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Three nonlinear fractional models, videlicet, the space-time fractional (1 + 1) Boussinesq equation, (2 + 1)-dimensional breaking
soliton equations, and SRLW equation, are the important mathematical approaches to elucidate the gravitational water wave
mechanics, the fractional quantum mechanics, the theoretical Huygens’ principle, the movement of turbulent flows, the ion
osculate waves in plasma physics, the wave of leading fluid flow, etc. This paper is devoted to studying the dynamics of the
traveling wave with fractional conformable nonlinear evaluation equations (NLEEs) arising in nonlinear wave mechanics. By
utilizing the oncoming exp (-©(q))-expansion technique, a series of novel exact solutions in terms of rational, periodic, and
hyperbolic functions for the fractional cases are derived. These types of long-wave propagation phenomena played a dynamic
role to interpret the water waves as well as mathematical physics. Here, the form of the accomplished solutions containing the
hyperbolic, rational, and trigonometric functions is obtained. It is demonstrated that our proposed method is further efficient,
general, succinct, powerful, and straightforward and can be asserted to install the new exact solutions of different kinds of
fractional equations in engineering and nonlinear dynamics.

1. Introduction

The solutions of fractional partial differential equations
(FPDEs) are often of interest and are applied in practical life.
One of the main purposes of mathematical physics is to deter-
mine the exact solutions. Some scholars had perused the
plenty of physical wave equations. Therefore, several analytical
methods were systematically developed and applied to achieve
exact and approximate solutions of fractional ordinary and
partial differential equations with applications in various fields
of sciences like fluid flow, mechanics, biology, nonlinear
optics, substance energy, system identification, and geooptical
filaments which are expressed in fractional forms [1-11].

In the past few decades, a lot of studies have been exe-
cuted to find the new and further exact traveling wave solu-

tion of space-time fractional PDEs by many research. With
the collaboration of potential symbolic computer program-
ming software, they have been appointed for researching
appropriate solution to the nonlinear space-time fractional
PDEs by executing powerful techniques, for example, the
tan-(¢/2) expansion method, the sin-Gordon expansion
method, the G'/G expansion method, and the advanced
exponential expansion method [12-25].

This work mainly investigates three nonlinear fractional
models by utilizing the oncoming exp (-@(q))-expansion
method [17, 25]. Recently, Bashar and Roshid [17] and
Rahhman et al. [25] have studied this technique to some frac-
tional and nonfractional NLEEs. They found that this intro-
duced method provides some simple general form of
traveling wave solutions. Rahhman et al. [25] did not give
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any fruitful discussion about fractional NLEEs with this pro-
posed method. The important idea of this method is too
explicit: the exact solutions of NLEEs satisfy the nonlinear
ODE, ®'(q) + 0 exp (©(q)) + & exp (-O(q)), where 0 and &
are real parameters.

The space-time fractional Boussinesq equation with the
p-derivative [26, 27] is presented as follows:

t>0,0<a<l,
(1)

where W(x,t) is the vertical deflection. In Ref. [28],
authors constructed an analytical solution for both linear
and nonlinear time-fractional Boussinesq equations by an
iterative method. Also, Hemeda [29] studied the fractional
Boussinesq-like equation via a new iterative method.
Authors of [30] investigated nonlinear two-point boundary
value problem to the fractional Boussinesq-like equation.
Furthermore, the space-time fractional breaking soliton
equations [27, 31] are taken in the following form:

D{*¥ + bDY*¥ + BD2 (¥?) + yD*¥ = 0,

D{*¥ +aD% ¥ + 4a¥ (D{Q) + 4aQ(Di¥) =0, ¢>0,0<a<]l,
DY - D =0.

(2)

Meng and Feng [32] used an auxiliary equation method to
the space-time fractional (2 + 1)-dimensional breaking sol-
iton equation. Authors of [27, 33, 34] discussed the space-
time fractional SRLW equation (STFSRLWE) in the fol-
lowing case:

D"V + DX*¥ + WD} (D%¥) + DX¥ DY )
+D}¥(D*¥) =0, t>0,0<a<l.

The functional variable method, exp-function method, and
(G'/G)-expansion method to the fractional SRLW equa-
tion in the sense of the modified Riemann-Liouville deriv-
ative were utilized in Ref. [35]. The interested readers can
see more works in Refs. ([36-50]). Inc and coworkers pre-
sented the new soliton structures to some time-fractional
nonlinear differential equations with a conformable deriv-
ative via the Ricatti-Bernoulli sub-ODE method [51]. Sal-
ahshour and colleagues worked on the truncated M
-fractional derivative as a novel and effective derivative
under interval uncertainty and investigated the existence
and uniqueness conditions of the solution [52]. Authors
of [53] studied a coupled nonlinear Maccari’s system
which describes the motion of isolated waves localized in
a small part of space. Authors of [54] employed the expo-
nential function method for the combined KdV-mKdV
equation.

