359 0.014998 0.000150 0.000381 0.0000038 

 

Table 3. The residual entropy estimates of 𝑯𝑭𝑮𝑯𝑪
∗  and its relative bias and relative root MSEs for selected 

values of 𝜶, 𝝀, 𝒓 = 𝟓𝟎, 𝑻𝟏 = 𝟕 and 𝑻𝟐, when 𝒂 = 𝒃 = 𝒄 = 𝒅 = 𝟏 and 𝒕 = 𝟐 

 

RRMSE RBias 𝑯𝑭𝑮𝑯𝑪
∗  𝑻𝟐 n α λ 

0.000082 0.008199 5.5252 10 200 1 1 

0.000082 0.008193 5.5252 11    

0.000082 0.008215 5.5253 12    

0.000082 0.008228 5.5254 13    

0.000112 0.011170 5.5415 10 150   

0.000111 0.011143 5.5414 11    

0.000116 0.011612 5.5439 12    

0.000105 0.010483 5.5377 13    

0.000165 0.016461 5.5705 10 100   

0.000163 0.016316 5.5697 11    

0.000162 0.016199 5.5691 12    

0.000165 0.016519 5.5708 13    

0.000011 0.000338 4.3023 10 200 2 2 

0.000018 0.000579 4.3033 11    

0.000035 0.001109 4.3056 12    

0.000023 0.000721 4.2977 13    

0.000027 0.000855 4.3045 10 150   

0.000010 0.000312 4.2995 11    

0.000019 0.000613 4.3035 12    

0.000012 0.000374 4.2992 13    

0.000073 0.002315 4.3108 10 100   

0.000042 0.001322 4.3065 11    

0.000042 0.001314 4.2952 12    

0.000040 0.001256 4.3062 13    

0.007982 0.252400 5.2222 10 200 3 3 

0.007921 0.250499 5.2355 11    

0.007895 0.249673 5.2413 12    

0.007942 0.251154 5.2309 13    

0.003356 0.106136 6.2439 10 150   

0.003403 0.107600 6.2337 11    
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RRMSE RBias 𝑯𝑭𝑮𝑯𝑪
∗  𝑻𝟐 n α λ 

0.003373 0.106658 6.2403 12    

0.003371 0.106606 6.2406 13    

0.001097 0.034703 6.7429 10 100   

0.001001 0.031652 6.7642 11    

0.001065 0.033663 6.7502 12    

0.001017 0.032146 6.7608 13    

0.002961 0.296100 8.1356 10 200 9 3 

0.002951 0.295100 8.1471 11    

0.002960 0.296000 8.1364 12    

0.002950 0.295900 8.1377 13    

0.002813 0.281300 8.3069 10 150   

0.002820 0.282200 8.2957 11    

0.002800 0.280000 8.3220 12    

0.002800 0.280100 8.3209 13    

0.002300 0.234900 8.8433 10 100   

0.002398 0.239700 8.7873 11    

0.002362 0.236100 8.8289 12    

0.002366 0.236600 8.8235 13    

0.000725 0.022931 6.5859 10 200 4 0.5 

0.000746 0.023586 6.5815 11    

0.000702 0.022206 6.5908 12    

0.000700 0.022151 6.5912 13    

0.000727 0.022976 6.5856 10 150   

0.000853 0.026963 6.5587 11    

0.000804 0.025428 6.5691 12    

0.000809 0.025577 6.5681 13    

0.000919 0.029074 6.5444 10 100   

0.000905 0.028625 6.5475 11    

0.000919 0.029076 6.5445 12    

0.000932 0.029468 6.5418 13    

0.001487 0.047029 6.5523 10 200 5 0.5 

0.001469 0.046441 6.5564 11    

0.001514 0.047871 6.5465 12    

0.001506 0.047612 6.5483 13    

0.001564 0.049446 6.5357 10 150   

0.001598 0.050546 6.5281 11    

0.001543 0.048807 6.5401 12    

0.001550 0.049015 6.5387 13    

0.001710 0.054077 6.5039 10 100   

0.001678 0.053063 6.5108 11    

0.001720 0.054383 6.5018 12    

0.001695 0.053584 6.5073 13    

0.002278 0.072039 6.5049 10 200 6 0.5 

0.002250 0.071169 6.5110 11    

0.002301 0.072778 6.4997 12    

0.002310 0.073059 6.4978 13    

0.002314 0.073176 6.4969 10 150   

0.002320 0.073381 6.4955 11    

0.002354 0.074442 6.4881 12    

0.002346 0.074190 6.4898 13    

0.002335 0.073848 6.4922 10 100   

0.002384 0.075395 6.4814 11    

0.002391 0.075633 6.4797 12    

0.002363 0.074726 6.4861 13    

  0.000901 0.090100 12.472 10 200 9 4 
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RRMSE RBias 𝑯𝑭𝑮𝑯𝑪
∗  𝑻𝟐 n α λ 

0.000916 0.091580 12.452 11    

0.000886 0.088580 12.493 12    

0.000912 0.091150 12.458 13    

0.000120 0.011961 13.543 10 150   

0.000135 0.013521 13.522 11    

0.000093 0.009294 13.580 12    

0.000176 0.017560 13.466 13    

0.002093 0.209346 16.577 10 100   

0.002147 0.214719 16.650 11    

0.001944 0.194396 16.372 12    

0.001909 0.190929 16.324 13    

0.000174 0.005511 6.5822 10 200 3 0.5 

0.000154 0.004878 6.5864 11    

0.000152 0.004812 6.5869 12    

0.000062 0.001956 6.6058 13    

0.000119 0.003766 6.5938 10 150   

0.000204 0.006453 6.5760 11    

0.000116 0.003657 6.5945 12    

0.000119 0.003759 6.5938 13    

0.000207 0.006543 6.5754 10 100   

0.000210 0.006631 6.5748 11    

0.000365 0.011543 6.5423 12    

0.000214 0.006766 6.5739 13    

0.002102 0.066481 5.9101 10 200 5 1 

0.002103 0.066486 5.9100 11    

0.002106 0.066604 5.9093 12    

0.002115 0.066890 5.9075 13    

0.002147 0.067894 5.9011 10 150   

0.002148 0.067921 5.9009 11    

0.002136 0.067557 5.9032 12    

0.002149 0.067952 5.9007 13    

0.002219 0.070172 5.8867 10 100   

0.002218 0.070131 5.8869 11    

0.002198 0.069502 5.8909 12    

0.002196 0.069456 5.8912 13    

 

9 Conclusion 

 
Two simulation studies were carried out; in the first one, we obtained the entropy estimates and its RBiase and 

RRMSE. In the second one, we obtained the residual entropy estimates and its RBiase and RRMSE. From the 

two studies the results show that the estimates in general is very robust against changes of 𝑛, 𝑇1, 𝑇2  and 𝑟  
resulting in low levels of RBiase and RRMSE. These results are valid for reasonably small initial sample sizes. 
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