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The relativistic wave equations determine the dynamics of quantum fields in the context of quantum field theory. One of the
conventional tools for dealing with the relativistic bound state problem is the Klein-Fock-Gordon equation. In this work, using a
developed scheme, we present how to surmount the centrifugal part and solve the modified Klein-Fock-Gordon equation for the
linear combination of Hulthén and Yukawa potentials. In particular, we show that the relativistic energy eigenvalues and
corresponding radial wave functions are obtained from supersymmetric quantum mechanics by applying the shape invariance
concept. Here, both scalar potential conditions, which are whether equal and nonequal to vector potential, are considered in the
calculation. The energy levels and corresponding normalized eigenfunctions are represented as a recursion relation regarding
the Jacobi polynomials for arbitrary l states. Beyond that, a closed form of the normalization constant of the wave functions is
found. Furthermore, we state that the energy eigenvalues are quite sensitive with potential parameters for the quantum states.
The nonrelativistic and relativistic results obtained within SUSY QM overlap entirely with the results obtained by ordinary
quantum mechanics, and it displays that the mathematical implementation of SUSY quantum mechanics is quite perfect.

1. Introduction

The exactly solvable problems for quantum systems have
long been a subject of intense study in many branches of
quantum physics. The main aim of an analytical solution of
wave equations for this attention is that the wave function
contains all the requisite information for the full description
of a quantum system [1–6]. In physics, especially the relativ-
istic quantum mechanical applications to particle and
nuclear physics, the relativistic wave equations predict parti-
cles’ reaction at high energies [5–7]. The analytical solution
of the Klein-Fock-Gordon (KFG) equation with physical
potentials plays a central role in relativistic quantum
mechanics since this wave equation perfectly defines the
spinless pseudoscalar pions and Higgs boson.

In principle, numerous methods were developed, and
they are still successfully implemented in solving the nonrel-
ativistic and relativistic wave equations with some familiar
potentials. The Nikiforov-Uvarov method [8], factorization
method [9], Laplace transform approach [10], and the path
integral method [11] and shifted 1/N expansion approach
[12, 13] are used for solving radial and azimuthal parts of
the wave equations exactly or quasiexactly in l ≠ 0 for various
potentials. Additionally, there are numerous interesting
research works about the KFG equation with physical poten-
tials by using different methods in the literature [14–26].
Among them, as an example, in Ref. [22], the s-wave KFG
equation with the vector Hulthén type potential was treated
by the standard method. As reported by Talukdar et al., the
scattering state solutions of the s-wave KFG equation with
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the vector and scalar Hulthén potentials were obtained for
the irregular and regular boundary conditions [25]. Besides,
the supersymmetry method (SUSY) was also proposed for
solving the wave equations analytically [27–30]. Nonetheless,
Okon et al. reported analytical solutions of the Schrödinger
equation for the Hulthén-Yukawa plus inversely quadratic
potential. [31] In Ref. [32–39], the scalar potential, which is
nonequal and equal to the vector potential, was supposed to
get the bound states of the KFG equation for some typical
potential from the ordinary quantum mechanics. Further-
more, KFG equation with the ring-shaped potential was
investigated by Dong et al. [36]. If the condition where the
interaction potential is insufficient to form antiparticle-
particle pairs is considered, the KFG and Dirac equations
can be utilized for the investigation of zero- and 1/2-spin par-
ticles, respectively.

When a particle is in a strong field, the relativistic wave
equations should be considered in the quantum system. In
any case, it can be corrected quickly for nonrelativistic quan-
tum mechanics. The Hulthén potential is one of the essential
short-range potentials in physics, extensively used to describe
the continuum and bound states of the interaction systems. It
has been applied to several research areas such as nuclear and
particle, atomic, chemical, and condensed matter physics, so
analyzing relativistic effects for a particle under this potential
could become significant, especially for strong coupling. The
Hulthén potential is defined as

VH rð Þ = −
Ze2

a
· e−r/a

1 − e−r/a
, ð1Þ

where Z and a are the atomic number and the screening
parameter, respectively. They determine the range for the
Hulthén potential [40]. The Yukawa potential was proposed
in 1935 as an operative potential to describe the strong inter-
actions between nucleons [41]. It takes the following form:

VY rð Þ = −
Ae−kr

r
, ð2Þ

where A describes the strength of the interaction and 1/k, its
range. Unfortunately, for arbitrary l states (l ≠ 0), the KFG
equation cannot get an exact solution with these potentials
due to the centrifugal term of potentials. The numerous
research works reveal the SUSY QM method’s power and
simplicity in solving wave equations of the central and non-
central potentials for arbitrary l states [42–49].

