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The stability criteria for the dynamical system of a homogeneous and isotropic cosmological model are investigated with the
interaction of a scalar field in the presence of a perfect fluid. In this paper, we depict the dynamical system perspective to study
qualitatively the scalar field cosmology under two special cases, with and without potential. In the absence of potential, we get a
two-dimensional dynamical system, and we study the analytical as well as geometrical behavior. For the dynamical system with
potential, we analyze different potential forms: simple exponential potential form (VðϕÞ =Voe

−λϕ), double exponential potential
form VðϕÞ =Vo exp ð−A exp ð ffiffiffi

2
p

αϕÞÞ, and inverse power law potential form (VðϕÞ =Voϕ
−α). We generate an autonomous

system of ordinary differential equations (ASODE) for each case by introducing new dimensionless variables and obtain
respective fixed points. We also analyze the type, nature, and stability of the fixed points and how their behavior reflects towards
the cosmological scenarios. Throughout the whole work, the investigation of this model has shown us the deep connection
between these theories and cosmic acceleration phenomena. The phase plots of the system at different conditions and different
values of γ have been analyzed in detail, and their geometrical interpretations have been studied. The perturbation plots of the
dynamical system have been analyzed with emphasis on our analytical findings. We have evaluated the total energy density (Ωϕ)
at the fixed points and also found out the suitable range of γ and λ for a stable model.

1. Introduction

The dynamical system approach, nowadays, has become one
of the most suitable and viable ways for qualitative specifica-
tion of various cosmic features, specially for studying the pos-
sible asymptotic states at early as well as late times of the
evolving Universe. We do a qualitative study of the system
rather than finding the exact solutions. By qualitative study,
we mean the study of the behavior, obtaining information
about the properties of the system. Considering the early
Universe, inflation should be taken into account with which
the expansion of the Universe with acceleration can be
expounded through the dominance of potential energy
(VðϕÞ) of a scalar field (ϕ) over its energy density. In fact,
inflation has been regarded as a part of cosmological evolu-
tion. In recent years, it is well discovered that our Universe
is in the phase of not just expansion but expansion with
acceleration [1]. In terms of observational evidence, we can

cite observations from supernova light curve data to Wilkin-
son Microwave Anisotropy Probe (WMAP) data [2] which is
in agreement with the current phase of the accelerating Uni-
verse. We can also mention here the f ðRÞ theory of gravity
for explaining the expanding Universe [3]. Several intricate
observations have admitted that our Universe restarted
expansion with acceleration around 5Gyr ago and at low
energy scales of approximately 10−4 eV [2, 4, 5]. But it is quite
an accepted fact that inflation is one such theory of exponen-
tial expansion of the early Universe which corresponds to
energy scales ∼1016GeV [6–13]. This large scale deviation
in the energy scales have drawn many researchers towards
these two phenomena and how the difference has come up.
This curiosity has led researchers to hunt new cosmic models
that best suit the observations. So far, among all the recent
works, the approaches that give appealing descriptions on
the present scenario of the expanding Universe are firstly,
“dark energy” (DE) associated with a large negative pressure
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which is frequently described by a conventional vacuum
energy or scalar field, and secondly, we can mention the
six-parameter base ΛCDM model which also agrees with
the current high-precision data [1, 14] though there are some
cosmological constant and coincidence problems [15–20].
Also, the Dvali-Gabadadze-Porrati (DGP) braneworld model
[21–23] has put forward the cosmic accelerated expansion of
the present Universe. We can also name the modified theo-
ries of gravity in this context [24–26]. Despite roaming about
all these cosmological journeys, in this paper, we will only
stick to the dynamical system perspective to cosmology. A
cosmological model described by an autonomous system of
ordinary differential equation (ASODE) having a past time
attractor, one or two saddle points, and a late time attractor
is regarded as the most suitable and complete model. The
past time attractor represents the inflationary epoch, saddle
points correspond to the phase of the radiation- and
matter-dominated Universe, and the late time attractor rep-
resents the accelerated expansion phase of the present Uni-
verse [27, 28]. Scalar field cosmology with scalar potential
forms such as flat, constant, simple exponential potential,
inverse power law potential, double-exponential potential,
and PNGB potential has been studied by many researchers
also [29–39]. Scalar field cosmology has also paved its grand
way to study dark energy which is taken as the main entity for
the cosmic expansion with acceleration at late time. Indeed,
scalar field cosmological models have owned their esteemed
place in modern cosmology, specially in analyzing early infla-
tion as well as late time acceleration. Dark energy scenarios
for the scalar field are such an exotic matter that provokes
the necessary negative pressure so as to cause acceleration
[40]. One can use a relativistic equation of state like that of
radiation (γ = 4/3) or an ultrarelativistic fluid (γ = 2). One
can also choose γ = 0 to fetch a vacuum energy density with
no actual fluid where we obtain ρ = −p. So, it is worthy
enough to confer about the situation with a perfect fluid hav-
ing the above equation of state for various values of γ such
that 0 ≤ γ ≤ 2.

This paper has been arranged as follows: in Section 2, we
depict how the system of gravitational field and wave equa-
tions are developed. We introduce new dimensionless vari-
ables in these field equations to generate a dynamical
system. We again categorize this section into two subsec-
tions: one for analysis without potential and the other for
analysis with potential. From the perspective of a dynamical
system which is an autonomous system of ordinary differen-
tial equation (ASODE), we are going to analyze each subsec-
tion deeply by investigating the fixed points for each case. We
study the nature of stability of the possible fixed points
obtained in respective cases and discuss their stability along
with the cosmic scenarios. We devote Section 3 to the
conclusion.