One technique, videlicet, the oncoming exp (-©(q))
-expansion technique, was employed by many researchers
for solving the number of nonlinear PDEs or fractional PDEs.
For both methods, the interested readers can refer for the first
technique to Refs. ([55-59]).
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The pattern of this article is summarized as follows. In
Sections 2 and 3, the properties and the detail of technique
are given, which are to be utilized for getting the exact solu-
tions of the fractional Boussinesq, breaking soliton, and
SRLW equations along with numerical simulation and details
of graph in Sections 4-7. Finally, some conclusions are given
in the end.

2. Analysis of y-Derivative
Definition 1 (see [60]). Definition of y-derivative: let A : [0;

1) — R; then, the p-derivative of A of order y is defined as

D) 1) = i L0 (V69 = A0)

=0 &

ue(0,1],¢t>0.

(4)

The features and novel theorems will be utilized as fol-
lows:The proofs of the above y-derivative properties are
obviously given in [60].

Theorem 2. Let p € (0, 1]; A, 9 be p-differentiable at point t;
therefore, we get

(1) D¥(aA(t) +b9(t)) = aD¥(A(t)) + bDE(9(t)), for a, b
€eR

(2) Df(c)=0,forceR

(3) DY (A(1)9(t)) = A1) Dy (9(t)) + 9(1) D} (A(¢))

(4) DY (M1)/9(¢)) = (M(#)DF(9(2)) — 8() D (A(£))) /5 (t)
(5) DEA(t) = (t + (1/T(w))) #dA(t)/dt

We have the following features as follows:

Df sin (f) =lim sin [t+£(t+ (l/r(/")))liq —sin (t)

=0 &€

= (t+ ﬁ) o cos (t),

D cos (t) = lim cos [t +e(t+ (1/T (1)) ] - cos (t)
e—0 €

= —<t+ ﬁ) o sin (1),

DY exp (t) =lim exp [t+e(t+ (UF(#)))I_“] —exp (1)

e—0 &

_ (H F(Im) e ()

Theorem 3. Let A : [0;1) > R; be a function such that A is
differentiable and also u-differentiable. Also, let A be a

(5)
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differentiable function defined in the range of 9. Then, we get

1 \'"*
“ 0 _ _ ! li i
Dros)() = (14 i) YOV EE) (9

where prime denotes the classical derivatives with respect to t.

3. The Oncoming exp (—O(q))-Expansion
Technique

This method was summarized and improved for achieving
the analytic solutions of NLPDEs.

Step 1. Assume that a nonlinear partial differential equation
is given in the general form as follows:

F (U Uy Uy thyy U thyy, ++) = 0. (7)

After simple algebraic operations, this equation is trans-
formed into an ordinary differential equation (ODE) with
the below transformation:

u(x,y,t)=U(q),q=x+ky + wt, (8)
as well as into nonlinear ODE:

é’(U, U, wU' kU, U, 0?U", ) 0. (9

Step 2. Then, assume that the searched wave solutions of
equation (9) have the following representation:

X X
U(q)= ) mY'(q)+ ) 7,Y 7 (q), (10)
=i =

where Y(q) =exp (-0(q)) and 7;(0<j < ), 7,(0<j< x) are
constants to be determined, such that T, T, #0, and ®=0

(q) is the solution of the following first-order differential
equation:

@' =38Y"(q) + Y(q) +6. (11)

If we try to find the solution of (11), then we obtain special
solutions that vary according to the state of the coeflicients:

Solution 1 (hyperbolic function solution). If § #0 and
6% — 48 > 0, then we achieve

O(q) =In (-% tanh <¥ (q+2)> - %),
(12)

where X is the integral constant.

Solution 2 (trigonometric function solution). If § # 0 and
0% — 48 < 0, afterward we achieve

—6% + 46 —0* + 46 0
O(g)=In <T+4 tan <#+4 (q+2)> - %>
(13)

Solution 3. If § =0, 80, and 6% — 48 > 0, afterward we
achieve

() =-1n ( f ) (14)

exp (0(q+2)) -1

Solution 4. If § #0, 8 # 0, and 6% — 48 = 0, afterward we
achieve

B _29(q+2)+4
@(q)—ln( 7@2(q+2) ) (15)

Solution 5. If § =0, O =0, and 6% — 48 = 0, afterward we
achieve

O(q) =In (q+ 2), (16)

where 71;,(0<j< x), 7;(0<j< x), 6, and & are also the con-
stants to be explored later. As usual, for determining y, the
highest-order derivative should be balanced with the
highest-order nonlinear terms in equation (10). However,
the positive integer y can be determined in this way.