In principle, the radial function nature at the origin was
investigated particularly for singular potentials by Khelash-
vili et al. [50, 51]. While the Laplace operator is portrayed
in spherical coordinates, the radial wave equation’s exact der-
ivation demonstrates the perspective of a delta function term.
Thus, the delta function term of the Laplace operator yields
an essential contribution to the energy level. Although the
various research attempts have provided satisfactory bound
state energies using Hulthén and Yukawa potentials sepa-
rately [1, 52–57], we first considered these potentials under
the linear combination form. [58] It is also worth mentioning
that this potential can be used in nuclear physics to investi-

gate the interaction between the deformed pair of the nucleus
and spin-orbit coupling for the particle motion in the poten-
tial fields. Another fascinating perspective of this potential
can be used as a mathematical model in the description of
vibrations on the hadronic system’s side, and it can constitute
a convenient model for other physical situations. The inves-
tigation of the relativistic bound states in the arbitrary l
-wave KFG equation with the linear combination of Hulthén
and Yukawa potentials is quite interesting, and it can provide
the deeper and accurate appreciations of the physical proper-
ties of the wave functions and energies in the continuum and
bound states of the interacting systems. Inspired by all devel-
opments and works, in this paper, we present the solution of
the relativistic radial KFG equation for the linear combina-
tion of Hulthén and Yukawa potentials, defined as

V rð Þ = −
V0e

−2δr

1 − e−2δr
−
Ae−δr

r
, ð3Þ

where V0 = 2δZe2 and δ is the screening parameter.
To study the system, we use an improved scheme to over-

come the centrifugal term and the SUSY quantummechanics
[59, 60]. Despite our previous research effort on this potential
[58], the investigation of this potential still needs to be clari-
fied in detail. Accordingly, the main goal is to solve the KFG
equation for the linear combination of Hulthén and Yukawa
potentials by considering two cases, i.e., the scalar potential
which is equal and unequal to vector potential by using SUSY
QM. Thereby, the energy eigenvalues and corresponding
radial wave functions are found for any l orbital angular
momentum case. Then, we compare the obtained results with
the results obtained by the NU method in ordinary quantum
mechanics to present the legitimacy and feasibility of this
SUSY QM method. The remainder of the paper is structured
as follows. In Section 2, we introduce the analytical solution
of the radial KFG equation for the linear combination of
Hulthén and Yukawa potentials from SUSY quantum
mechanics. Next, the analysis of the results is presented in
Section 3. Finally, Section 4 contains the conclusions.

2. Bound State Solution of the Radial Klein-
Fock-Gordon Equation

2.1. Implementation SUSY Quantum Mechanics. Two differ-
ent types of potential can be introduced into the KFG equa-
tion, which contains two objects: (i) the four-vector linear
momentum operator and (ii) the scalar rest mass. Hence,
the first one is a vector potential V , which is introduced via
minimal coupling, and the second one is a scalar potential S
, which is introduced via scalar coupling [5]. At this moment,
they allow one to introduce two types of potential coupling:
the vector potential V and the space-time scalar potential S.
The natural units (ℏ = c = 1) are set throughout this study.
In the spherical coordinates systems, the KFG equation with
vector potential Vðr, θÞ and scalar potential Sðr, θÞ has the
form

−∇2 + M + S rð Þð Þ2� �
ψ r, θ, ϕð Þ = E −V rð Þ½ �2ψ r, θ, ϕð Þ, ð4Þ
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where E is the relativistic energy andM denotes the rest mass
of the system’s scalar particle. For the separation of the angu-
lar and radial parts of the wave function, in the stationary
KFG equation with the linear combination of Hulthén and
Yukawa potentials, the wave function should utilize the fol-
lowing wave function:

ψ r, θ, ϕð Þ = χ rð Þ
r

Θ θð Þeimϕ,m = 0,±1,±2,±3⋯ ð5Þ

and substituting this into Equation (4), the radial KFG equa-
tion is defined in the following form:

χ′′ rð Þ + E2 −M2� �
− 2 M · S rð Þ + E · V rð Þð Þ + V2 rð Þ − S2 rð Þ� �

−
l l + 1ð Þ
r2

� �
χ rð Þ = 0:

ð6Þ

As it is known that the KFG equation with this potential
can be solved exactly using a suitable approximation scheme
to surmount the centrifugal term. To solve Equation (6) for
l ≠ 0, we ought to approximate the centrifugal term of the
Yukawa potential in this system. As a result of this, while δ
r < <1, the improved approximation scheme [61–65] must
be used as

1
r
≈

2δe−δr
1 − e−2δr

,

1
r2

≈
4δ2e−2δr

1 − e−2δr
� �2 :

ð7Þ

Next, the vector and scalar potential forms for the general
Hulthén and Yukawa potentials can be considered in the fol-
lowing forms:

VH rð Þ = −
V0e

−2δr

1 − e−2δr
, SH rð Þ = −

S0e
−2δr

1 − e−2δr
,

VY rð Þ = −
V0 ′e−2δr
1 − e−2δr

, SY rð Þ = −
S0 ′e−2δr
1 − e−2δr

:

ð8Þ

Then, Equation (6) becomes

χ′′ rð Þ + E2 −M2� �
+ 2

M S0 + S0 ′
� 	

+ E V0 +V0 ′
� 	

1 − e−2δr

0
@

1
Ae−2δr

2
4

+
V0 +V0 ′
� 	2

− S0 + S0 ′
� 	2

1 − e−2δr
� �2

0
B@

1
CAe−4δr −

4l l + 1ð Þδ2e−2δr
1 − e−2δr
� �2

3
75χ rð Þ = 0:

ð9Þ

Thereby, the effective potential of the Hulthén and

Yukawa potential linear combination has the following form:

Veff rð Þ = −
4δ2 α2 + β2� �

e−2δr

1 − e−2δr
−
4δ2 γ2 − ρ2
� �

e−4δr

1 − e−2δr
� �2 + 4l l + 1ð Þδ2e−2δr

1 − e−2δr
� �2 ,

ð10Þ

where

ε =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − E2

p

2δ > 0,

α =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EV0 + 2MS0

p
2δ > 0,

β =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EV0′ + 2MS0′

q
2δ > 0,

γ = V0 +V0′
2δ > 0,

ρ = S0 + S′0
2δ > 0:

ð11Þ

For investigation in detail, the nonrelativistic limit of the
formula must be studied for the energy level. When VðrÞ =
SðrÞ, Equation (4) reduces to a Schrödinger equation for the
potential 2VðrÞ. Based on supersymmetric quantum
mechanics, the eigenfunction of ground state χ0ðrÞ in Equa-
tion (6) should be in the following form:

χ0 rð Þ =N exp −
ð
W rð Þdr

� �
, ð12Þ

where N andWðrÞ are normalised constant and superpoten-
tial, respectively. The connection between the supersymmet-
ric partner potentials V−ðrÞ and V+ðrÞ of the superpotential
WðrÞ is as follows [27, 28]:

V− rð Þ =W2 rð Þ −W ′ rð Þ,

V+ rð Þ =W2 rð Þ +W ′ rð Þ:
ð13Þ

The particular solution of the Riccati equation (Equation
(13)) must be in the following form:

W rð Þ = − F + Ge−2δr

1 − e−2δr

� �
, ð14Þ

where G and F are unknown constants. Having inserted
Equation (14) into Equation (13) and taking into account
that V−ðrÞ =Veff ðrÞ − ðE2 −M2Þ, we obtain
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F2 + 2FGe−2δr
1 − e−2δr

+ G2e−4δr

1 − e−2δr
� �2 −

2δGe−2δr
1 − e−2δr

−
2δGe−4δr

1 − e−2δr
� �2

= −
4δ2 α2 + β2� �

e−2δr

1 − e−2δr
−
4δ2 γ2 − ρ2
� �

e−4δr

1 − e−2δr
� �2

+ 4l l + 1ð Þδ2e−2δr
1 − e−2δr
� �2 − E2 −M2� �

:

ð15Þ

After small simplification, it can be rewritten as

F2 + 2FG − 2δGð Þe−2δr
1 − e−2δr

+ G2 − 2δG
� �

e−4δr

1 − e−2δr
� �2

= 4δ2ε2 − 4δ2 α2 + β2� �
e−2δr

1 − e−2δr
−
4δ2 γ2 − ρ2
� �

e−4δr

1 − e−2δr
� �2

+ 4l l + 1ð Þδ2 e−2δr

1 − e−2δr
+ e−4δr

1 − e−2δr
� �2

" #
:

ð16Þ

From comparison of compatible quantities in the left and
right sides of the equation (Equation (16)), we find the fol-
lowing relations for G and F constants:

F2 = 4δ2ε2, ð17Þ

2FG − 2δG = 4δ2l l + 1ð Þ − 4δ2 α2 + β2� �
, ð18Þ

G2 − 2δG = −4δ2 γ2 − ρ2
� �

+ 4δ2l l + 1ð Þ: ð19Þ

Considering extremity conditions for wave functions, we
obtain G > 0 and F < 0. Solving Equation (19) yields

G = δ ± 2δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l + 1

2

� �2
− γ2 + ρ2

s
, ð20Þ

and considering G > 0 from Equations (18) and (19), we find
that

F = G
2 −

2δ2 α2 + β2 − γ2 + ρ2
� �

G
: ð21Þ

From Equation (17) and Equation (21), we find that

ε2 = 1
4δ2

δ + 2δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l + 1/2ð Þ2 − γ2 + ρ2

q
2 −

2δ α2 + β2 − γ2 + ρ2
� �

1 + 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l + 1/2ð Þ2 − γ2 + ρ2

q
2
64

3
75
2

:

ð22Þ

After inserting (22) into (11) for the definitions of the
energy eigenvalue of ground state for general case VðrÞ
≠ SðrÞ, we obtain the following energy level equation:

M2 − E2
0 =

δ + 2δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l + 1/2ð Þð Þ2 − γ2 + ρ2

q
2 −

2δ α2 + β2 − γ2 + ρ2
� �

1 + 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l + 1/2ð Þð Þ2 − γ2 + ρ2

q
2
64

3
75
2

:

ð23Þ

When r→∞, the chosen superpotential WðrÞ→ -F.
Inserting Equation (14) into Equation (13), the supersym-
metric partner potentials V−ðrÞ and V+ðrÞ can be found in
the following forms:

V− rð Þ = F2 + 2FG − 2δGð Þe−2δr
1 − e−2δr

+ G2 − 2δG
� �

e−4δr

1 − e−2δr
� �2 ,

V+ rð Þ = F2 + 2FG + 2δGð Þe−2δr
1 − e−2δr

+ G2 + 2δG
� �

e−4δr

1 − e−2δr
� �2 :

ð24Þ

By using the superpotential WðrÞ from Equation (14),
we can find χ0ðrÞ radial eigenfunction of ground state in
the following form:

χ0 rð Þ =NeFr 1 − e−2δr
� 	G/2δ ð25Þ

where r→ 0; χ0ðrÞ→ 0, G > 0, and r→∞; χ0ðrÞ→ 0, F
< 0. Two partner potentials V−ðrÞ and V+ðrÞ which differ
from each other with additive constants and have the
same functional form are called the invariant potentials
[59, 60]. Hence, for the partner potentials V−ðrÞ and V+
ðrÞ given with Equations (13) and (14), the invariant
forms are defined as

R G1ð Þ = V+ G, rð Þ − V− G1, rð Þ = F2 − F2
1 =

G
2 −

2δ2 α2 + β2 − γ2 + ρ2
� �

G

" #2

−
G + 2δ

2 −
2δ2 α2 + β2 − γ2 + ρ2
� �

G + 2δ

" #2
,

ð26Þ

R Gið Þ =V+ G + i − 1ð Þ2δ, r½ � −V− G + i2δ, r½ �

= G + i − 1ð Þ · 2δ
2 −

2 α2 + β2 − γ2 + ρ2
� �

δ2

G + i − 1ð Þ · 2δ

 !2

−
G + i · 2δ

2 −
2 α2 + β2 − γ2 + ρ2
� �

δ2

G + i · 2δ

 !2

:

ð27Þ

where the reminder RðGiÞ is independent of r. If we keep
going this procedure and make the following substitution
Gnr

=Gnr−1 + 2δ = G + 2nrδ, the whole discrete level of
Hamiltonian H−ðGÞ can be written as

E2
nr
= E2

0 + 〠
n

i=1
R Gið Þ, ð28Þ

and we obtain the following form:
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E2
nrl

=M2 −
G + 2δnr

2 −
2δ2 α2 + β2 − γ2 + ρ2
� �

G + 2δnr

 !2

: ð29Þ
In the following, we obtain the energy level equation in

ordinary quantum mechanics

As seen from Equation (30), it is in a perfect agreement
with the result obtained in Equation (27) of Ref. [49]. If we
consider Equation (11) into Equation (30) and do some sim-
ple algebraic derivation, we can obtain the energy eigenvalue
equation in the simplest form

M2 − E2
nrl

= δ nr +
1
2 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l + 1

2

� �2
− γ2 + ρ2

s0
@

1
A

2
4

−
γEnrl

+ ρM + δ ρ2 − γ2
� �

nr + 1/2ð Þ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l + 1/2ð Þð Þ2 − γ2 + ρ2

q
3
75
2

ð31Þ

with α2 + β2 = ðγEnrl
+ ρMÞ/δ.

Based on the SUSY QMmethod and knowing the ground
state eigenvalues E0 and eigenfunctions χ0, all energy eigen-
values Enrl

and eigenfunctions χnrl
can be easily obtained.

Briefly, using the following equation:

χnr
r, a0ð Þ = A+ r, a0ð Þχnr−1 r, a1ð Þ, ð32Þ

χnr l
can be easily obtained in terms of the ground state

wave functions. The superpotential WðrÞ depends on two
parameters a0 = ðF,GÞ and the first partner potential has like
that parameter a1 = ðF1,G1Þ. Hence, Equation (32) will be in
the following form:

χnr
r, a0ð Þ = −

d
dr

− F −
Ge−2δr

1 − e−2δr

� �
χnr−1 r, a1ð Þ, ð33Þ

We define a new variable s = e−2δr ∈ ½0, 1� and factoring
out the ground state wavefunction

χnr
s, a0ð Þ = χ0 s, a0ð ÞRnr

s, a0ð Þ: ð34Þ

Substituting into Equation (33) and using the ground
state wavefunction (Equation (25)), we get

Rnr
s ; ε, Kð Þ = s 1 − sð Þ d

ds
Rnr−1 s ; ε, K + 1ð Þ + 2ε − 2ε + 2K + 1ð Þ½ �Rnr−1 s ; ε, K + 1ð Þ:

ð35Þ

Based on comparison, it with the recursion relation in Ref
[66]:

P α,βð Þ
nr

1 − 2sð Þ = s 1 − sð Þ d
ds

P α+1,β+1ð Þ
nr−1 1 − 2sð Þ

+ α + 1 − α + β + 2ð ÞsÞ½ �P α+1,β+1ð Þ
nr−1 1 − 2sð Þ,

ð36Þ

it is seen that Rnr
ðs, a0Þ is proportional to the Jacobi polyno-

mial Pð2ε,2K−1Þ
nr

ð1 − 2sÞ. Thus, the normalized eigenfunction
for this potential is taken in the following form:

χnr l
sð Þ = Cnrl

sε 1 − sð ÞKP 2ε,2K−1ð Þ
nr

1 − 2sð Þ, ð37Þ

χnr l
sð Þ = Cnrl

sε 1 − sð ÞK Γ nr + 2ε + 1ð Þ
nr!Γ 2ε + 1ð Þ ·2F1 −nr , 2ε + 2K + nr , 1 + 2ε ; sð Þ,