2. Dynamical System Analysis

A dynamical system is a mathematical system that describes
the time dependence of the position of a point in the space
that surrounds it, termed as ambient space. There are differ-
ent ways of approach to a dynamical system, namely, the

measure theory approach which is motivated by the ergodic
theory, real dynamical system, discrete dynamical system,
etc. Here, we are approaching the system through an auton-
omous system of ordinary differential equations (ASODE).
ASODE is a system of ordinary differential equations which
does not depend explicitly on time. As for our dynamical sys-
tem, we will be using logarithmic time (N = lnða/aoÞ) as our
independent variable, where a represents the scale factor
and ao denotes the present scale factor value which, later
on, will be taken to be unity for simplicity as doing so does
not affect the behavior of our system. Now, we consider a
minimally coupled classical scalar field (ϕ) represented by
the classical equation of motion,

€ϕ + 3H _ϕ + dV
dϕ

= 0, ð1Þ

where the overhead dot represents the derivative with respect
to cosmic time “t.” Here, in this paper, we consider that the
Universe is filled with a perfect fluid having an equation of
state as follows:

p = γ − 1ð Þρ, ð2Þ

where γ is a constant, p is the pressure, and ρ is the density of
the fluid. We also consider the Universe to be characterized
by the following line element for an FRW space time as

ds2 = −dt2 + a2 tð Þ dt2

1 − kr2
+ r2dθ2 + r2 sin2θdϕ

" #
: ð3Þ

Here, aðtÞ stands for a scale factor, and k is the curvature
parameter which can take values −1, 0, or +1, according to
open, flat, or close Universe, respectively. We assume the
energy momentum tensor of the perfect fluid to be character-
ized by the following equation:

T Fð Þ
μv = ρ + pð Þuμυv + pgμv , ð4Þ

where p and ρ are, respectively, thermodynamic pressure and
density of the fluid. The unit time vector υμ for a comoving
system is specified by υμυμ = −1 and υμ = δμo . We consider a
minimally coupled classical scalar field ϕ which contributes
to Tμν = TðFÞ

μν + TðϕÞ
μν as follows:

T ϕð Þ
μv = ϕ,μϕ,ν − gμν

1
2 ϕ, αϕ

,α
� �

+ V ϕð Þ: ð5Þ

Equations (4) and (5) lead to the gravitational field equa-
tions as the following:

3H2 + 3 k
a2

= 1
2
_ϕ
2 + V + ρ, ð6Þ

2 _H + 3H2 + k
a2

= −
1
2
_ϕ
2 +V − ρ, ð7Þ
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where the overhead dot denotes differentiation w.r.t. cosmic
time t and H = _a/a is the Hubble parameter. Here, we choose
the units in such a way that 8πG = 1 and c = 1 [41]. The con-
servation equation of the fluid is described by

_ρ + 3H ρ + pð Þ = 0: ð8Þ

2.1. Analysis without Potential. For studying the cosmologi-
cal model without potential, we take VðϕÞ = 0 and using
equations (1) and (4)–(7), we have the following field and
wave equations:

€ϕ + 3H _ϕ = 0,

T ϕð Þ
μv = ϕ,μϕ,ν − gμν

1
2 ϕ,αϕ

,α
� �

,

3H2 + 3 k
a2

= 1
2
_ϕ
2 + ρ,

2 _H + 3H2 + k
a2

= −
1
2
_ϕ
2 − p:

ð9Þ

Wewant to develop a dynamical model in the presence of the
curvature constant (k). We are developing a generalized sys-
tem in the presence of the curvature constant (k). To analyze
the dynamical system in a flat Universe, the curvature con-
stant (k) is taken to be zero, and with the introduction of suit-
able normalized variables, the system can be studied [42]. To
create a dynamical system out of the above field and wave
equations, we present a new set of dimensionless variables

as x = _ϕ
2/6H2, y = ρ/3H2, and N = ln a. Using these new var-

iables, the above equations reduce to the following set of
autonomous system of ordinary differential equations
(ASODE):

x′ = 4x2 + 3 γ −
2
3

� �
xy − 4x,

y′ = 3 γ −
2
3

� �
y2 + 4yx + 2 − 3γð Þy,

ð10Þ

where the overhead dash represents differentiation w.r.t. log-
arithmic time, N = ln a, and curvature parameter, k =H2a2

ðx + y − 1Þ. The total relative energy density of the homoge-
neous scalar field is given by

Ωϕ =
k2ρϕ

3H2 , ð11Þ

where ρϕ denotes the energy density of the scalar field. To

find the fixed points, we equate x′ = 0 and y′ = 0. We have
got four fixed points as Pð0, 0Þ, Qð0, 1Þ, Rð1, 0Þ, and Sð1,
3ðγ − 2Þ/ð3γ − 2ÞÞ and check the stability of the fixed
points so obtained. For this, we determine the Jacobian
matrix (J) of the autonomous system at the respective fixed
points. We see that the y coordinate of the fixed point S
becomes infinite when γ = 2/3.

So, in order to study all the fixed points in the finite phase
plane, we have to analyze the system taking γ ≠ 2/3. The fixed
points along with the associated eigenvalues are shown in
Table 1. We have also analyzed the range value of γ within
which we got the stable model. We have also calculated the
value of Ωϕ at each fixed point. The Jacobian matrix (JP)
derived at the fixed point Pð0, 0Þ is given by

JP =
−4 0
0 2 − 3γð Þ

" #
: ð12Þ

Since JP is a diagonal matrix, the eigenvalues are given by
the diagonal entries which are −4 and ð2 − 3γÞ. Both the
eigenvalues are real and will have negative signs for γ > 2/3.
Since we have taken γ ≠ 2/3, the fixed point P remains a
hyperbolic fixed point as none of the eigenvalues vanish.
Here, stability depends on the sign of the eigenvalues of the
Jacobian matrix (JP). Since both the eigenvalues becomes
negative when γ > 2/3, the fixed point P is stable and a simple
attracting node for those values for γ > 2/3. For γ < 2/3, the
fixed point P acts as a saddle point since it has one positive
real eigenvalue and one negative real eigenvalue. We have
calculated the value of Ωϕ at the fixed point P which is
obtained asΩϕ = 0. From another point of view, we have cal-
culated the perturbation along the x- and y-axes for P from
the dynamical system as ϵx = C1 exp ð−4NÞ and ϵy = C2
exp ðð2 − 3γÞNÞ, where C1 and C2 are arbitrary constants.
Figures 1 and 2 show the perturbation plots along the

Table 1: Table for analysis without potential.

