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ABSTRACT 
 

The transition from eco-harmful chemical processes to bio-based production of organics has been 
challenged by the complex nature of fermentation processes. The growth kinetics and modelling of 
oxalic acid production from cassava whey by Aspergillus niger (MW188538) was studied in a batch 
fermentation system. The production kinetics of the fermentation study was fitted into the Monod, 
Leudeking-Piret and Andrews kinetic models. The oxalic acid, reducing sugar, cell dry weights were 
determined according to the experimental design. The results showed that the production of oxalic 
acid was associated with A. niger with significant R2 value of 0.96 and growth rate of 0.065 
biomass/day using the cassava whey as a sole carbon source. The substrate consumption rate of 
14.28 and 11.16 mg/g/day with an R2 value of 0.94 and 0.96 suggest there was a healthy utilization 
of the Cassava whey and yeast extract as described by the Leudeking-Piret and Monod models. 
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1. INTRODUCTION 
 
In recent years, the need for a sustainable 
environment has been at the forefront of global 
debate. The necessity to create industry-critical 
chemicals in a more sustainable manner has 
prompted a search for less expensive and 
environmentally friendly feedstock as well as 
environmentally friendly manufacturing 
procedures. Because of the necessity to 
safeguard the environment, old chemical 
processes have been replaced by biologically 
based manufacturing of organic acids, exposing 
fungus as true striking cell factories. Fungal 
fermentation of organics has steadily grown and 
carved out a position in the chemical industry 
[1,2]. Organic acids have a wide range of 
industrial applications, including serving as 
building blocks for synthetics and the 
development of novel bio-based materials that 
can replace non-renewable petroleum-based 
polymers [3]. The organic acid market was 
valued at over 16 billion dollars globally in 2016, 
and is predicted to reach 29 billion dollars by 
2027. Although bulk commodity organic acids 
such as citric acid have a large market presence, 
oxalic, succinic, and other organic acids have 
made inroads into the additive, pharmaceutical, 
and preservation industries [4,5,6]. The 
development of sustainable bioprocesses                  
with a focus on low-cost renewable resources 
has been a key component of the transition to 
bio-based industrial production of organic               
acids. Microbial fermentation is now widely 
regarded as a reliable, low-cost, environmentally 
benign, and practical option for commercial 
organics production with lower carbon footprints 
[7,8]. 
 
Due to its importance in the pharmaceutical and 
metallurgical industries, oxalic acid, a 
dicarboxylic acid, has acquired popularity in the 
organic acid sector. Oxalate can be used as a 
preservative [9,10,11]; a cleaning agent (Guru et 
al., 2001); and a kaolin iron remover 
[9,10,11,12,13]. The chemical industry currently 
supplies the majority of the world's oxalic acid, 
which is produced using non-sustainable 
processes [14]. However, as enumerated by 
authors in a recent paper, there have been 
multiple examples of microbial synthesis of 
oxalate by fermentation by certain microbes 
(Chioma and Agwa, 2019). Because of its ease 
of handling, saprophytic nature, and high yield, 
A. niger is the biotechnologist's inoculum of 
choice for oxalate synthesis during fermentation 
(Emeko et al., 2015). 

Microorganisms' metabolite synthesis is 
influenced by the inoculum's strains and species, 
culture conditions, and growth medium [15]. 
Minor changes in the aforementioned elements 
might have a significant impact on the quality and 
quantity of fermentation products. As a result, 
every fermentation process must be optimized by 
finding the proper media composition and growth 
conditions for maximum yield [16]. The creation 
of kinetic models and experimental designs can 
be used to evaluate the microbial refinery 
[17,18]. The use of kinetic models is critical for 
reducing the number of tests required to evaluate 
operation conditions for optimization and control 
[19]. The structured and unstructured 
mathematical models are commonly employed in 
fermentation research [20], Gadjil and 
Venkatesh, 1997; [21,19]. Unstructured models 
use simply a global parameter like cell mass to 
explain the biological system, cell development, 
or product production, whereas structured 
models consider some basic elements of cell 
shape, function, and composition. For the 
explication of metabolic steps and the 
computation of kinetic parameters, theoretical 
models are typically created and applied [22]. 
Recent oxalate research has centered on 
optimizing oxalate production using RSM, but 
little or no work has been done on proposing a 
kinetic model for the creation of the organic       
acid. 
 
