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ABSTRACT 
 

The Internet of Things’ (IoT) market is expected to grow exponentially at the global level in the 
coming years, due to the proliferation of more reliable and faster networks resulting from the 
extensive rollout of 5 to 10 G mobile networks. By 2025, it is expected that worldwide projection of 
IoT connected devices will be pegged at 30.9 billion units. Despite the potential benefits of the new 
technology, security in IoT is a major threat. According to HP, 70% of IoT devices are vulnerable to 
sniffing attacks and reliable solution is yet to be found. The standard cryptographic algorithms such 
as RSA and AES provide good security but their utilization in IoT is questionably due to hardware 
and energy constraints for computationally expensive encryption schemes. However, elliptic curve- 
based cryptography, a recent paradigm in public key cryptography, achieves the same level of 
security with smaller key sizes. On the other hand, the total score of performance of an elliptic 
curve-based cryptosystem depends largely on the efficiency of the arithmetic operations performed 
in it. It is against this background that this paper proposes efficient elliptic curve arithmetic for 
implementing ECC based schemes suitable for IoT systems implementations. Elliptic curve point 
arithmetic implementations in projective coordinate systems over binary extension fields introduce 
higher efficiencies in software. In this regard, this paper has proposed an improved López-Dahab 
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point arithmetic methods on non-supersingular elliptic curves over       . The results show 
69.20% improvement in Point Doubling, 44.68% in Point Addition and the scalar point multiplication 
execution time is decreased by 48.80%. 

 

 
Keywords: ECC; security; galois fields; field arithmetic; point arithmetic; ECSM; projective coordinate. 
 

1. INTRODUCTION 
 
The Internet of Things (IoT) is considered the 
most recent upgrade of the existing Internet and 
various Information and Communication 
Technology (ICT) tools. It envisions a very near 
future of total connectivity, interaction and 
ubiquity among objects of everyday life, industrial 
equipment, vehicles and practically all physical 
devices hence the term ‘Things’ [1]. 
 
Currently, security is a major threat to the IoT 
vision. IoT security borders on protecting stored 
data and data in transit against eavesdropping, 
redirection or illegal altering during devices’ 
communications. According to HP, 70% of IoT 
devices are vulnerable to sniffing attacks and 
reliable solution is yet to be found [2]. 
  
Elliptic curve-based cryptographic schemes were 
first proposed as the foundation for security 
framework in Internet of Things and Cloud 
Computing [3]. In another study on lightweight 
cryptographic algorithms suitable for data 
security and authentication in IoT, [4] noted that 
the standard cryptographic algorithms such as 
RSA and AES provide good security but their 
utilization in IoT is questionably due to hardware 
and energy constraints for computationally 
expensive encryption schemes whilst ECC 
achieves the same level of security with smaller 
key sizes (Table 1). 
 
On the other hand, the total score of 
performance of an elliptic curve based 
cryptosystem depends largely on the efficiency of 
the arithmetic operations performed in it [5]. It is 
against this background that this paper proposes 
efficient elliptic curves arithmetic for 
implementing elliptic curve based schemes. 
 

2. ARITHMETIC OPERATIONS IN 
ELLIPTIC CURVE CRYPTOGRAPHY 

 

The building blocks of any public key 
cryptoscheme are its arithmetic operations. ECC 
arithmetics are put into three groups which 
include Scalar arithmetic, Point arithmetic and 
Field arithmetic. Point arithmetic operations 

include Point Addition and Point Doubling whilst 
addition, subtraction, multiplication, squaring and 
inversion in the underlying field constitute the 
field arithmetic operations [6,7]. 
 
The two major fields used in cryptography are 
prime fields    and binary extension fields, 

denoted     or        for some integer    . 

The latter introduce higher efficiencies as 
compared to the other fields in software 
implementation [8]. In this regard, efficient 
methods for the arithmetic involved in 
implementing elliptic curves over binary 
extension fields        whereby the order of the 

curves can be up to      s is of great 
importance. 
 