ð38Þ

where K = 1/2 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl + ð1/2ÞÞ2 − γ2 − ρ2

q
. The normalization

constant Cnrl
can be found by using the normalization condi-

tion

ð∞
0

R rð Þj j2r2dr =
ð∞
0

χ rð Þj j2dr = 1
2δ

ð1
0

1
s
χ sð Þj j2ds = 1, ð39Þ

by utilizing the following integral formula in Ref. [66]:

ð1
0
1 − zð Þ2 δ+1ð Þz2λ−12F1 −nr , 2 δ + λ + 1ð Þ + nr , 2λ + 1 ; zð Þ2dz

= nr + δ + 1ð Þnr!Γ nr + 2δ + 2ð ÞΓ 2λð ÞΓ 2λ + 1ð Þ
nr + δ + λ + 1ð ÞΓ nr + 2λ + 1ð ÞΓ 2 δ + λ + 1ð Þ + nrð Þ ,

ð40Þ

where λ > 0 and δ > −3/2. After making simple calculations,
we arrive at the following expression for the normalization
constant:

Cnrl
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2δnr! nr + K + εð ÞΓ 2ε + 1ð ÞΓ nr + 2ε + 2Kð Þ

nr + Kð ÞΓ 2εð ÞΓ nr + 2Kð ÞΓ nr + 2ε + 1ð Þ

s
: ð41Þ

M2 − E2
nr ,l =

α2 + β2 − l + 1/2ð Þð Þ2 − nr + 1/2ð Þð Þ2 − 2 nr + 1/2ð Þð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l + 1/2ð Þð Þ2 − γ2 + ρ2

q
nr + 1/2ð Þ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l + 1/2ð Þð Þ2 − γ2 + ρ2

q · δ

2
64

3
75
2

: ð30Þ
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3. Results and Discussion

In this section, we present the numerical evaluation for the
bound state solutions of the l-wave KFG equation with the
vector and scalar form of the linear combination of Hulthén
and Yukawa potentials. To study the property of the energy
levels regarding potential parameters in some quantum
states, (see Figure 1) we take M = 10, V0 = 0:01, V ′0 = 0:05,
S0 = 0:025, and S′0 = 0:035 and M = 10, V0 = 0:02, V′0 =
0:06, S0 = 0:035, and S′0 = 0:045. The little difference ( ~
0.01) in model potential parameters V0, V′0, S0, and S′0 is
quite sufficient, in order to see the energy level of quantum
states displaye completely different behavior. In
Figures 1(a) and 1(b), the energy levels E of quantum states
first are decreasing until some of small δ values ( ~ 0.075-
0.1), then the energy levels E increase in the δ > 0:1. In
Figures 1(c) and 1(d), the energy levels E of quantum states
have very little variation for an interval of δ ∈ ½0,0:1�, and it

causes the degenerate of all quantum states, then the energy
levels E of quantum states continue to gradually increase with
increments of δ. These behaviors are better recognized in
higher quantum states.

Behind that of these results, we can investigate some spe-
cial cases.

(i) In case S0 =V0, and S0′ =V0′, namely, γ = ρ, we obtain

M2 − E2
nrl

= δ nr + l + 1ð Þ − γ Enrl
+M

� �
nr + l + 1

" #2
, ð42Þ

where γ = ðV0 +V0′Þ/2δ

(ii) If V0′ = 0, S0′ = 0, we obtain the energy level equation
for Hulthén potential case
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Figure 1: (Color online). The variation of energy level as a function of screening parameter δ for quantum states in (a, b) the parameters
M = 10, V0 = 0:01, V′0 = 0:05, S0 = 0:025, and S′0 = 0:035 and (c, d) the parameters M = 10, V0 = 0:02, V′0 = 0:06, S0 = 0:035, and S′0 =
0:045.

