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In this work, we study symplectic unitary representations for the Galilei group. As a consequence a nonlinear Schrödinger equation
is derived in phase space. The formalism is based on the noncommutative structure of the star product, and using the group theory
approach as a guide a physically consistent theory is constructed in phase space. The state is described by a quasi-probability
amplitude that is in association with the Wigner function. With these results, we solve the Gross-Pitaevskii equation in phase
space and obtained the Wigner function for the system considered.

1. Introduction

A relevant equation that describes a variety physical phenom-
ena, as a Bose-Einstein condensed, is the Gross-Pitaevskii
equation [1]. The Gross-Pitaevskii model is an extension of
the Schrödinger equation, and it is given by [2, 3]

i
∂ψ r, tð Þ

∂t
= −

1
2m∇2 + Vext + g ψ r, tð Þj j2

� �
ψ r, tð Þ, ð1Þ

wherem representsmass,Vext is the interaction potential, and
g is the intensity of atomic interaction. The study of solutions
for this equation is relevant in both ways, theoretical and
applied viewpoints. In addition, an important case for the
Gross-Pitaevskii system is their approach in quantum phase
space, particularly the calculation of Wigner function for this
system, in which it is not known in the literature.

In this context, the first formalism to quantummechanics
is phase space which was introduced by Wigner notion of
phase space in 1932 [4]. He was motivated by the problem
of finding a way to improve the quantum statistical mechan-
ics. Wigner introduced his formalism by using a kind of
Fourier transform of the density matrix, ρðq, q′Þ, giving rise

to what is nowadays called the Wigner function, f Wðq, pÞ,
where ðq, pÞ are the coordinates of a phase space manifold
(Γ) [4–7]. TheWigner function has the same content of usual
wave function obtained by the Schrödinger equation. How-
ever, the Wigner function is identified as a quasiprobabil-
ity density in the sense that f Wðq, pÞ is real but not
positively definite and as such cannot be interpreted as
a probability. However, the integrals ρðqÞ = Ð f Wðq, pÞdp
and ρðpÞ = Ð f Wðq, pÞdp are (true) distribution functions.
The calculation of Wigner function is based in the following
steps: (i) first, the Schrödinger equation for a specific poten-
tial must be solved; (ii) in sequence, using the solutions
founded, the matrix density elements are calculated; (iii)
finally, a kind of Fourier transform of matrix elements must
be performed. We notice that in the Wigner approach it is
complicated to treat nonlinear potentials such as the Gross-
Pitaevskii system. For this reason, other methods to quantum
mechanics in phase space are developed in the literature.
There is an alternative method based on the following prop-
erty of Wigner formalism: in the Wigner function approach,
each operator, A, defined in the Hilbert space, H , is associ-
ated with a function, aWðq, pÞ, in Γ. This procedure is pre-
cisely specified by a mapping ΩW : A⟶ aWðq, pÞ, such
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that, the associative algebra of operators defined in H turns
out to be an algebra in Γ, given by ΩW : AB⟶ aW⋆bW ,
where the star product, ⋆, is defined by

aW⋆bW = aW q, pð Þ exp iℏ
2

∂
!

∂q
∂
 

∂p
−

∂
!

∂p
∂
 

∂q

0
@

1
A

2
4

3
5bW q, pð Þ:

ð2Þ

The result is a noncommutative structure in Γ that has
been explored in different ways [5–27].

Using star operators defined in Wigner formalism, uni-
tary representations of symmetry Lie groups have been devel-
oped on a symplectic [28–32]. The unitary representation of
Galilei group leads to the Schrödinger equation in phase
space. In the analog procedure, the scalar Lorentz group for
spin 0 and spin 1/2 leads to the Klein-Gordon and Dirac
equations in phase space. In both cases, relativistic and non-
relativistic, the wave functions are closely associated with the
Wigner function [28, 29]. In terms of nonrelativistic quan-
tum mechanics, the proposed formalism has been used to
treat a nonlinear oscillator perturbatively, to study the notion
of coherent states and to introduce a nonlinear Schrödinger
equation from the point of view of phase space. In this con-
text, there are a few examples of analytical solutions such as
the harmonic oscillator [33], the Hydrogen atom [34], and
some spin systems [35–37]. In the present work, we apply
this symplectic formalism to find the Wigner function for
the Gross-Pitaevskii model. We find an analytical solution
for the wave function but the Wigner function is calculated
up to a given order of approximation of the star product.

The paper is organized as follows: in Section 2, we write
the nonlinear equation in phase space and we present the
relation between phase space amplitude and Wigner func-
tion. In Section 3, we solve the Gross-Pitaevskii equation in
phase space and calculate the Wigner function. In Section
4, we plot graphs of Wigner function and calculate nonnega-
tivity parameter associated to the system. Finally, some
closing comments are given in Section 5.