2.1 Representation of Elements in         
 
Elements of        are represented in many 
basis. However the major ones used in 
cryptography are the Normal Basis (NB), 
Polynomial Basis (PB) and Redundant Basis 
(RB), according to [9]. A very remarkable 
observation is that the choice of the basis by 
which field elements are represented has a major 
effect on the implementation of the finite field 
operations [10,11]. For example, in software 
implementations of cryptographic schemes, the 
use of Polynomial Basis yields better results than 
the Normal Basis [12]. However, when it comes 
to hardware implementations, for some        
operations, using the Normal Basis is more 
suitable [13]. 
 
In the Polynomial Basis, the elements of         
are binary polynomials and at most      

degree. Now let a basis element           be 
a root of an m-degree irreducible 
polynomial     , the set of powers of the basis 

element                         define a 
Polynomial Basis for        [9]. Any field 

element          can therefore be uniquely 
expressed as 

  
               

          
      

 
    

   
                                                  (1) 
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Table 1. Comparison between RSA and ECC 

 
Algorithm Key Size 

(bits) 
Key 
generation (s) 

Signature 
generation (s) 

Signature 
verification (s) 

Merits 

RSA 1024 0.16 0.01 0.01 Increased 
security 15360 679.06 9.20 0.03 

ECC 163 0.08 0.15 0.23 Increased speed, 
less memory 
requirement, 
optimum security 

571 1.44 3.07 4.53 

 
2.2 Addition (Subtraction) of        

Elements in Polynomial Basis 
 

          
    

                     
    

    
                                              (2) 

 
The additions is given as 

 
                           

                 (3) 

 
A careful observation is that Equation (3) is 
reduced to simply XORing        . 

 
2.3 Multiplication of        Elements in 

Polynomial Basis 
 
Let a            be represented as      
polynomials 

 

          
    

   
       

           
    

   
                                                (4)  

 
where ai, bi   GF(2) or equivalently represented 
as binary vectors and  let 

 
               

 
be an irreducible polynomial of degree n over 
GF(2) the extension field multiplication of  
          is given as 

 
                    

    
          

    
       (5) 

                                      
   

   
                

                   
     

     

 
There are a number of ways of implementing 
Equation (5). A few of the most recommended 
approaches are presented here. 

 
The standard Shift-and-Add method [14] 
computes                    . This is based on 
the fact that  

               
                  

                                                                (6) 
 

and in that regard, the method computes 
 

                                         (7) 
 

and add all the results for which    = 1. 
 

The Comba’s Right to left and the Left to Right 
methods (Algorithm 1 and Algorithm 2) that can 
be interleaved with a polynomial reduction 
algorithm (Algorithm 3) are some improved 
versions of the Standard Shift and Add. 
 

In [15], the polynomial representation was used to 
develop another method of multiplying two 
elements in GF(2

m
). It was a variant of the 

original Montgomery’s method for modular 
multiplication of integers. 
 

2.4 Field Arithmetic Inversion 
 

Inversions are the most expensive operations 
among the field arithmetics useful to point 
arithmetics in elliptic curves cryptography. The 
multiplicative inverse of an element           
is that element    such that 
 

                                                           (8) 
 

A number of algorithms for both    and        

identified in the literature are based on the 
Euclidean algorithm and the Fermat’s Little 
Theorem (FLT). A premier algorithm using 
Normal Basis found in [8] remains the generic. It 
was extended to Polynomial Basis by [16]. 
 

2.5 Point Arithmetic on Elliptic Curves 
 

Elliptic curves over binary extension fields are 
two types: Supersingular and Non-supersingular 
as defined in Equation (9) and Equation (10) 
respectively. However, for cryptographic 
applications, recommendations for the use of only 
non-supersingular curves have come up strongly 
[17,18]. 
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Algorithm 1. Right-left comba’s method for polynomial multiplication 
 

Input: Binary polynomials a(x) and b(x) of degree at most     

Output:                                      

       
                     

                       

                                      
                     

                      
                 

              
 

Algorithm 2. Left-to-right comba’s method for polynomial multiplication 
 

Input: Binary polynomials a(x) and b(x) of degree at most     
Output:                                      

       

                          
                       

                                      
                     

                    

                 
              

 
Algorithm 3. Bit by bit polynomial modular reduction 

 

Input:                                                    
Output:                 
                                                   

                           
                  

                  
   

 
  

                           
                           
 

                                

 
Let q =          
 
A supersingular elliptic curve over q is 
 

                                           (9) 
 

                                           . 
 