Fixed points x y Eigenvalues Stable range of γ Ωϕ Behavior

P 0 0 −4, 2 − 3γð Þ Stable for γ ∈ 2/3, 2ð � 0 Stable for 2/3 < γ ≤ 2

Q 0 1 −3γ − 16
3 , 3γ − 2ð Þ

� �
Stable for 0 ≤ γ < 2/3 1 Late time attractor for 0 ≤ γ < 2/3

R 1 0 6 − 3γð Þ, 4 Unstable for all γ 0 Simple repelling node, unstable

S 1
3 γ − 2ð Þ
3γ − 2ð Þ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ − 0:72ð Þ γ + 7:58ð Þ

p
Unstable for all γ

3 γ − 2ð Þ
3γ − 2ð Þ Unstable
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x- and y-axes with respect to N , respectively. We see that the
projection of perturbation along the x-axis (ϵx) decays to
zero with the increase in N . For the values of γ > 2/3, the per-
turbation along y-axis (ϵy) monotonically decreases to zero
as N tends to infinity. Also from the phase plot shown in
Figures 3 and 4, it is observed that all the trajectories close
enough to P move towards it for γ > 2/3. This shows the sta-
bility of fixed point P for all γ > 2/3 which is also in agree-
ment with the geometrical approach. With these analytical
and geometrical findings at this fixed point P, we obtain
a barotropic fluid-dominated solution with γ > 2/3 and
Ωϕ = 0. As the upper limit of γ for any type of fluid is 2
[43], so the fixed point P is stable for ultrarelativistic fluid
(γ = 2), matter dominated (γ = 1), and radiation cosmology
(γ = 4/3). For γ < 2/3, we see that some trajectories are
attracted towards the point P while some trajectories devi-
ate away from P. On the other hand, for γ < 2/3, the fixed
point P becomes a saddle which means an unstable condi-
tion. The Jacobian matrices at the fixed points Qð0, 1Þ, R
ð1, 0Þ, and Sð1, 3ðγ − 2Þ/ð3γ − 2ÞÞ are, respectively, given by

JQ =
−3γ − 16

3

� �
0

4 3γ − 2ð Þ

2
64

3
75,

JR =
4 −3 γ −

2
3

� �
0 −3γ + 6ð Þ

2
64

3
75,

JS =
4 − 3 γ − 2ð Þ −3γ + 2ð Þ
12 γ − 2ð Þ
3γ − 2ð Þ 3γ − 6ð Þ

2
64

3
75:

ð13Þ

The eigenvalues of the Jacobian matrix at the respec-
tive fixed points and their stability analysis are shown in
Table 1.

For the fixed point Q, both eigenvalues become negative
for γ < 2/3. So the fixed point Q is stable for all values of γ
such that 0 ≤ γ ≤ 2/3. We have also calculated the value of
Ωϕ at Q which is found to be Ωϕ = 1. We find the
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Plot for 𝜀x against N P ’ and ‘Q’
as N→∞, 𝜀x→0

1.2 1.4

𝜀x

for the fixed point 

Figure 1: Shows the variation of perturbations along the x-axis (ϵx) against N for fixed points P and Q.
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Figure 2: Shows the variation of perturbations along the y-axis (ϵy) at γ > 2/3 and γ < 2/3 for fixed point P.
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perturbation along the x-axis (ϵx) as a function of N ,
ϵx =D1 exp ð−NÞ where D1 is an arbitrary constant. This
is an exponentially decreasing function of N . So when N
tends to infinity, ϵx decays to zero. The perturbation along
the y-axis (ϵy) is found to be ϵy =D2 exp ð−ð2 − 3γÞNÞ.
When γ < 2/3, ϵy monotonically decreases with the increase
of N . We also plot the perturbation along the y-axis (ϵy)

against N at Q which is shown in Figure 5. From this figure,
we see that as N tends to infinity, ϵy monotonically decreases
to zero. As the perturbation fails to grow with the increase of
N , the fixed pointQ is stable for all those values of γ satisfying
0 ≤ γ ≤ 2/3. From the phase plots shown in Figures 6 and 7,
we see that all the curves near Q are attracted towards it for
γ = 0, but if we take γ to be 4/3, all the nearby trajectoriesclose

x

0.5

y
0.0

-0.5

-1.0

-0.4 -0.2 0.0 0.2 0.4

Figure 3: Shows the phase plot of the system without potential for γ = 4/3 for a stable fixed point P.
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Figure 4: Shows the phase plot of the system without potential for γ = 0 showing that P ðx = 0, y→ 0Þ is a saddle fixed point.
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enough toQ are being deviated away fromQ. This shows that
Q is unstable. Thus, the analytic as well as geometric infer-
ences reflect that this scalar-dominated solution with Ωϕ =
1 is a late time attractor for 0 ≤ γ < 2/3. So the fixed point Q
is stable for γ = 0 where pressure becomes equal in magni-
tude and opposite in sign to the energy density. The stable
fixed point Q assures the presence of this negative pressure
which gives a dark energy model. For the fixed points R
and S, the perturbation along the x-axis for both the fixed
points comes out to be a monotonically increasing function
of N which is directly proportional to exp ðNÞ. So the pertur-
bation along this axis grows monotonically with the increase
of N . When N tends to infinity, the perturbation also grows
equally towards infinity. From Figure 8, we notice that the

perturbation along the x-axis (ϵx) exponentially increases as
N increases for both the fixed points R and S for all γ in
[0,2]. So, from the graphical approach, we have R and S to
be unstable fixed points. The Jacobian matrices at the fixed
points R and S give the eigenvalues ð4,−3γ + 6Þ and ±ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiððγ − 0:72Þðγ + 7:38ÞÞp