Step 3. Following these operations, according to the m value
obtained above, let (11) be substituted into equation (10).
Therefore, we obtain a set of algebraic equations that con-
tains Y*(gq) (s=0,1,2,---). Then, setting each coefficient of
exp (—©(g)s) to zero, we can get a set of overdetermined
equations for 7,7, ), 7,,T,, 0, and &. Since the
obtained algebraic equation system will be difficult to solve
manually, symbolic computation such as Maple can be used
at this stage. Assume that the estimation of the constants
can be gotten by fathoming the mathematical conditions in
step 2. Substituting the estimations of the constants together
with the arrangements of equation (11), we will acquire new
and far reaching precise traveling wave arrangements of the
nonlinear development equation (7).
The X has the following features as follows:

U(q) =§Y%,
U'(q)=EYXy' =gyr,
U"(q)) =E¥,

(U(q))* =&Y,



where & =7 . Balancing U'' with U? yields
X+2=2x=>x=2. (18)

4. The First Equation

By utilizing the following transformation:

q:k(x+ ﬁ)ﬂ—w(t+ ﬁ)y, (19)

then, equation (1) transformed to

WP+ b+ B (V) yk P =0, (20)

6ykit, + pK’T,2 =0,
10yk* 07, + 2yk*r, + 2kt 7, =0,

28%yk*r, + 108yk* O, + 2k 7, = 0,
682 yk*m, + Bk*m,* = 0.

First:

w=k\/yk*0* - 48yK* - b, 7,

2 2
__Ry(@+20)

- ﬁ > 1 (24)
k*y0 Ky
=—6—,7,=—6—.
g B

According to Family I, (22) becomes

¥i(q) = _kzyszJrh?)
~ 6 (Ky6/p)
(-(vo7-10725) tanh ((VE" - 4512 (+ )) - (6120))
6 (kK*yIB)

(— (M/zs) tanh ((M/z) (q+ 2)) - (9/28)) g
(25)
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where W' = d¥/dg, and by integrating equation (20) twice
with respect to g, it can be seen as

(0 + bk + BIPW? + yk'¥W'' = 0. (21)

The balance number will be obtained y = 2 by using the bal-
ance principle. Then, the exact solution is given as

W(q)=my+mY(q)+ 772Y2(CI) + (22)

Firstly, we substitute the expressions of ¥(q) in (22) into (21)
and collect all terms with the same order of Y(q). Then, by
equating the coefficient of each polynomial to zero, we obtain
a set of algebraic equations as follows:

4yk 071, + 88yk*T, + 3yk*0t, + 2k 7y, + fKPT, + b T, + WP T, = 0,

68yk* 01, + yk*07T, + 28yk*t, + 2k o, + 2K M, T, + bK T, + w’T, =0,

28%yk*t, + Syk*Ot, + yk*Om, + 2yk*m, + BKPmy? + 2k T, + 2K, T, + bk, + w'ry =0, (23)
VK01, + 20yk*n, + 6yk* O, + 2Ky, + 2Bk m, T, + bk, + w?m, =0,

38yk*Om, + 4yk*0%m, + 88yk*m, + 2k o, + Bk, + bk, + w?m, = 0,

where

o)

L\ (26)
202 2
—ky/yk*0° — 48yk —b<t+ W) .
According to Family II, (22) becomes
g £10020
~ 6 (Ky6/p)
((\/—62 T 46/28) tan ((\/—62 ¥ 46/2) (q+ 2)) - (6/28))
~ 6 (kzy/ﬁ) ,
((V=67+1828) tan (V=67 +4512)(q+2)) - (6/26))2
(27)
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where
k( +—1 )H k\/ yk*6* — 48yk? la<t+1 )H
q=K|x —RK\Y —A0YKT = :
I(u) I'(u)
(28)

According to Family III, (22) can be written as

__k2y92_ Kyo 0
¥i(q) = B 6 B (exp (9(q+2))—1> (29)
()
B \exp(0(q+2)-1) "
where

S S o (S S

According to Family IV, (22) becomes

_ KBy (6°+208) Ky0[ 6 (q+E)
Pl =-——pF— "6 (‘ 9(q+2)+4>
K[ _fasp Y
B 20(q+2)+4)°
(31)
where
q=k(x+ﬁ)u—k\/—_b<t+ﬁ)y. (32)
Second:

6k*yd
B

w=ky/ YK + 439k b, my = -

» T
33
6k*y0 . __6k2y (33)
B B

According to Family I, (22) can be written as

6k*y o

¥s(q)=- B

~ 6(k2y0/ﬂ)
( ( 0" -4 /25) tanh ((\/97“4‘/2) q+2))—(6/26))

B 6(K'y/B) ,
(— (M/za) tanh ((V%_M/z) (q+ 2)) - (6/26))2

(34)