The objective of this study was to kinetically 
model the fermentation process oxalic acid 
production by A. niger grown on cassava whey 
medium. In this study, the Monod’s model and 
Leudeking-Piret model is used to describe the 
oxalate yield from the cassava whey and yeast 
extract. 
 

2. METHODOLOGY 
 

2.1 Sample Collection and A. niger 
Isolation 

 
The cassava whey employed for this research 
was collected from small cassava processing 
plants within Choba community of Obio/Akpor 
Local Government Area, Rivers State, Nigeria. 
The A. niger utilized for this study was isolated 
from dried banana peels and thereafter, identified 
using the internal transcribed spacer sequence 
(ITS) region of the nucleotide sequence and 
identified with the NCBI gene bank. The 
inoculum was maintained in Potato dextrose  
agar slants and stored at 4oC for future 
reference. 
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2.2 Fermentation Medium 
 
The medium for the production of oxalic acid was 
prepared in a 500 mL glass flask containing 200 
mL of the medium. The media formulation 
described by Emeko et al., (2015) was modified 
and consisted of 0.05 g/L of yeast extract, 0.5g/L 
of MgSO4.7H2O and 1.0 g/L KH2PO4 and 20 g/L 
of cassava whey. 
 

2.3 Preparation of Inoculum for 
Fermentation 

 
The inoculum was prepared by transferring a 
loopful of cells from a 48 hr slant to the 250-ml 
Erlenmeyer flasks containing 50 ml of the 
medium as described by Emeko et al. (2015), 
which contained 0.025g/L of yeast extract, 
0.025g/L of MgSO4.7H2O and 0.5g/L KH2PO4. 
The medium was adjusted to pH 6.0 using 4M 
NaOH solution prior to sterilization and 4% 
glucose. This inoculum was cultivated at 30 °C, 
for 48 h under agitation (200 rpm). 
 

2.4 Submerged Fermentation of Oxalic 
Acid 

 
A batch of 200ml medium in 500ml Erlenmeyer 
flask with 4% cassava whey as carbon source 
were used. The flasks were sterilized by 
autoclaving at 121oC for 15 minutes, then 2.5 x 
106 spores/ml of A. niger were inoculated and 
incubated at 30oC, 200 rpm using a rotary shaker 
incubated for 14 days. The fermentation medium 
was maintained at pH of 6.0 throughout the 
period using 3.0 M NaOH (Betiku et al., 2014). 
 

2.5 Kinetic Models 
 
2.5.1 Microbial growth associated production 

of oxalic acid and other process 
parameters 

 
The use of a variety of logistic and non-
parametric indicators, such as the Leudeking-
piret, Monods, and Andrews models, has been 
highlighted as one of the most important 
techniques to understanding the function of 
growth-related processes revealed in this study. 
The rate of growth of microbiological feed stock 
utilizing Cassava whey and yeast extract has 
been determined in this study. The growth rate 
calculation, which supports the role of the 
exponential phase in batch and continuous 
fermentation, has been expressed using first 
order kinetics and pseudo-first order as a 

verification and assessment approach, as shown 
in Equation 1. 
 

µ= 
𝐿𝑛 (

𝑁1

𝑁𝑖
)

𝑇1−𝑇0
                                                     (1) 

 
Where the N1 and Ni are the Growth number 
(Microbial Counts) for the initial and final 
durations in days while the T0 and T1 are the 
initial and final durations of the fermentations. 
 
The Leudeking-Pirets and Monod’s models fits a 
number of non-logistic parametric considerations 
of the fermentations such as ones applied for the 
present study. The report of Linville et al. (2003); 
Manikandan et al., 2008 and Song et al. [23] 
have identified the role of unstructured, 
nonsegregated and iterative modeling of process 
parameters in the determination of the synthesis 
of metabolites by microbes which have been 
describes by Abu [24] and Agbaji et al. [25] as 
the factory of enzymes needed for biotechnology 
and bioprocess 
 

µx= 
𝐿𝑛 (𝑑𝑥)

(𝑑𝑡)
                                               (2) 

 

Given that  µ= 
µmax

(𝐾𝑠+𝑆)
                                 (3) 

 
Where µ= specific growth rate (per day); µmax= 
Maximum specific growth rate; Ks= saturation 
constant; S= Substrate concentration (mg/ml). 
 