, respectively. As the upper limit of
γ for any fluid is 2, we get both eigenvalues as positive which
indicate that the fixed point R behaves as a simple repelling
node for 0 ≤ γ ≤ 2. This is also vividly seen from the phase
plot shown in Figure 9. When γ = 2, one of the eigenvalues
of JR becomes zero and the sign of the remaining eigenvalue
is positive. So R is nonhyperbolic and unstable. So from both
approaches, R comes out to be unstable for all values of γ
with Ωϕ = 0. When γ < 2, the fixed point R represents a past

N
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Figure 5: Shows the variation of ϵy against N showing that Q ðx = 0, y→ 1Þ is a stable fixed point for γ < 2/3.
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Figure 6: Shows the phase plot of the system without potential for γ = 0 showing that Q is a stable fixed point.
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time attractor with both positive eigenvalues that depicts the
inflationary epoch of the evolving Universe. Also the eigen-
values of the Jacobian matrix at S take an opposite sign, and
hence, S is a saddle and unstable as seen from the perturba-
tion plot as well as the analytical investigations. This repre-
sents the matter-dominated phase of the Universe with
Ωϕ = 1.

2.2. Analysis with Potential. The study of a scalar field
coupled with potential energy in a dynamical system

approach has many applications in General Relativity, spe-
cially to explain several cosmological features. We take differ-
ent potential forms to analyze the system.

2.2.1. Analysis with Simple Exponential Potential. We first
take simple exponential potential of the form VðϕÞ =
Voe

−λϕ where Vo > 0 is a constant and λ is a real con-
stant. This is a common functional form for the self-
interaction potential [43]. We consider the following dimen-

sionless variables as x2 = _ϕ
2/6H2, y = ρ/3H2, and z = V/3H2.

x

1.6

y

-1.0 -0.5 0.0 0.5 1.0

1.4

1.2

1.0

0.8

0.6

0.4

Figure 7: Shows the phase plot of the system without potential for γ = 4/3 showing unstable Q ðx = 0, y→ 1Þ when γ > 2/3.
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Plot for 𝜀x against N R’ and ‘S’
as N→∞, 𝜀x→∞

for the fixed point 

Figure 8: Shows the variation of perturbations along the x-axis (ϵx) for fixed points R and S.
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With these new variables, the system of equations (1), (6),
and (7) reduces to the following set of autonomous system
of ordinary differential equations:

x′ = 2x3 + γ

2 xy − xz − 2x +
ffiffiffi
3

p

2 λz, ð14Þ

y′ = γy2 + 4yz2 − 2yz + 2 − 3γð Þy, ð15Þ

z′ = −2z2 − λ
ffiffiffi
6

p
zx + 4zx2 + γzy + 2z, ð16Þ

where the overhead dash represents differentiation w.r.t.
logarithmic time (N = ln a) and curvature constant, k =
H2a2ðx2 + y + z − 1Þ. The total energy density of the homoge-
neous scalar field (Ωϕ) in terms of the newly introduced var-
iables is given by

Ωϕ =
_ϕ
2/2

� �
+V ϕð Þ

3H2 = x + z: ð17Þ

Also, the effective equation of state (ωϕ) for the scalar
field for any fluid is given by

1 + ωϕ =
pϕ + ρϕ
ρϕ

= 2x
x + z

, ð18Þ

where pϕ = ð1/2Þϕ2 −V is the pressure and ρϕ = ð1/2Þϕ2 +V
is the energy density of the scalar field. To determine the
fixed points, we equate x′, y′, and z′ to 0 and the fixed points
are studied. We tabulate the fixed points and their stability
analysis in Table 2. We obtain three fixed points, A, B, and
C, taking γ ≠ 2/3 for the fixed points to be in the finite phase
plane. In a three-dimensional problem, for nonhyperbolic
fixed points, we cannot use the usual linear stability analysis.
There are some other famous methods like Center Manifold
Theory [23–25], Lyapunov’s functions [44, 45], and phase
plot or numerical perturbation of solutions about the critical
points [46]. However, for nonhyperbolic fixed points, we will
use another strategy to find the stability [43]. We will perturb
the system by a small amount (ϵ) and study the evolution of
perturbations. If the perturbation grows monotonically with
the increase of N , then the system moves away from the fixed
point, and hence, the system is unstable. Otherwise, if the
perturbation decays as N tends to infinity, i.e., if the system
comes back to the fixed point following the perturbation or

x

1.0

y

-0.5

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.5

0.0

Figure 9: Shows the phase plot for the fixed point R.

Table 2: Table for dynamical system with simple exponential potential.

Fixed points x y z Ωϕ Stability ωϕ

A
ffiffiffi
2
3

r
1
λ

0 1 − λ2

6 1 −
ffiffiffi
2
3

r
1
λ
−
λ2

6
Stable for all

ffiffiffi
2

p
< λ <

ffiffiffi
3

p
and γ > 2/3 0

B
λffiffiffi
6

p 0
4
3λ2

4
3λ2

+ λffiffiffi
6

p Stable for all λ <
ffiffiffi
2

p
and γ > 2/3 -1

C 1 0 0 1 Unstable for any λ and γ 1
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if the perturbation evolves to a constant value, then the
system is stable. We will study the phase plot of the sys-
tem near the fixed point. Since, it is difficult to derive con-
clusions from the 3D phase plot, perturbations on
different axes are considered separately by finding out
the perturbation along each axis as a function of N . We
put x = xF + ϵx in the dynamical system to find perturba-
tion along the x-axis as a function of N where xF denotes
the value of x at the fixed point and ϵx denotes the small
perturbation along the x-axis. With the same procedure,
we obtain the perturbations along each axis for the fixed
points A, B, and C as follows:

(1) For the fixed point A, the perturbation along each
axes are as follows:

εx = E1 exp − 2 − 4
λ2

� �
N

� �
,

εy = E2 exp 2 − 3γð ÞNð Þ,

εz = E3 exp −2 1 − γ2

3

� �
N

� �
+ 6 λ2 − λ4
	 

36 − 12λ2

ð19Þ

(2) For the fixed point B, the perturbation along each
axes are as follows:

εx = E4 exp − 2 − λ2
	 


N
	 


+ λ3 − 6λ
	 


3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 2 − λ2
	 
q ,

εy = E5 exp 2 − 3γð ÞNð Þ,

εz = E6 exp − −2 + 16
3λ2

� �
N

� �
+ 8 3λ2 − 4

	 

3λ2 16 − 6λ2
	 


ð20Þ

(3) For the fixed point C, the perturbation function along
the z-axis is

ϵz = E7 exp 2Nð Þ, ð21Þ

where Eið1 ≤ i ≤ 7Þ, iwhich is taken from the index set Ξ,
are the arbitrary constants of integration

The perturbation along the z-axis is a monotonically
increasing function of N . So as N increases and tends to
infinity, the perturbation long the z-axis grows infinitely.
Thus, the fixed point C is unstable, and we do not need to
study the perturbation along other axes as already the pertur-
bation along the z-axis fails to decay or evolve to a constant
value as logarithmic time (N) increases to infinity. Now, we
will plot the perturbation along each axis for each fixed point
against logarithmic time (N) to graphically determine the
nature of stability and its contribution to the behavior of
the system.

For the fixed point A, the perturbation along the x-axis
(ϵx) comes out to be an exponentially decreasing function
of N when the value of λ becomes just greater than

ffiffiffi
2

p
. So

for those values of λ >
ffiffiffi
2

p
, the perturbation along the x-axis

gradually decreases and finally evolves to a constant value
when N tends to infinity. Figure 10 shows how the perturba-
tion along the x-axis varies with the increase of N when λ lies
between

ffiffiffi
2

p
and

ffiffiffi
3

p
. The perturbation along the y-axis (ϵy) is

an exponential decreasing function of N for γ > 2/3. So for all
γ > 2/3, the perturbation along the y-axis decays to zero as N
tends to infinity. Figure 11 shows the variation of ϵy vs.N and
Figure 12 shows the variation of perturbation along the z-axis
(ϵz) against N . The perturbation function along the z-axis
(ϵz) is an exponentially decreasing function of N when λ
becomes less than

ffiffiffi
3

p
. It is also seen from Figure 12 that

the perturbation along the z-axis (ϵz) decays to zero as N

N

1412108642

-6.1

-6.2

-6.3

-6.4

-6.5

-6.6

-6.7

Plot for 𝜀x against N A’ at < 𝜆 = 1.55 <√ 3
𝜀x

√for fixed point 2

Figure 10: Shows the variation of perturbations along the x-axis (ϵx) against N for fixed point A at λ = 1:55.
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tends to infinity when λ <
ffiffiffi
3

p
. So, when

ffiffiffi
2

p
< λ <

ffiffiffi
3

p
and

2/3 < γ ≤ 2, the perturbation along each axis decays to zero
as N increases to infinity which indicates that A is a stable
fixed point. We also find the Jacobian matrix at the fixed
point A for

ffiffiffi
2

p
< λ <

ffiffiffi
3

p
. We calculate the eigenvalues of

the Jacobian matrix at the fixed point with λ = 1:69. The
eigenvalues of the Jacobian matrix are all negative, and
the perturbation along each axis eventually decays to zero
when N tends to infinity. Hence, A is a stable fixed point.
The value of Ωϕ has been calculated at the fixed point A

and we get Ωϕ =
ffiffiffiffiffiffiffi
2/3

p ð1/λÞ + 1 − ðλ2/6Þ.
We have evaluated the value of Ωϕ at the stable values of

λ = 1:69 determined from the graphical approach. We get the
value of Ωϕ to be Ωϕ = 1:007 which agrees with the high pre-
cision data given in the Planck 2018 results [46]. From the
analytical as well as graphical approach, the fixed point A is
a stable fixed point withΩϕ = 1:007. Thus, A behaves as a late
time attractor with the barotropic fluid index γ satisfying
2/3 < γ ≤ 2. For fixed point B, the perturbation along the

x-axis (ϵx), perturbation along the y-axis (ϵy), and ϵz
decay exponentially to zero as N tends to infinity for λ
<

ffiffiffi
2

p
and γ > 2/3. We have also shown in Figures 13–15,

a discussion of the nature of the perturbation functions at
each axis. The value of Ωϕ at the fixed point B for λ = 0:5 <ffiffiffi
2

p
has been calculated, and we have found its value as Ωϕ

∼ 1 which is the gross value ofΩϕ which as a whole is always
1 [47]. We have observed that the Jacobian matrix at the fixed
point B depends on λ and evaluated the eigenvalues by find-
ing its characteristic polynomial. Since Figure 15 explains
that B is stable for λ <

ffiffiffi
2

p
, we find out the Jacobian matrix

with λ = 0:5 <
ffiffiffi
2

p
and solve the characteristic polynomial

equation. We have found all the eigenvalues to be nega-
tive. This indicates that B is a stable fixed point. For the
fixed point C, the perturbation function along the z-axis
emerges as an exponentially increasing function of N . So
with the increase of N , the perturbation along the z-axis
grows exponentially, and henceforth, C is an unstable fixed
point. The perturbation plot along the z-axis in Figure 16

N

0.007

Plot for 𝜀y against for fixed pointN A’ at 𝛾 = 4/3
𝜀y

0.006

0.005

0.004

0.003

0.002

0.001

3.0 3.5 4.0 4.5 5.0

Figure 11: Shows the variation of perturbations along the y-axis against N at γ = 4/3 for the fixed point A.