5
where
1 \* 1 \*
=k(x+——| —k\/-yk*@® + 46 kz—b(t+ —) .
1 ( r (M)) \/ ’ ' I'(p
(35)
According to Family II, (22) can be written as
6k*yd
Ye(q) = Ty
~ 6(k2y 6/[3)
((\/—92 T 46/28) tan <<\/—62 ¥ 45/2) (q+ 2)> - (e/za))
~ 6(kzylﬁ)
((VE=16120) an (V=07 +012) (g + 2)) - (6120)) .
(36)
where
1 # 1 #
=k({x+——] —ky/-yk*0* +46 kz—b(t+ —) )
k ( r(u)) Vor ! I ()
(37)
According to Family III, (22) can be written as
W (q) =6 K*y0 < 0 )
M B \exp (0(g+2)) -1
) 5 (38)
_ekY ( 0 )
B \exp (0(q+2))-1)"°

where

q=k<x+ ﬁ)ﬂ—k\/M(H ﬁ)” (39)

According to Family IV, (22) becomes

B 6k*ys k0 0*(qg+2)
Fala) =~ 5 %3 <_20(q+E)+4>
5 (40)
Ky(_ 0@+
?( 20(q+2) +4> ’

where

“

q=k(x+ F@)“—k\/—“b(u T(IM)) - (4
Third:

Ky (6% +28
w=k yk292_45yk2_b,n0=_¥’ﬂ1

K*y0 Ky
B B

(42)

=—6——,m,=-6



According to Family I, (22) becomes

Ky(6°+25) 6ky0

¥o(q) =~ B B
. (— 92; 4 tanh ( 92_48 (q+2)> - %)
Ky [ VP-4 N/ 2T AN
—6? (— 35 tanh ( 3 (q+2)>—%) >
(43)
where
=k(x+ 1>#—k\/ 120° — 46 kz—b(t+ 1)”
1 I(u) ' v I(w)
(44)

According to Family II, (22) can be written as

Ky (6% + 26) ~ 6k*y0

?/10(4) == ﬁ ﬁ
V-0%+ 46 -0% + 46 0
. 35 tan 3 (g+2) | - 2%
Ky (V=67 + 40 V=67 + 45 0\’
—6/;}< 28+4 tan< 2+4 (q+2)>—28> ,
(45)
where
—k<x+ L)”—k,/ 120% — 43 kz—b<t+ L)M
K I(u) v v T(w)
(46)

According to Family III, (22) can be written as

__Ky8® Ky (exp (B(q+2)) -1
llyll(q)_ ‘B 6 ﬁ < 9 ) (47)
Gk (exp (6(g+ %)) - 1)2
B 6 ’
where

According to Family IV, (22) can be written as

Ky (0% +268 Ky0 [ 20(g+2)+4
lI/lz(q)z_ ( )_6 Y (_ (q ) )

B B 0°(q+E)
K2y ( 20(q+3) +4>2
Sy o et vt ALE I
B 6*(q+E)
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where

q=k(x+ ﬁ)ﬂ—k\/——b(ﬂ ﬁ)# (50)

Fourth:

6k*yd
w= k\/—yk292 +48yk* — b,y = - L4 , 7T,
51
:_6k2y9 . :_6k2y. 1)
BB
According to Family I, (22) becomes
6k*yd
4 —_
13(9) B
K’y 6> — 45 V6 - 48 0
—671} <— 35 tanh ( 3 (q+2)> _26>
Ky [ VoF-45 NS A
—6? <— 25 tanh ( 3 (q+2)>—28> >
(52)
where
1 \* 1 \*
q:k<x+ ) — ky/-yk*0? +48yk2—b<t+ > .
') \/ I(u)
(53)

According to Family II, (22) can be written as

6k*yd
v - _
14(9) B
Ky0 (V-0 + 45 0% + 48 0
-6 B ( 35 tan( 3 (q+2)>—%)
Ky (Ve —45 40 0\’
_6ﬁ< 35 tan < 3 (q+2)> _28> >
(54)
where
1 \* 1 \*
=k(x+——) —k\/-yk*6* + 45 kz—b<t+—) .
1 ( F(M)) \/y ’ I'(w)
(55)
According to Family III, (22) becomes
K*y8 [exp (0(q+2)) -1
w,.(q) =67 ( p( (qe ) )
g (56)
v (ep (B(a+ ) - 1)’
B 0 ’
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where

q:k<x+ ﬁ)a—k\/m<t+ ﬁ)a.