6 Advances in High Energy Physics



M2 − E2
nr l

= δ nr +
1
2 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l + 1

2

� �2
− γ′2 + ρ′2

s0
@

1
A

2
4

−
γ′Enrl

+ ρ′M + δ ρ′2 − γ′2
� 	

nr + 1/2 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l + 1/2ð Þð Þ2 − γ′2 + ρ′2

q
3
75
2

,

ð43Þ

where γ′ = V0/2δ and ρ′ = S0/2δ. This result is in good agree-
ment with the expression obtained in Equation (A.1) of Ref
[58]

(iii) In case V0 = 0, S0 = 0, but V0′ ≠ S0′, we obtain the
energy level equation for Yukawa potential, which
is defined as the following form:

M2 − E2
nrl

= δ nr +
1
2 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l + 1

2

� �2
− γ′′2 + ρ′′2

s0
@

1
A

2
4

−
γ′′Enrl

+ ρ′′M + δ ρ′′2 − γ′′2
� 	

nr + 1/2ð Þ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l + 1/2ð Þð Þ2 − γ′′2 + ρ′′2

q
3
75
2

,

ð44Þ

where γ′′ = V′0/2δ, and ρ′′ = S′0/2δ. This result is in good
agreement with the expression obtained in Equation (A.3)
of Ref [58]. Furthermore, this result is also the same with
the expression for the constant mass case obtained in Ref
[67]. One can easily see this by setting q=1 and α→ δ in
Equation (39) of Ref [67]

(iv) Also, if V0 = −S0, and V0′ = −S0′, namely, γ = −ρ

M2 − E2
nr l

= δ nr + l + 1ð Þ − γ Enrl
−M

� �
nr + l + 1

" #2
, ð45Þ

where γ = ðV0 +V0′Þ/2δ

(v) If δ→ 0 and S0 = V0 = 2δZe2 or γ′ = ρ′ =V0/2δ = Z
e2 in Equation (31), the potential reduces to Coulomb
potential, VcðrÞ = −Ze2/r, and the corresponding
energy spectrum is obtained as

Enrl
= nr + l + 1ð Þ2 − Z2e4

nr + l + 1ð Þ2 + Z2e4
M, ð46Þ

and this result is the same with Equation (A.2) of Ref [67]

(vi) If we take l = 0 (the s-wave case), the centrifugal term
in Equation (9) disappears because 4lðl + 1Þδ2e−2δr/
ð1 − e−2δrÞ2 = 0 and the equation turns to the s

-wave KFG equation. By setting l = 0 in Equation
(31), its energy spectrum equation is the following
form:

M2 − E2
nrl

= δ nr +
1
2 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4 − γ2 + ρ2

r !
−

γEnrl
+ ρM + δ ρ2 − γ2

� �
nr + 1/2ð Þ + ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1/4ð Þ − γ2 + ρ2
p

" #2

ð47Þ

(vii) If we take S0=V0 and S′0=V′0, and based on the fol-
lowing transformations: Enrl

–M→ ENR
nrl

, Enrl
+M

→ 2M, V0 → V0/2, and V′0 → V′0/2, we obtain
the energy level equation of Equation (31) for the
nonelativistic case. Briefly, because of the following
relation:

M2 − E2
nr l

= M − Enrl

� �
M + Enrl

� �
= −ENR

nrl
· 2M,

γ = ρ = V0 +V0′
4δ = V0 + 2δA

4δ ,

γ Enrl
+M

� �
= 2Mγ = M V0 + 2δAð Þ

2δ ,

ð48Þ

the energy level equation of Equation (31) for the nonrelativ-
istic case, can be written the following form:

ENR
nrl

= −
1
2M δ nr + l + 1ð Þ + M V0 + 2δAð Þ

2δ nr + l + 1ð Þ
� �2

, ð49Þ

which is good agreement with the result in Equation (28) (If
B and C are considered zero as a special case) of Ref [31].
Generally, it is obviously seen from Equation. (31) that the
bound states show more stability in the case of the linear
combination of Hulthén and Yukawa potentials than
Hulthén and Yukawa potential cases. Furthermore, the
energy eigenvalues of the quantum states are considerably
sensitive with depending potential parameters