The inability and flaws of the Monod’s Model to fit 
all growth associated conditions is a drawback. 
The need to apply other non-conventional 
models such as Andrews models as reported by 
Olorunnisola et al. (2018) as presented in 
Equation (4) shows the considerations of the 
Andrew’s Model 
 

µ= 
µmaxS

(𝐾𝑠+𝑆+𝑠2/𝐾𝑖)
                                                 (4) 

where Ki is inhibition constant and other 
parameters remain constant as presented in 
equation 3 above. 
 

2.5.2 Considerations and model fit 
assumptions 

 

i. A number of non-logistic models, such as 
Monod's and Leudeking-Piret Models, can 
forecast the generation of organic acids 
like oxalic acid. They have been observed 
to adequately suit secondary metabolite 
production, and they may be used to 
determine the specific growth rate using 
the exponential function of changes in 



 
 
 
 

Chioma et al.; CJAST, 40(31): 18-26, 2021; Article no.CJAST.75803 
 

 

 
21 

 

microbial count and time, as detailed by 
Abu et al., [24]; Olorunnisola et al., (2001). 
(2018). 

ii. Microbial growth dynamics in regulated 
solid-state fermentations follow standard 
growth settings using monocultures, with 
lag and exponential phases lasting variable 
amounts of time. This could be due to a 
number of variables, including the lack of a 
symbiotic interaction. This could also 
change depending on the rate of product 
synthesis and the isolate's unique growth. 

iii. The Halden Model, as well as the modified 
Michalis-Menten and Andrews equation, 
can be used to determine substrate 
absorption for both cassava whey and 
yeast extract. 

 
2.6 Analytical Techniques 
 
The oxalic acid concentration in the fermentation 
medium was determined through catalytic kinetic 
spectrophotometric method described by Jiang et 
al. (1996). The reducing sugar and cell dry 
weight were determined using the methods 
reported by Saqib and Whitney (2011) and (Abd-
aziz et al., 2008) respectively. 

 
3. RESULTS AND DISCUSSION 
 
The result presented in Fig.1 shows the linear 
regression plot for the estimation of the growth 
kinetics. The plot shows the linear regression of 
Log CFU/g against time duration. The values 
were fitted into an exponential model of 
y=3.1514e0.065x with a regression coefficient of 
0.9617. Similarly, the result presented in Fig 2 
shows the linear regression plot of growth rate 
against time using the growth indices for 
utilization of the cassava whey as a source of 

carbon and energy. The linear plot in Fig. 2 was 
observed to have a fit model regression 
coefficient R2 of 0.91 with an equation y = 
0.0041x +0.0691. The plot presented in Fig 3 
and Fig 4 represents the Leudeking – Piret’s and 
Monod’s model equation using the product 
formation rate against specific growth rate and 
the data was fit into a model y=0.3322x + 0.0944 
with regression coefficient R2 of 0.43 while the 
Monod regression using the specific growth rate 
against the inverse of substrate concentration 
[1/S].  Andrew’s modelling was presented in Fig. 
5 using the specific growth rate and substrate 
concentration. The logarithm modelling had a 
Regression coefficient R2 was 0.94 with a 
mathematical equation y= 0.029ln(x)+0.082. The 
result presented in Fig. 6 shows the regression 
model for yeast extract as nitrogen source. 
Regression coefficient R2 of 0.9373 with an 
equation of y=4.4047 + 0.051 was obtained for 
the utilization of the yeast extract as presented 
below. 
 

The stages of development phase, ranging from 
lag phase to death phase, have been found for 
solid-state fermentation [26]. A variety of 
drawbacks have been observed with 
monoculture and solid-state fermentation 
methods. Between the 2nd and 10th days of the 
fermentation investigation, this study observed a 
sharp and sustained exponential growth phase. 
This demonstrates that, independent of the 
culture circumstances, the performance of the 
inoculum utilized in the study can progress 
through the fermentation process, despite the 
feed stock conditions. The deduction of the 
specific growth rate and doubling time, as shown 
in Table 1 reveals that the inoculum response 
between the exponential and linear growth rates 
is similar. 