According to Family IV, (22) can be written as

_6Kys ke (_ 20(q+3) + 4)

lI/ =
16(‘]) ﬁ /3 92(q+E)
_6k2_y _20(q+E)+4 ’
B\ €+ )’
where
1 # 1 H
q_k(x+F(M)> _k\/jb<t+F(#)> '
Fifth:
o LV-0Pm
6 &y
o lﬂ\/Syﬁﬂz(3b6+8/3n2)
=2 62y ,
27 s
o = TZ’TZ = 6—§

According to Family I, (22) becomes

¥i5(q) = 252 - ﬂz\/i—_é coth’ (g (g + 2))

) V-3 tanh? (ﬁ( + Z)) ,

S8 5
where
1 \/—6ypm, 1\
6 5y <x+ F(M))
~ l\/f\/éy[)’nz(3b6+8ﬁn2) <t+ 1 )”
6 &y I'(w)

According to Family II, (22) becomes

(58)

(61)

(62)

(63)

where

(e F(lm)ﬂ

_lﬂ\/Syﬁnz(3b8+8ﬁn2) <t+ 1 )”
6 &%y I'w))

5. The Second Equation

By utilizing the following transformation:

o) e o

then, equation (1) transformed to
—c¥' +akPw?'" + 4akP Q' + 4ak¥' Q =0, (66)

w?' -kQ' =0, (67)

where ¥' = d¥/dq and Q' = dQ/dq. By putting Q = (w/k)¥
into equation (66), it can be seen as

~c¥V' +ak* ¥ + 8awP¥' =0. (68)

The balance number will be obtained y = 2 by using the bal-
ance principle. Then, the exact solution is given as

W (q) =7+, Y(q) +7m,Y*(q) +

Firstly, we substitute the expressions of ¥(g) in (69) into (68)
and collect all terms with the same order of Y(q). Then, by
equating the coefficient of each polynomial to zero, we obtain
a set of algebraic equations as follows:

6ak’wt, + 4awt,’ =0,

10ak’wdr, + 2ak*wt, + 8awt, T, = 0,

4ak* w01, + 8adk* wt, + 3ak’wht, + 8awmn,T, + 4awt,* - c1, =0,

6adk*wht, + ak*wb’t, + 2adk*wt, + 8awn0t, + 8awm, T, - cr, = 0,

2a8°K*wt, + adk’wbr, + ak*wOm, + 2ak’wr, + dawn,’ + 8awm, T, + 8awn, T, — ey =0,
ak* w07, + 2adkPwn, + 6ak’wbr, + 8awmnym, + 8awm,t, — ¢, =0,

3adk*wlr, + 4ak*w0’m, + 8adk*wrm, + 8awmym, + dawm,” - e, =0,

2a8°K*wm, + 10adk*wb, + 8awm, m, = 0,

6ad’k*wr, + 4awm,? = 0.

(70)

First:

1
c=—(ak’0” - 4adk’)w, 1y = -~ kK6”
! (71)
1 3 3
s =-lee -2k
2 2 2



According to Family I, (69) can be written as

1 1
¥.(q) = _Zk292 - E6k2

- (312) 0K

(-(VE? 15128 tanh ((VE? - 4512) (¢ + %) ) - (6129))
~ (312) K

(— (\/(92——Z§/Z6> tanh ( (ﬂ/z) q+3) ) (9/28))2’

(72)

where

1A 22 2 1A
q:k(x+ > - (ak 0" — 4adk w( + >
I (u) ( oV r W/ (73)
1 “
—w|lt+ ——) -
( I (M))
According to Family II, (69) becomes

1 1
¥,(q) = —Zsz)z - E6k2

~ (3/2)0k
((\/62——75/28) tan ((x/ﬂ/z) (q+ 2)) - (6/26))
~ (312)K
((\/62——75/26) tan ((VM/Z) (q+ 2)) - (9/28)) g

(74)

where

.- k(x+ F(I#))” - (ak0? —4a6k2)w<}’+ p(lmy -
~o(tr i)

According to Family III, (69) becomes

_ Lo, (3/2)0K
AR COCCT R TR
~ (312)K
((exp (B(q+2)) - 1)/6)*
where

1 “ . 1 “ w L “

q=k(x+m) ak6w<y+m) <t+F(y)> .
(77)

Second:

3 3 3
c=—(-ak’6” + 4adk*)w, 7 = —Eékz, 7, = —Eekz, 7,= —Ekz.
(78)
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According to Family I, (69) can be seen as

3
WYa(q)= _E‘Skz

- (3/2)6K
(-(vF=40126) tanh (VB =4312)(q+2) ) - (6126)
~ (312)k*
(-(ve*=15126 ) tanh ( (V&7 - 4312) (g + 2)) - (6120)) g

(79)

where

q:k(x+ F(IM)>H - (—ak262 +4a8k2)w<y+ F(ly))ﬂ
1
(

w(HF_m)”.