N

1412108642

0.9

Plot for 𝜀z against for fixed pointN A ’ at < 𝜆 = 1.55 <√ 3
𝜀z

√

0.8

0.7

0.6

0.5

0.4

0.3

2

Figure 12: Shows the variation of perturbations along the z-axis against N at λ = 1:55 for the fixed point A.
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shows how the perturbation along the z-axis rises expo-
nentially with the increase of N . At this fixed point C,
Ωϕ is found to be Ωϕ = 1. We have tabulated all the fixed
points along with their stability nature in Table 2. From
the effective equation of state for the scalar field derived
in terms of x and y, we have calculated the value of ωϕ

at the fixed points A, B, and C. It is shown in Table 2.
The Jacobian matrix (JA) for the system at the fixed point
A for any λ and γ is as follows:

JA =

−3 + 4
λ2

+ λ2

6
γffiffiffiffiffi
6λ

p
ffiffiffi
3
2

r
λ −

ffiffiffi
2
3

r
1
λ

0 8
3λ2

+ λ2

3 − 3γ 0

λ3ffiffiffi
6

p − λ
ffiffiffi
6

p
+ 8

ffiffiffi
2
3

r
1
λ
−
4
3

ffiffiffi
2
3

r
1
λ

γ 1 − λ2

6

 !
8
3λ2

− 4

2
66666666664

3
77777777775
:

ð22Þ

The Jacobian matrix (JB) at the fixed point Bð0,0,0Þ for
any λ and γ is given by

JB =

λ2 −
4
3λ2

− 2 γλ

2
ffiffiffi
6

p
ffiffiffi
3
2

r
λ −

λffiffiffi
6

p

0 2λ2
3 + 2 − 3γð Þ − 8

3λ2
0

32
3
ffiffiffi
6

p 1
λ

4γ
3λ2

−2 − λ2

3

2
6666666664

3
7777777775
:

ð23Þ

2.2.2. Analysis with Double Exponential Potential Form. In
this case, VðϕÞ is taken to be VðϕÞ =Vo exp ð−β exp ð ffiffiffi

2
p

αϕÞÞ, where α and β are positive real constants. Then,
we have dV/dϕ = d/dϕðVo exp ð−β exp ð ffiffiffi

2
p

αϕÞÞÞ = −V
ffiffiffi
2

p
αβ exp ð ffiffiffi

2
p

αϕÞ = −Vλ where λ =
ffiffiffi
2

p
αβ exp ð ffiffiffi

2
p

αϕÞ. It is
found that λ depends on time. So λ can no longer be

N
108642

-0.8

-0.9

-1.0

-1.1

-1.2

Plot for 𝜀x against for fixed point N B’ at 𝜆 = 0.5
𝜀x

Figure 13: Shows the variation of perturbations along the x-axis (ϵx) against N at λ = 0:5 for fixed point B.

N

3.53.02.52.01.5

0.14

Plot for 𝜀y against for fixed pointN B’ at 𝛾 = 4/3
𝜀y

0.12

0.10

0.08

0.06

0.04

0.02

Figure 14: Shows the variation of perturbations along the y-axis (ϵy) against N at γ = 4/3 for fixed point B.
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treated as a constant, but it should be treated as an inde-
pendent variable. As λ becomes an independent variable,
the system becomes a four-dimensional system with four
independent variables x, y, z, and λ [48, 49]. Using the
substitutions of dimensionless variables of x, y, and z
as in the case of the simple exponential form along with
λ =

ffiffiffi
2

p
αβ exp ð ffiffiffi

2
p

αϕÞ in equations (1), (6), and (7), we
obtain a system of differential equations given by equa-
tions (14)–(16) along with the following equation:

λ′ =
ffiffiffiffiffi
12

p
αxλ: ð24Þ

To find the fixed points, we equate x′, y′, z′,
and λ′ to 0. The fixed points and corresponding
cosmological parameters are shown in Table 3. The
Jacobian matrices (J) for any fixed point Fðx, y, z, λÞ are
given by

N
4.51.5 2.0 2.5 3.0 3.5 4.0

0.25

Plot for 𝜀z against for fixed point N B’ at 𝜆 = 0.5
𝜀z

0.20

0.15

0.10

Figure 15: Shows the variation of perturbations along the z-axis, ϵz against N at λ = 0:5 for fixed point B.

N
1.50.5 1.0

30

Plot for 𝜀z against for fixed pointN C ’
𝜀z

25

20

15

10

5

Figure 16: Shows the perturbations along the z-axis against N for fixed point C.

J F =

6x2 + γy
2 − z − 2 γx

2

ffiffiffiffiffi
3λ
2

r
− x

ffiffiffiffiffi
3z
2

r

8xy 2γy + 4x2 − 2z + 2 − 3γð Þ −2y 0

λ
ffiffiffi
6

p
z + 8xz γz −4z − λ

ffiffiffi
6

p
x + 4x2 + γy + 2 −

ffiffiffi
6

p
zxffiffiffiffiffi

12
p

αλ 0 0
ffiffiffiffiffi
12

p
αx

2
66666664

3
77777775
: ð25Þ
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The Jacobian matrices J F1
and J F2 at the respective fixed

points F1 and F2 are given as follows:

J F1 =

−3 0 0
ffiffiffi
3
2

r
0 −3γ 0 0
0 γ −2 0
0 0 0 0

2
66666664

3
77777775
,

J F2 =

4 γ

2 −1 0

0 4 0 0
0 0 6 0
0 0 0

ffiffiffiffiffi
12

p
α

2
6666664

3
7777775
:

ð26Þ

The Jacobian matrix (J F2
) at the fixed point F2 is an

upper triangular matrix. So the eigenvalues are its diagonal
entries: 4, 4, 6, and

ffiffiffiffiffi
12

p
α. All the eigenvalues are nonzero

positive quantities since α is also a positive real constant. So
the fixed point F2 is a hyperbolic fixed point in which all its
eigenvalues are positive. Hence, F2 is unstable. The value of
Ωϕ at F2 is obtained as 1. The effective equation of state
parameter (ωϕ) is found to be ωϕ = 1. The fixed point F2
shows a kinetic energy-dominated model with a stiff matter
fluid. For the fixed point F1, the characteristic polynomial
of J F1 is mðm + 2Þðm + 3Þð+3γÞ, where m denotes the eigen-
value of J F1. Solving the characteristic equation, we obtained
four eigenvalues which are m = 0, −1, −2, −3, and −3γ. The
fixed point F1 is a nonhyperbolic fixed point as one of the
eigenvalues takes a zero value. So for stability analysis, we
need to find the perturbation (ϵðNÞ) along each axis and
study the variation of ϵðNÞ with the increase of logarithmic
time (N). The following are the perturbations along each axis
at the fixed point F1:

εx = e−N + 〠
∞

n=1
e−2N
	 
n + 16,

εy =
3

e3γN − 1 , γ ≠ 0,

0, γ = 0,

8<
:

εz =
e−2N

1 − e−2N
,

ελ = δ,

ð27Þ

where δ is a constant. The series ∑∞
n=1ðe−2NÞn is a geometric

series with common ratio e−2N < 1. So, this series sums to
e2N/ð1 − e2NÞ, and using this sum, ϵx now becomes εx = e−N

+ ðe2N /ð1 − e2NÞÞ + 16 for all real N . We want to study the
behavior of ϵx as N ⟶∞ where N can take any real value.
We can do a sequential approach for this as it is equivalent to
finding the limit of a sequence <SN > whose Nth term is
SN = e−N + ðe2N /ð1 − e2NÞÞ + 16. When we take the limit
on SN as N ⟶∞ where N ∈ R the set of real numbers,
we obtain the limiting value as 16. So when N tends to
infinity, the value of ϵx converges to a constant value
which is 16. It means that the perturbation along the
x-axis (ϵx) evolves to a constant value, and as such,
ϵx fails to grow as N ⟶∞. From the above expression for
ϵy by using the same sequential approach, we see that in both
the cases for γ = 0 or γ ≠ 0, ϵy decays to zero asN ⟶∞. The
perturbation along the z-axis (ϵz) also decays to zero when
N ⟶∞. Since the perturbation along theλ-axis is a constant
function, the perturbation never grows along the z-axis. So the
system is stable. Figures 17–19 show the variation of ϵx, ϵy,
and ϵz against N for F1, respectively. We solve the value of
Ωϕ and it is obtained as 1 [47]. The value of the effective equa-
tion of the state parameter (ωϕ) is also obtained, and we get
ωϕ = −1. The study of the perturbation along each axis by ana-
lytical as well as geometrical approach shows that the fixed
point F1 is a stable fixed point which behaves as a late time
attractor. This fixed point contributes with a dark energy
model (ωϕ = −1).

2.2.3. Analysis with Inverse Power Law Potential Form.
We take VðϕÞ to be VðϕÞ =Voϕ

−α, where α is a real
constant. Then, dV/dϕ = −αVoϕ

−α−1 = −Vðα/ϕÞ = −Vλ,
where λ = α/ϕ. Here also, since λ becomes an indepen-
dent variable, we get a four-dimensional system with
independent variables as x, y, z, and λ. Using λ = α/ϕ,
the expression for dV/dϕ, and the dimensionless vari-
ables as in the case of simple exponential potential form,
the system of equations (1), (6), and (7) reduces to the
system of differential equations as in equations (14)–(16)
along with the following equation:

λ′ = −
ffiffiffi
6

p
xλ2

α
: ð28Þ

The Jacobian matrix (J) at any fixed point Gðx, y, z, λÞ
is given by

Table 3: Table for dynamical system with double exponential potential form.

Fixed points x y z λ Eigenvalues Ωϕ Stability Behavior ωϕ

F1 0 0 1 0 0, −2, −3, −3γ 1 Stable for all γ ∈ 0, 2½ � Stable, late time attractor -1 (dark energy)

F2 1 0 0 0 4, 4, 6,
ffiffiffiffiffi
12

p
α 1 Unstable for all γ Unstable 1 (stiff fluid)
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Here, we get the same fixed points (G1,G2), i.e.,
(G1 = F1, F2 = G2) as in the above case of double exponential
potential form. For the fixed point G1, we get the same
Jacobian matrix (JG1

= J F1
), and so the analysis for G1

remains the same as what was done in the double exponential
form for the fixed point F1. The fixed point G2 becomes non-
hyperbolic with the following Jacobian matrix (JG2

):

JG2
=

4 γ

2 −1 0

0 4 0 0
0 0 6 0
0 0 0 0

2
6666664

3
7777775
: ð30Þ

The eigenvalues of JG2
are 4, 4,6, and 0. Since one of

the eigenvalues becomes zero, G2 becomes nonhyperbolic.
To analyze the stability of this fixed point, we find out
the perturbation along each of the four axes as a function
of N as follows:

εx =
2 e4N − 1
	 


±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 2e4Nð Þ2 − 4e4N 1 − e4Nð Þ

q
2 1 − e4Nð Þ ,

εy =
6 − 3γ

e− 6−3γð ÞN − γ
, γ ≠ 0,

ςeN , γ = 0,

8><
>:

εz =
e2N

1 + e2N
,

ελ = δ′,

ð31Þ

where δ′ is a constant. As in the above case of the double
exponential potential form, using sequential approach, we
get ϵx which tends to a constant value as N ⟶∞. When
γ ≠ 0, ϵy tends to a unique limit as N ⟶∞. But when
γ = 0, ϵy tends to infinity as N ⟶∞. By using L’Hospi-
tal’s rule of finding limit, we see that ϵz attains a constant
value which is 1 as N ⟶∞. Also ϵλ is independent of N
as it is a constant function. So ϵλ always attains a constant
value (δ′) when N ⟶∞. Hence, the fixed point G2 is
stable for γ ≠ 0. Figures 20–22 show the perturbation plot

of G2 for different axes. We get the value of Ωϕ = 1 and
the effective equation of state parameter ωϕ = 2 which rep-
resents the ultrarelativistic fluid model. Table 4 shows the
fixed points and their stability conditions.