2. Nonlinear Schrödinger Equation in
Phase Space

Using the star operators, Â = aðq, pÞ⋆, we define the momen-
tum and position operators, respectively, by

Q̂ = q⋆ = q + iℏ
2 ∂p, ð3Þ

P̂ = p⋆ = p −
iℏ
2 ∂q: ð4Þ

Then, we introduce the following operators:

K̂ =mQ̂i − tP̂i, ð5Þ

L̂i = εijkQ̂jP̂k = ∈ijkqjpk −
iℏ
2 ∈ijkqj
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ð6Þ
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These operators, given in Equations (3), (4), (5), and (6),
are defined in the Hilbert space, HðΓÞ, constructed with
complex functions in the phase space [28], and satisfy the
set of commutation relations for the Galilei-Lie algebra,
that is,

L̂i, L̂j

�
= iℏ∈ijkL̂k,

L̂i, K̂ j

�
= iℏ∈ijkK̂k,

L̂i, P̂ j

�
= iℏ∈ijkP̂k,

K̂i, P̂j

�
= iℏmδij1,

K̂i, Ĥ
�
= iℏP̂i,

ð8Þ

with all other commutation relations being null. This is
the Galilei-Lie algebra with a central extension character-
ized by m. The operators defining the Galilei symmetry
P̂, K̂ , L̂, and Ĥ are the generators of translations, boost,
rotations, and time translations, respectively. Q̂ and P̂
can be taken to be the physical observable of position
and momentum. To be consistent, generators L̂ are inter-
preted as the angular momentum operator, and Ĥ is taken
as the Hamiltonian operator. The Casimir invariants of the
Lie algebra are given by

I1 = Ĥ −
P̂
2

2m ,

I2 = L̂ −
1
m
K̂ × P̂,

ð9Þ

where I1 describes the Hamiltonian of a free particle and
I2 is associated with the spin degrees of freedom. First,
we study the scalar representation, i.e. spin zero.

Using the time-translation generator, Ĥ, we derive the
time-evolution equation for ψðq, p, tÞ, i.e.,

iℏ∂tψ q, p ; tð Þ =H q, pð Þ⋆ψ q, p ; tð Þ, ð10Þ

which is the Schrödinger equation in phase space [28]. The
function ψðq, p, tÞ is defined in a Hilbert space HðΓÞ associ-
ated to phase space Γ [28].
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The association of ψðq, p, tÞ with the Wigner function is
given by [28]

f W q, pð Þ = ψ q, p, tð Þ⋆ψ† q, p, tð Þ: ð11Þ

This function satisfies the Liouville-von Neumann equa-
tion [28]. This provides a complete set of physical rules to
interpret representations and opens the way to study other
improvements. In this sense, the nonlinear Schrödinger
equation in phase space is given by

i
∂
∂t

ψ q, p, tð Þ = p2

2m −
ℏ2

8m
∂2

∂q2
− iℏ

p
2m

∂
∂q

 !
ψ q, p, tð Þ

+V q + iℏ
2 , t

� �
ψ q, p, tð Þ

+ g ψ q, p, tð Þj j2ψ q, p, tð Þ,
ð12Þ

where g is intensity of atomic interaction. This equation
describes several physical systems; in particular, it is used to
study the Bose-Einstein condensation. Equation (20) is
derived from the Lagrangian density

L = iℏ
2 ψ†∂tψ − ψ∂tψ

†	 

+ iℏ
4mp ψ†∂qψ − ψ∂qψ

†	 

−

p2

2mψψ† +V qð Þ⋆ ψψ†	 

−

ℏ2

8m ∂qψ∂qψ
† + gψ4:

ð13Þ

In the next section, we solve this equation and then calcu-
late the Wigner function for this system by expanding the
star product up to the second order of approximation.

3. Solution of Gross-Pitaevskii Equation and
Wigner Function

In this section, we present a solution for the nonlinear Schrö-
dinger equation in phase space and the associated Wigner
function.

In order, the Schrödinger equation in phase space is writ-
ten by

i
∂
∂t

ψ q, p, tð Þ = p2

2m −
ℏ2

8m
∂2

∂q2
− iℏ

p
2m

∂
∂q

 !
ψ q, p, tð Þ

+Vext q + iℏ
2 , t

� �
ψ q, p, tð Þ

+ g ψ q, p, tð Þψ† q, p, tð Þ	 

ψ q, p, tð Þ:

ð14Þ

In this work, we address the stationary equation without
external potential, i.e., Vext = 0. In this way, the equation
above becomes

p2

2m −
ℏ2

8m
∂2

∂q2
− iℏ

p
2m

∂
∂q

 !
ψ q, pð Þ + g ψ q, pð Þψ†	

� q, pð ÞÞψ q, pð Þ = Eψ q, pð Þ:
ð15Þ

We now consider the solution of Equation (15) in the
regions of constant potential, which may be taken to be
Vðq̂Þ = 0 without loss of generality. We note first that if
ψðq, pÞ vanishes anywhere in an interval, as for example
at the edges of the box, then ψðq, pÞmay be taken to be purely
real throughout that interval. This can be done only if