(80)
According to Family II, (69) becomes
¥s(q) = _25](2
~ (3/2)6K*
((\/92 - 46/25) tan ((\/—92 T 45/2) (q+ 2)) - (9/26))
~ (312)k
((\/92 - 48/26) tan ((\/—92 + 46/2) (q+ 2)) - (9/26))Z )
(81)
where
- k(x v L)“ ~ (~ak®* + 4a6k2)w< ¥ L)“
! I(u) " T
1 4
-—w (t + m) .
(82)
According to Family III, (69) can be written as
(312)6K*
4 =_
S I R TR
2
) (3/2)k
((exp (8(q-+ %)) ~1)/6)""
where
B 1 13 I 1 I3 ~ 1 13
q—k(x+r(#)> +ak0w<y+1m> w<t+r(#)) .
(84)
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Third:

1 1
= —(ak*0? — 4a0k*) w, 7y = - k6% — 6K, m,
4 2

(85)
—g@kz, T, = —;kz.
According to Family I, (69) becomes
_ _l 202 _ l 2 _ E 2
¥;(q) = - ;K6 — 58K - 6k
6” - 46 VO -4 6
. (— 35 tanh < 3 (q+2)> - 28>
2
3, 0% — 46 VO* - 48 0
_Ek (— 35 tanh( 3 (g+2) “35)
(86)
where
1A 202 2 1A
e (ak*6” - 4adk™)w y+m
H) 1 IS (87)

—w<t+ W)[J

According to Family II, (69) can be written as

1 1
¥y(q) = _Zk202 - E8k2

3 (VP-4 V-0% + 46 6
—Zek( 35 tan( 3 (q+2) ~ 55

2
3, (V6 -48 V-6 + 46 0
k< 35 tan( 3 (g+2) 35

(88)
where
k( L >M (ak*6” — 4adk”) < AL >M
q=k(x —(a —4adk™)w|( y
) M) (g
1 “
—w|lt+ == .
( r (#))
According to Family III, (69) can be written as
1 (3/2)6K*
Yo(q) = —- kK*6* -
T w0
(312)K*

 (0(exp (B(q+2)) - 1))

Fourth:

- (—ak202 + 4a8k2)w,
3 3 3
My =—=0k:m =—20k*, my=—— k.
2 2 2
According to Family I, (69) can be seen as

3 3
¥io(q) = _E‘Skz - Esz

~ W—Mt
26 an

2
3, 0% - 46 0% - 46 0
_Ek (— 35 tanh( 3 (q+2) ~35)

where

q= k(x + ﬁ)y ~ (-ak?6” + 4a8k2)w<y+ ﬁ)ﬂ
1

_w(nm)”_

According to Family II, (69) can be written as

(94)

3
¥Y(q) = _E‘Skz

where

(96)
According to Family III, (69) becomes
(3/2)0K
¥, (q) =—
0= @i (800 + 2) - 1)
5 (97)
312k

~ (B(exp (B(q+ )~ 1))
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where
q:k<x+ ﬁ)ﬂ+ak202w<y+ ﬁ)ﬂ—w<t+ ﬁ)ﬂ

Fifth:

. 1 vV —-adwc 3 ¢ 3¢ 3¢

STy = ——, T, = , Ty = . (99
4 abw 07 16aw’ ? 32a0’ ? 32adw (99)

According to Family I, (22) can be written as
c 3¢ 6

, [ V-46
aw 32aw /-8 coth < 2 (q+2)>
3 mtrﬂf(”_‘w( +2)>,

3
¥i3(9) = 16

" 32400 6
(100)
where
q_l \/—a&vc(x+ 1 >a—c(y+ 1 )“
4  adw 1 al"(oc) I'(a) (101)
_w(t+_1"(oc)> .
According to Family II, (22) becomes
3 ¢ 3¢6 6 , (V48
Yu@=1e0t 2aw /g cot <2 (q+2)>
(102)
+ ik \/Stanz Va5 +2
32a0w & T(q ) )
where
1\/—a6wc< . 1 )” <+ 1 )”
q: — X —C y [
4 abw I'(p) I'(p) (103)
1 H
—w|t+ ——] .
( F(#))
Sixth:
k—l vadwc 1 ¢ _ 3¢co _ 3¢
1 a0 T Toaw ™ T 3200’ 2T 32adw
(104)
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According to Family I, (22) can be written as

1 ¢ 38 & th2<\/;48(q+2)>

' - .
15(9) 16 aw " 32aw\/—§ <0
3¢ V8 tanh? ( ;46 (q+ Z)) ,

" 32060 ©
(105)
where
P o)
4 adw 1 I;(a) I'(a) (106)
-—w (t + F(“)) .
According to Family II, (22) can be seen as
¥is(q) = 1—2% - %\% cot® (@ (q+2)>
- i@ tan’ (E (q+2)>, "
32adw & 2
where
O R (e
4 adw 1 1; (1) () (108)
-w <t + W) .
6. The Third Equation
By utilizing the following transformation:
1 \* 1 \*
11:k<x+r(m> _w<t+1"(;4)> , (109)
then, equation (1) transformed to
2(w” + k)W + k¥ + 2K 0* P =0, (110)

where ¥' = d¥/dq, and by integrating equation (110) twice
with respect to g, it can be seen as
(0 + bI*) W + BIPW? + pk'¥'" = 0. (111)