3. Conclusion

We have presented, in this work, a dynamical system per-
spective of scalar field FRW cosmology without potential as
well as with potential. In the absence of potential, we found
a two-dimensional dynamical system and four critical points
P, Q, R, and S. When γ > 2/3, since all the eigenvalues of the
diagonal matrix (JP) at the critical point P take negative
values, it confirms the stability of the fixed point P which
behaves as an attracting node. This is also shown by the phase
plot in Figure 3. When γ > 2/3, the eigenvalues take opposite
signs. This contributes to our model with a saddle fixed point
which is unstable with Ωϕ = 0. The phase plot in Figure 4
shows that P is unstable when γ > 2/3. We have also added
the perturbation plots along each axis and studied how they
vary with the rise of the logarithmic time (N) for the fixed
point P. The phase plots have also supported our analytical
findings. With the fixed point P, our developed cosmological
model becomes stable for the ultrarelativistic fluid model
(γ = 2), matter-dominated model (γ = 1), or radiation cos-
mology (γ = 4/3) which describes the cosmic features [50].
Also, the fixed point Q acts as an attracting node with all
the eigenvalues of the Jacobian matrix JQ being less than zero
along with Ωϕ = 1 for γ < 2/3. Since our system is stable for
γ < 2/3, it is stable for the dark energy model (γ = 0). Also,
this scalar field-dominated solution shows a late time attrac-
tor that represents the accelerated expansion phase of the
Universe for 0 ≤ γ < 2/3. The fixed point R behaves as a repel-
ling node and is always unstable for any 0 ≤ γ ≤ 2 which rep-
resents the past time attractor solution since both eigenvalues
take a positive value. This fixed point contributes to our
model with the inflationary epoch of the evolving Universe.
The fixed point S always possesses opposite signs of eigen-
values and gives us a saddle fixed point with Ωϕ = 1. Hence,
it is unstable.

When we analyze in the presence of a simple exponential
potential, we can extend the system to a three-dimensional
dynamical system. Studying a dynamical system in a flat Uni-
verse can be a special case of our present model by putting

JG =

6x2 + γy
2 − z − 2 γx

2

ffiffiffiffiffi
3λ
2

r
− x

ffiffiffiffiffi
3z
2

r

8xy 2γy + 4x2 − 2z + 2 − 3γð Þ −2y 0

λ
ffiffiffi
6

p
z + 8xz γz −4z − λ

ffiffiffi
6

p
x + 4x2 + γy + 2 −

ffiffiffi
6

p
zx

−
ffiffiffi
6

p
λ2

2 0 0 −
ffiffiffi
6

p
xλ

2
6666666664

3
7777777775
: ð29Þ
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Figure 17: Shows the variation of perturbations along the x-axis (ϵx) against N at fixed point (F1 =G1) for exponential potential and inverse
power law forms.
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Plot for 𝜀y against N for ‘F1’ with V(𝜙) = Vo𝜙
-𝛼; Voe
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Figure 18: Shows the variation of perturbations along the y-axis (ϵy) against N at fixed point (F1 = G1) for exponential potential and inverse
power law forms.
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Figure 19: Shows the variation of perturbations along the z-axis (ϵz) against N at fixed point (F1 = G1) for exponential potential and inverse
power law forms.
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Figure 20: Shows the perturbations along the x-axis (ϵx) against N for G2 using the inverse power law potential form.
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Figure 21: Shows the variation of perturbations along the y-axis (ϵy) against N at fixed point G2 for the inverse power law potential form.
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Figure 22: Shows the variation of perturbations along the z-axis (ϵz) against N at fixed point G2 for the inverse power law potential form.
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k = 0. So our model gives a more generalized way of study by
taking into account the curvature constant (k). We get three
fixed points A, B, and C tabulated in Table 2. By perturbing
the system by a small amount (ϵ), we find the perturbation
along each axis as a function of N where we have found A
to be stable for

ffiffiffi
2

p
< λ <

ffiffiffi
3

p
. We have also found the Jaco-

bian matrix (J) and evaluated the eigenvalues through its
characteristic polynomial equation. All the eigenvalues are
found to be negative. We also solve the value of Ωϕ at A
and find its value to beΩϕ = 1:007which is in agreement with
the high precision data in the Planck collaboration in cosmo-
logical parameters [47]. We found an effective equation of
state ωϕ = 0 at the fixed point A. So the fixed point A charac-
terizes our cosmological model with a matter-dominated
Universe. The fixed point B is also stable for potentials with
λ <

ffiffiffi
2

p
, γ > 2/3, and Ωϕ ∼ 1. The variation of perturbation

along the x-, y-, and z-axes against logarithmic time (N) is
shown in Figures 13–15. The value of ωϕ for the fixed point
B comes out to be ωϕ = −1. This fixed point is an interesting
one as it indicates that the Universe is dominated by the
potential energy of the scalar field that drives the expansion
of the Universe with acceleration. The fixed point C is
completely unstable as the perturbation along the z-axis
grows exponentially as N tends to infinity with Ωϕ = 1.
We have also studied the dynamical system with differ-
ent forms of potential, i.e., double exponential potential and
inverse power law potential. In both the analyses, we get a
four-dimensional dynamical system [48, 49]. Using the dou-
ble exponential potential form and inverse power law poten-
tial form, we obtain a four-dimensional system with fixed
points F1 and F2. For the analysis with the double exponen-
tial potential form, the fixed point F1 is stable with Ωϕ = 1
and ω = −1, and it behaves as a late time attractor. The pres-
ence of this fixed point in the system represents the dark
energy model (ωϕ = −1), and the other fixed point F2 is
unstable with a stiff fluid model (ωϕ = 1). With the inverse
power law potential form, both fixed points G1 and G2 are
stable representing a dark energy model (ωϕ = −1) and a stiff
fluid (ωϕ = 1), respectively. In our present work, we have
revealed the expanding scenario of the Universe where we
have analyzed for suitable values of γ and λ. Our developed
scalar field cosmological model shows a deep connection
with the cosmic acceleration phenomena thereby supporting
the fact that our Universe is in the phase of accelerated
expansion.
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