A non-supersingular elliptic curve over q is 

                                        (10) 
 
                         
                       
 
The set of points on E with coordinates in 
       is the set 

 

                                                                                      (11)  
 
and 

 

                                                                                       (12) 
 

for supersingular and non-supersingular curves respectively. 
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For a non-supersingular elliptic curve E defined over GF(2
m
) in affine coordinates as in Equation (10), 

Point Addition and Point Doubling operations are generally computed as follows [17]. 
 

i) Point Addition 

Let            and                                    
                   where, 

 

                   
                                                                                                                        (13) 

with   
     

     
 

 
ii) Point Doubling 
 

Let               then             =                 

                
  

 

  
                                                                                                                                

       
             

          
  

  

                                             

 
A repeated addition is represented as 
multiplication of a point by an integer. For 
example, the addition of n times of P as 
illustrated bellow is considered n multiplied by P. 

 
                         

        

                             (15)                                          

 
In this regard, Point Doubling is a special 
addition instance where P = Q and as such P+Q 
= P+P, thus reducing the Point Doubling 
operation to addition of a point to itself.  P+P is 
also denoted as 2P.  

 
2.5.1 Projective coordinates 

 
The formulas for both Point Addition and Point 
Doubling require one field inversion each and 
field multiplications in either case. The cost of 
field addition and squaring can be ignored 
according to the works of [18]. Inversion in 
GF(2

m
) is very expensive as compared relatively 

to multiplication. As a result, alternative point 
representations, called projective cordinates, in 
which the point arithmetics are performed without 
inversions are the most prefered. Several types 
of projective coordinates for the non-
supersingular elliptic curves exist. The three 
most recommended are: 

 
2.5.1.1 The standard projective coordinates  

 
In the Standard Projective Coordinates system, 

the projective point              corresponds 

to the point           in the affine system. The 

corresponding equation of the elliptic curve is 
presented as 
 

                                    (16) 
 
2.5.1.2 The jacobian projective coordinates 
 
The projective point              is mapped to 

the point             in the affine coordinates. 
The projective equation is presented as 
 

                                   (17) 
 
2.5.1.3 The López-Dahab (LD) projective 

coordinates  
 

In this coordinate system, the projective point 
             corresponds to the affine 

coordinate point            whilst its projective 
equation is  
 

                                  (18) 
 

Table 2 has a summary of computational cost 
analyses of the point operations in the three 
projective coordinate systems and the affine 
coordinate [12]. The counts of field 
multiplications (M) and field inversions (I) are 
measured in each system. 
 

2.6 Scalar Arithmetic 
 

The scalar arithmetic, which involves the 
multiplication of a scalar k by a point P, denoted 

  , is considered the most dominant and time 
consuming operation, estimated to take about  
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Table 2. Field arithmetic operations count in 
point arithmetic on non-supersingular curves 
 

Coordinate 
system 

General 
addition 

General 
addition 
(mixed) 

Doubling 

Affine 1 I + 2M - 1 I + 2M 
Standard 
projective 

13M 12M 7M 

Jacobian 
projective 

14M 10M 5M 

López-
Dahab 
projective 

14M 8M 4M 

 

80% of the total execution time of any elliptic 
curve cryptographic scheme [19]. Over the years, 
a myriad of proposed techniques to provide 
efficient implementations of the scalar 
multiplication have emerged in the literature. A 
good survey on    is found in [20]. 
 

2.7 Summary of Findings from the 
Literature 

 

The elliptic curve scalar multiplication, being the 
most expensive operation in the overall elliptic 
curve based encryption/decryption, relies on the 
point arithmetic, which in turn, relies on the 
underlying field arithmetics. Surveys on various 
ECSM  indicate that the field inversion is very 
expensive as compared relatively to 
multiplication and squaring, and it is responsible 
for the high computational overhead in ECSM 
[20,21,22,23]. The cost of field addition and 
squaring can be ignored [18]. Bhardwaj, et al. 
Houssain, et al. [5] did a computational cost 
analysis of these operations over        and 
established that the cost of field addition is 
negligible; field inversion is equivalent to ten 
times field multiplication; and field squaring is 
approximately 0.2 times field multiplication. 
 