The balance number will be obtained y = 2 by using the bal-
ance principle. Then, the exact solution is given as

W (q) =7 +7,Y(q) +7m,Y?(q) + (112)

Firstly, we substitute the expressions of ¥(q) in (112) into
(111) and collect all terms with the same order of Y(q). Then,
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by equating the coeflicient of each polynomial to zero, we
obtain a set of algebraic equations as follows:

12k w*, + kwt,? =0,

20K2 w0, + 4k’ W, + 2kwt, T, = 0,

8K w61, + 168K w’t, + 6k*w*01, + 2kwm,T, + kwt,* + 2k T, + 20’1, =0,

128K w0, + 2K’ 01, + 48K w1, + 2kwmyT, + 2kwm, T, + 2K* T, + 20T, = 0,

48° KW’y + 20K w0, + 2K w0, + 4K WP, + kowmy? + 2kem, T, + 2kwr, T, + 2k, + 20, = 0, (113)
22?0, + 40K WP, + 12K*w*0m, + 2kwmym, + 2kwm, T, + 2K, + 2w, =0,

60k*w*0m, + 8K*w*0° 1, + 160k*w*r, + 2kwmym, + kowm,? + 2K, + 2w?m, = 0,

48*K*w?m, + 200k*w*0m, + 2kwm,m, = 0,

128° k> w*r, + kwm,? = 0.

First: Second:
1 K + o? o B 3K + w? , ,
"6 e U0 T e g LK+ o o 1Kt
3(k2+ 2)2 (114) 16 k2w2 ’ 0 2 kw ’ (119>
w
=- 1, =12 3 (K +0?)’
64k’ w? my=—-———", 7, =—12ko.

According to Family I, (112) can be written as

2 2 3 k2 212 /_
?’1(Q)=—§k T (K + ) 6coth2<246(61+2)>

2 ko 64K w?

1 R+? 3(R+a?) (V-85
N/— ' =—_ 6 coth” [ —— >
+ % tanh’ <T48 (q+ Z)), W=7 o * 64k° w3 IR
(115) + ? tanh? <—'_246 (q+ 2)>,
where (120)

TSR

According to Family II, (112) becomes

‘J=k<x+ ﬁ)a—w(m ﬁ)a. (121)

¥y(q) = -; kz;wwz 2 (Gk:;wj) d cot? ( (q+ z))
ko (VD According to Family TI, (112) can be written as
T (T (q+ Z)) >
here +— % tan® (@ (q+ Z)) ,

2 2 u u 6
8:im’q:k x+; —w t+L . (118)
16 Kw? I(u) I(p) (122)
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(a) (®) ©

F1Gure 1: The different types of graphs to bright solution (25) for the parameters 0 = 3, =2, k=-2,y =1, b=-10, and 3 = 2 with providing
amounts of (a) u=0.5, (b) 4 =0.75, and (c) u = 1 within the interval 0 <x <20,0<t<10.

4. % 10°
3.x 100
2. % 10°

1.x10°

10

(0

F1cure 2: The different types of graphs to periodic solution (27) for the parameters 0 = 2,8 = 3, k= -2, y = -1, b= 1, and 3 = 2 with providing
amounts of (a) u=0.5, (b) 4 =0.75, and (c) y = 1 within the interval 0 <x <20,0<t<10.
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FiGurek 3: The different types of graphs to kink solution (72) for the parameters0 =3, =2,d=1,k=-2,a=1,b=-10,w=2,and y = 1 with

providing amounts of (a) = 0.5, (b) p=0.75, and (c) p =1 within the interval 0 <x, t <10
According to Family II, (112) can be seen as

R0 + K + w?

where
1 K+ w? 1 \¥ “ -
L (e LY (e LY e
16 kw? I(w) I(u) 3( (R0 + K +w?)fko)
(123) ((\/—92+4 /25) tan (V=67 +4012) (q+ )) - (0120))
(314) (R0’ + K + @)1 )
Third: ((\/—92+4 /25) tan ((\/—62+46/2) (q+2)> —(6/25))
106 + K + ? (125)
8: - >
4 K w?
K0 + K + (R + K+ w?)6 where
6:0,7T0:—3T)7T1:—3 kw >
2 4 w2 I u
02—48=—k 2+w <0 q=k(x+—1 ) —w(t+—1 )
K w? I'(y) I'(y)
(126)

3 (K06 + K + w?)’

Ty Kw?
(124)
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-7.% 107

(0

F1Gurek 4: The different types of graphs to periodic solution (74) for the parameters 0=2,6=3,d=1,k=-2,a=1,b=-10,w=2,and y =1
with providing amounts of (a) # =0.5, (b) ¢ =0.75, and (c) p = 1 within the interval 0 <x, t < 10.