 

 
 

Fig. 1. Growth rate determination of A. niger using the Log of microbial concentration against 
Time 
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Fig. 2. Plot of the specific growth rate against time for the Cassava whey utilization by A. niger 
 

 
 

Fig. 3. Leudeking- Piret Plot for deduction of the substrate utilization rate (Cassava Whey) 
 

 
 

Fig. 4. Monods Modelling plot of the Specific Growth Rate against inverse of substrate 
concentration (Cassava Whey) 
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Fig. 5. Andrew’s Modelling of the Cassava whey substrate utilization using the specific growth 
rate against substrate concentration 

 

 
 

Fig. 6. Monods modelling plot of the product formation rate against specific growth rate 
 

Table 1. Summary of growth kinetics and modeling for cassava whey and yeast extract 
 

Sample Growth 
Rate (per 
day) 

R2 Generation 
Time 
(Gen/day) 

General 
Growth 
Specifics 

Luedeking-
Piret Model 

Monods 
Model 

Andrew’s 
Model 

C: Cassava 
Whey 

0.065 0.96 24.39 µ=0.065 
(d-1) 
R2=0.96 

µ=0.065 (d-1) 
R2=0.85 
µmax=0.13 
Ks= 14.29 

µ=0.004 
(per Day) 
R2=0.91 
 

µ=0.05 
(per Day) 
R2=0.50 
 

N: Yeast 
Extract 

µ=0.0006 
(d-1) 
R2=0.98 

µ=0.065 (d-1) 
R2=0.94 
µmax=0.13 
Ks= 11.11 

µ=0.056 
(per Day) 
R2=0.96 
 

µ=0.024 
(per Day) 
R2=0.94 
 

Consideration dx/dt Regression 
coefficient 

t.d= 0.693/ 
µ 

dµ /dt [dp/dt] /d[µ] d [µ] / 
d[1/S] 

d[µ]/ d[S] 

 

y = 0.029ln(x) + 0.0823
R² = 0.9424
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Using Cassava Whey as the sole carbon source, 
phase was reported to have an R2 value of 0.96 
and a growth rate of 0.065 biomass/day. This 
supports Matsakas et al. [27]'s findings that most 
monocultures' substrate adaption kinetics may 
limit growth performance and substrate 
consumption. The mineralization limits of a 
variety of agrowaste for limiting nutrients may 
limit the growth dynamics of a monoculture, 
especially when employing A. niger as a 
feedstock. The paper emphasized the positive 
correlation between the substrate and the feed 
stock utilized in the synthesis of oxalic acid, 
which was comparable to the finding of 
Olorunnisola et al. (2018), who found a match 
between process parameters and microbial 
performance prior to growth investigations in 
their study. These observations corresponded to 
those made in prior papers [23,28]. The positive 
tolerance of the substrates seen in this 
investigation and characterized by Andrew's and 
Leudeking- Piret Models indicated that the 
cassava whey and yeast extract-based media 
used in the study were positive and tolerated. 
Ravi et al. [29] were able to use Haldane's Model 
to predict growth and process parameters in 
monocultures using substrate utilization 
constants in a similar investigation. Mullai et al., 
[30] claimed that a large fraction of substrate in a 
solid-state fermentation can limit microbial 
performance and product creation rate. The time 
it takes for most Ascomycota and Zygomycota-
based inocula to sprout and prosper in a 
substrate differs from one substrate to the next, 
necessitating substrate research prior to growth 
kinetics, which is consistent with the current 
work. Monoculture cultivation and fermentation 
have limits. Other research has identified the role 
of mixed cultures in mitigating the issues that 
monoculture systems face [31,32,25,33].The 
congruency of model parameters obtained in this 
study is likewise consistent with a trend 
previously described by other researchers. The 
substrate consumption rates (14.28 and 11.16 
mg/g/day) for the cassava whey and yeast 
extract with an R2 value of 0.96 an d 0.94 
respectively indicated that there was a healthy 
utilization of Cassava whey and yeast extract for 
the generation of oxalic acid and that the process 
was growth associated. 
 

4. CONCLUSION 
 
Biotechnologists are still working to gain a 
complete understanding of microbial cell 
factories. The models utilized in this study to 
represent the fermentation process appear to be 

useful in determining oxalic acid synthesis, 
biomass, and substrate consumption. According 
to the findings, the Luedeking-Piret model best 
characterized oxalic acid production, indicating 
that substrate consumption was linked to product 
generation by A. niger. As a result, the models 
created could be beneficial for managing the 
growth, oxalate generation, and substrate 
consumption kinetics of this strain at a large 
fermentation scale. 
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