In terms of implementation, field addition 
(subtraction) of two elements             can 
be achieved simply by a bitwise XORing of 
        whilst multiplication and squaring using 
Polynomial Basis are quite simple in software 
implementation. 
 

3. PROPOSED EFFICIENT ARITHMETICS 
FOR IMPLEMENTATION 

 

The summary of findings from the literature 
suggests that, for efficient implementation of 
ECC, the scalar point multiplication methods 
devoid of field inversions will be lighter and yield 
faster speed encryptions/decryptions, and as 

such very suitable for real-time IoT applications. 
In this regard, this paper proposes as follows: 
 

3.1 Proposed Point Arithmetic  
 

From the data in Table 2, one can appreciate 
that Point Addition and Point Doubling methods 
in the López-Dahab projective coordinate system 
offer the minimum field multiplications count and 
they do not require the computational expensive 
field inversions, and for that matter, the best 
alternative. However, a critical analyses of the 
addition and multiplication formulas and 
algorithms, as they are presented in [24], reveals 
that, for software implementation, more 
improvements can be done to further improve 
performance of the López-Dahab methods as 
follows: 
 

3.1.1 Introduction of concurrency 
 

The algorithms are executed in a step-by-step 
approach even if a previous step does not have 
dependencies in the preceding steps. Introducing 
multi-threading into these methods, otherwise 
termed concurrent processing, will be apt, in 
order to allow non-dependent segments to 
execute at the same time. This is expected to 
reduce the execution time although the field 
operations’ counts will remain the same. In this 
regard, concurrent execution is proposed in 
Algorithm 4 and Algorithm 5. 
 

A caveat to this proposal is that some IoT 
devices may not have multicore technology. 
Notwithstanding, the issues on architecture 
dependencies, massive scaling and design 
challenges of IoT based Industrial applications, in 
addition to security, are still in contention [25]. 
Moreover, multicore processors are becoming 
mass products and as such it is not farfetched to 
conceive the notion that the upcoming IoT 
devices will be multicore compliant. 
 

3.2 Proposed Scalar Point Multiplication 
 

From the literature, two main efficient 
approaches are used: binary methods and 
Windows based methods. Except a very few but 
with more computational overheads, majority of 
the methods are based on the binary expansion 
of the scalar 
 

                    
 

and perform either Point Doubling and/or Point 
Addition depending on the value of    . In this 
regard, this paper proposes the interleaving of 
any efficient method with Algorithms 4 and 5. An 
example is presented in Algorithm 6. 
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Algorithm 4. Multi-thread lópez-dahab point doubling 
 

Input:                                                        

Output:                                 

1.                         

2.               
   

    // end of thread 1 

3. Thread2 {       
     

   } // end of Thread2 

Thread3 Starts 

4.                     
   

    
  

5.          
   

    
     

   
6.        

     
      

7.            
    

   
  } 

Thread3 ends 

8. Wait for multiple threads 

                    
 

Algorithm 5. Multi-thread lópez-dahab point addition 
 

Input:                in LD projective coord,            in affine coordinate system on 

                      
Output:                  in LD coordinates 
1.                           
2.                                
3.             
4.      

           
5.                
6.                                        
7.                                                    
8.                                                  
9. If      then 

9.1 if      then use Point doubling algorithm for computing 
                            and return               
9.2 else return       

      
  

Thread1 Starts 
10.                                                    
11.                                               
12. If a =1 then                                
13.      

                                                    
14.                                                    
15.         

                                       
16.                                               
17.                                              

 Thread1 Ends 
Thread2 Starts 

18.      
                                            

19.                                                 
20.                                              
21.                                                    

Thread2 Ends 
22. Wait for multiple threads 

23.                                                    
24.                                                 
25.                   