Fourth: where
20 12 2 2 9m2 12 2
B el e I e il el ) K+ o
4 1 w? kw 0°-48 = —kz 5 >0,q
(Rw?6® ~ K - )0 N
7'[1 = —3 -— 1
ke =k<x+ W )) (129)
3 (K00 - K - o?)’ : .
M= 1
4 k3w3 -w (t + —F ) .
(127) (/")
According to Family I, (112) becomes Fifth:
3K w0’ - I — w? 2 2_ L2
We(q) i e _ 144k” + 1440” — 1,
3((Ka - K - o?)0/ke) 576k w?
( (VB =46728) tanh (V&= 4312)(q+ ) ) - (612) ) g__ 17
12kw’ (130)

(3/4) (K6 -~ w?) 1K) 2 2_ 2
. 148k + 48w’ -7
 ((Vo 45720 anh (VB —4012) (g + 3)) - (0120)) TR ke

(128) T, = —12kw.
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FiGure 5: The different types of graphs to bright solution (115) for the parameters § = -2, d = 1, k = 2, and w = 2 with providing amounts of

(a) u=0.5, (b) u=0.75, and (c) = 1 within the interval 0 < x, t <10.

According to Family I, (112) can be written as

1 48k* + 48w* — 7,2

‘P7(q) = ﬁ kew
0% — 45 0% — 45 0
+7, <— 35 tanh < 3 (g+ 2)) - E>
2
0% — 46 0% — 45 0
- 12kw (— 35 tanh ( 3 (q+ 2)) - ﬁ) )
(131)
where
0 247 kw 2 45 K+ w?
25 2 2 _ 2’ T 25
144k” + 1440? — 14 k*w (132)

>0,q=k(x+ ﬁ)a—w<t+ ﬁ)a.

According to Family III, (112) becomes

W) 148k2+48w2—112+T 0
o4 = 3 kw exp 0(g+2)) -1
6 2
-12 ,
K <exp 0(g+2)) - 1)
(133)
where

/1.2 2 “
T, =12V k2+w2,9=—u,q=k(x+ L)

ko I'(w)
_w(H ﬁ)

(134)
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FiGurek 6: The different types of graphs to periodic solution (117) for the parameters § = -2, d = 1, k = 2, and w = 2 with providing amounts of

(a) p=0.5, (b) #=0.75, and (c) ¢ =1 within the interval 0 <x, t < 10.

Sixth:
144K + 1440 — 1,2 11,
= - ) =757
576K w? ko™ (135)
1 48k* + 48w? — 7,2
TR P T, = —12kw.

According to Family II, (112) can be written as

1 48k* + 48w —+T,>

IPQ(q):_E ko
\/—62+46t -0 + 48 ) 0
+1, 35 an 3 (g+2) %
V& + 45 Narwy o\’
—12kw< 35 tan ( 3 (q+2.)) - 28) N
(136)
where
0 247 kw 0 45— K + w?
2% 2 2 2 T T T T2
144k" + 144> + 1, kw (137)

<0,q=k<x+ ﬁ)ﬂ—a(n ﬁ)”

7. Results and Discussion

In this section, we will discuss the physical explanation of the
found exact solutions to three nonlinear fractional models.
We expose the graphical representation of these solutions
and accomplish the different kinds of solution. To sketch
plots, we have utilized the Maple software package. Every
exact solutions are offered in a Maple 3D plot view for proper
understanding. Some appropriate values are given in
Figures 1-6 to analyze the dynamic properties briefly. These
figures are dependent on the family conditions which are of
importance physically. It has been investigated that all figures
include a 3D plot with three fractional-order 4 = 0.5, u = 0.75
, and p =1 designed for three nonlinear fractional models
involving the u-derivative.

8. Conclusion

In this study, the efficient and significant solutions to three
nonlinear fractional models were established which include
kink solution, periodic wave solution, singular kink, single
soliton, and other types of soliton found by preferring dif-
ferent free parameters. These applied parameters have
important conjugation, such as choosing various inputs
of free parameters from an individual solution; known
solutions must be found identically. It is important to
notice that the new type solution of the space-time frac-
tional (1+1)-dimensional Boussinesq equation, (2+ 1)
-dimensional breaking soliton equations, and SRLW equa-
tions has not been exposed by the oncoming exp (—Q(q))
-expansion technique in the previous literature. So we
claim that in this current study, the obtained solutions
are unique and thus could be more effective in the study
of space-time fractional nonlinear physical phenomena.
All calculations in this paper have been made quickly with
the aid of Maple. The development of offered methods
may allow the mitigating Internet bottleneck with
quadratic-cubic nonlinearity to be used in more general
configurations. The solutions are all verified by putting
them back into the original equations with the aid of the
Maple symbolic computation package 18.
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