∂ψ q, pð Þ
∂q

≪
∂2ψ q, pð Þ

∂q2
: ð16Þ

Thus, we may remove the absolute value symbol in Equa-
tion (15). So lettingm = ℏ = 1, the equation becomes an ordi-
nary nonlinear equation for a real function:

1
2 p2 −

1
4
∂
∂q

� �
ψ q, pð Þ + gψ q, pð Þ3 − Eψ q, pð Þ = 0: ð17Þ

Letting g > 0, the solution of Equation (17) is

ψ q, pð Þ = A sn
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − p2

q
q + δ ∣m

� �
, ð18Þ

with k > p, snðx ∣mÞ is the Jacobian elliptic function, and k
and δ will be determined by the boundary conditions, while
A and m will be determined by substituting (18) into (17)
and normalization. The boundary conditions

ψ 0, pð Þ = ψ L, pð Þ = 0: ð19Þ

The boundary condition at the origin can be satisfied by
taking δ = 0. The function snðx ∣mÞ is periodic in x with a
period of 4KðmÞ, where KðmÞ is the elliptic integral of
the first kind. Thus, the boundary equations are satisfied
if k = 2nKðmÞ/L, where n = 1, 2, 3,⋯. The number of
nodes in the solution nth is n − 1. We then solve Equation
(17) substituting (18), and using the Jacobian elliptic iden-
tities, this results in the equation for the amplitude A and
energy E,

A2 = 2m 2nK mð Þ½ �2
L2

, ð20Þ

E = 2nK mð Þ½ �2
2L2

m + 1ð Þ: ð21Þ

Equation (18) becomes

ψ q, pð Þ =
ffiffiffi
2
p ffiffiffiffiffiffiffi

2m
p

2nK mð Þð Þ
L

sn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nK mð Þð Þ2 − p2

q
q ∣m

� �
,

ð22Þ

The wave-function and the energy are determined up
to factor m. This result is similar to what is obtained in
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configuration space [1]. Using Equation (22), we calculate
Wigner function for the Gross-Pitaevskii system by Equa-
tion (11). There are in fact some different approaches
from our proposal to calculate the Wigner function, such
as the use of the parity operator for this purpose [38,
39]. In this article, the Wigner function is calculated up
to the second order in the expansion of the star product.
In the next section, this function under these terms is
analyzed.

4. Analysis of Solution

In this section, we plot the graphics to Wigner function
founded in the section above and calculate the negativity
parameter for this system.

4.1. Particle in a Box Limit. Both the zero density linear limit
and the highly excited-state limit give the particle in a box
limit type solution. Mathematically, m⟶ 0+ and sn⟶
sin. Physically, n≫ 1. In this limit. KðmÞ⟶ π½1/2 +m/8 +
Oðm2Þ� and m⟶ 1/n2π2, so Equation (21) becomes

E = n2π2

2L2
1 + 3m

2 +O m2	 
� �
, ð23Þ

which converges to the linear quantum mechanics particle in
a box asm⟶ 0+. One may obtain these results from the first
order perturbation theory [31]. The behavior of the Wigner
function given in Equation (22) for the three first energy
levels can be visualized in Figures 1–3.

Using the Wigner function, the negative parameter for
the system is calculated. The results are presented in
Table 1.As the negativity parameter is correlated with the
nonclassicality of the system, it seems that in the limit where
n>>1 the BCE behaviors are in accordance with classical
mechanics which is a consistent result. It is important to note
that such classic behavior may be a consequence of the sec-
ond order expansion of the star product. The investigation
of a general solution is necessary to understand the role of
the negativity parameter. Although the expansion of the star
product is a legitimate procedure given the order of magni-

tude of the Planck constant, in a future work, we hope to
apply a more precise method to understand which order of
expansion is ideal.

5. Concluding Remarks

In this work, we studied the nontrivial problem of the Gross-
Pitaevskii equation in phase space, in which is a case of non-
linear Schrödinger. The Wigner function for this system was
obtained. In our knowledge, this is the first time that an ana-
lytical solution of the Wigner function for the Gross-
Pitaevskii system appears in the literature. The particle in a
box solution is studied for the physical meaningful limit of
the solution, n≫ 1. We studied the parameter of negativity
of the system and concluded that in these limits it appears
to have a purely classical behavior.
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Figure 1: Wigner function for Gross-Pitaevskii model; n = 100.
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Figure 2: Wigner function for Gross-Pitaevskii model; n = 200.
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Figure 3: Wigner function for Gross-Pitaevskii model; n = 300.

Table 1: Parameter of negativity for n = 100, 200, and 300.

n η ψð Þ
100 0

200 0

300 0
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