 



 
 
 
 

Abukari et al.; AJRCOS, 14(4): 228-237, 2022; Article no.AJRCOS.94995 
 

 

 
235 

 

4. KEY PERFORMANCE ANALYSIS 
 

In order to measure the performance of the 
proposed Multi-Thread López-Dahab (MTLD) 
Point Addition and Point Doubling, the                   
original López-Dahab algorithms and the 
proposed were implemented in Borland Delphi 
on Intel Core i3 running Windows 10. Comparing 
the proposed to the original López-Dahab 
algorithms, a remarkable decrease in the running 

time was observed as presented in Table 3 and 
Fig. 1. Point Doubling has seen 69.20% 
improvement whilst the Point Addition is 
improved by 44.68%. The scalar point 
multiplication execution time is decreased by 
48.80%. These findings prove that the proposed 
MTLD is yet a further improvement of the most 
efficient point and scalar ECC arithmetic, a result 
that is much desired for IoT real-time 
applications. 

 
Table 3. Running time (in μs) comparison between LD and proposed MTLD 

 

Operation/ Method López-dahab  MTLD Improvement (%) 

Point Doubling 940 289 69.20 
Point Addition 1860 1029 44.68 
Scalar Point Multiplication 2930 1500 48.80 

 
Algorithm 6. Left to right operand scanning method for kp using improved lópez-dahab point 

arithmetic 
 

Input: Integer                     ), Point          
Output: Point R = kP. 

        // Initialization of R 

1.                     do 
    2.1                                        // PDBL using Algorithm 4 

    2.2 if       then           //PADD using Algorithm 5 
 3. Return (R) 

 

 
 

Fig. 1. Running time (in μs) comparison between LD and proposed MTLD 
 

5. CONTRIBUTION OF THE RESEARCH 
 
The results of this research are especially significant to cryptography. The improved arithmetic can be 
used in elliptic curve-based cryptoschemes to obtain higher speed encryptions and decryptions. This 
is very desirous in real-time applications which will soon be dominated by IoT systems.  
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6. CONCLUSION 
 

In this work, proposed efficient elliptic curve 
arithmetic for implementing ECC based schemes 
suitable for Internet of Things’ applications is 
presented. The elliptic curve scalar multiplication 
(ECSM), being the most expensive operation in 
an elliptic curve based cryptoscheme, relies on 
the point operations which also depend on the 
efficiency of the field arithmetic of the underlying 
finite field. Field inversion in        is very 
expensive as compared relatively to 
multiplication and squaring and it is responsible 
for the high computational overhead in ECSM. 
Most of the existing methods are implemented 
over prime fields that cannot avoid field 
inversions. However, elliptic curve point 
arithmetic implementations in projective 
coordinate systems over binary extension fields 
introduce higher efficiencies in software by 
avoiding field inversion operations. 
 

A premier method is the López-Dahab point 
arithmetic methods on non-supersingular elliptic 
curves over       . However, we discovered 
that further enhancements could be made to that 
method. In this regard, a proposal is made for 
incorporating concurrent processing into the 
López-Dahab projective coordinates point 
arithmetic methods which are currently non-
parallel algorithms. 
 

Addition and subtraction of two elements 
            were achieved by simply XORing 
a and b. Comba’s product scanning algorithms 

for multiplication of two elements             
were implemented using polynomial basis for 
their reported performance in the literature. 
 

A prototype implementation of the existing 
López-Dahab algorithms and our proposed 
improved methods was done for performance 
analysis. The execution time was measured for 
comparison. The results have shown that the 
proposed methods yield 69.20% and 44.68% 
improvement in Point Doubling and Point 
Addition respectively, whilst the scalar point 
multiplication’s execution time is decreased by 
48.80%. 
 

7. FUTURE WORKS 
 
We intend to use the improved arithmetic to 
implement the Elliptic Curve Diffie-Hellman Key 
Exchange (ECDHKE) protocol which shall then 
be used to develop encryption and decryption 
schemes suitable for IoT applications. 
 

It is also our desire to further our research in 
projective coordinates in        in order to 
develop an improved version of this work that 
does not use multi-threading approach since 
some IoT devices may not support multi-core 
technology. 
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