4. Conclusion

To conclude, we admit that the SUSY QM method was pre-
sented to solve the KFG equation for the linear combination
of Hulthén and Yukawa potentials. Hence, the energy eigen-
values and corresponding eigenfunctions of a mentioned
quantum system were analytically obtained for arbitrary l
angular momentum and nr radial quantum numbers. Next,
a closed form of the normalization constant of the wave func-
tions was also found. Beyond that, it was also shown that the
energy eigenvalues are considerably sensitive respecting
quantum states. Finally, the results obtained within SUSY
QM are in excellent agreement with the results obtained by
ordinary quantum mechanics, and it confirms that the math-
ematical application of SUSY quantum mechanics is ideal for
similar systems.
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It is worth mentioning that the main results of this paper
are the explicit and closed form expressions for the energy
eigenvalues and the normalized wave functions. The method
presented in this study is systematic, and in many cases, one
of the most definite works in this field. In particular, the lin-
ear combination of Hulthén and Yukawa potentials can be
one of the essential exponential potentials, and it probably
provides a promising avenue in many branches of physics,
especially in hadronic and nuclear physics.

Appendix

A. SUSYQM Method

For N = 2 in SUSYQM, it is possible to define two nilpotent
operators, Q and Q†. They satisfy the following anticommu-
tation relations:

Q,Qf g = 0, Q†,Q†
 �
= 0,

Q,Q†
 �
=H:

ðA:1Þ

Here,H is the supersymmetric Hamiltonian operator and

conventionally Q =
0 0
A− 0

 !
and Q† =

0 A+

0 0

 !
. The Q

and Q† are also known as the supercharges operators. Here,
A− is bosonic operator and A+ is its adjoint. In terms of these
operators, the Hamiltonian H can be defined as [27, 28]:

H =
A+A− 0
0 A−A+

 !
=

H− 0
0 H+

 !
, ðA:2Þ

where the H± is named as the Hamiltonian of supersymmet-
ric partner. Note also that Q and Q† operators commute with
H. If we have zero ground state energy for H (i.e., E0 = 0), we
can always represent the Hamiltonian as a product of a linear
differential operators pairs in a factorable form. Therefore,
the ground state ψ0ðxÞ obeys the Schrödinger equation as fol-
lows:

Hψo xð Þ = −
ℏ2

2m
d2ψ0
dx2

+V xð Þψ0 xð Þ = 0, ðA:3Þ

hence,

V xð Þ = ℏ2

2m
ψ′′0 xð Þ
ψ0 xð Þ : ðA:4Þ

This result makes us possible to globally reconstruct the
above potential from the information of its ground state wave
function that contain zero nodes. Hence, factorizing of H is
quite easy by using the following ansatz [27, 28]:

H− = −
ℏ2

2m
d2

dx2
+V xð Þ = A+A− ðA:5Þ

where

A− = ℏffiffiffiffiffiffiffi
2m

p d
dx

+W xð Þ, A+ = −
ℏffiffiffiffiffiffiffi
2m

p d
dx

+W xð Þ: ðA:6Þ

After that, the Riccati equation for WðxÞ can be written
as

V− xð Þ =W2 xð Þ − ℏffiffiffiffiffiffiffi
2m

p W ′ xð Þ: ðA:7Þ

Solving forWðxÞ from this equation, we can express it in
terms of ψ0ðxÞ by

W xð Þ = −
ℏffiffiffiffiffiffiffi
2m

p ψ′0 xð Þ
ψ0 xð Þ : ðA:8Þ

We obtain this solution by noticing that when A−ψ0ðxÞ
= 0 is satisfied, we have Hψ0 = A+A−ψ0 = 0: We then intro-
duce the operator H+ = A−A+ which is written by reversing
the order of the H− components. After a bit simplification,
we find that H+ is nothing but the Hamiltonian for new
potential V+ðxÞ.

H+ = −
ℏ2

2m
d2

dx2
+V+ xð Þ, V+ xð Þ =W2 xð Þ + ℏffiffiffiffiffiffiffi

2m
p W ′ xð Þ:

ðA:9Þ

We call V±ðxÞ as supersymmetric partner potentials. For
example, when the ground state energy of H1 is E1

0 with
eigenfunction ψ1

0, from Equation (A.5), we can always write

H1 = −
ℏ2

2m
d2

dx2
+V1 xð Þ = A+A− + E1

0, ðA:10Þ

where

A−
1 =

ℏffiffiffiffiffiffiffi
2m

p d
dx

+W1 xð Þ, A+
1 = −

ℏffiffiffiffiffiffiffi
2m

p d
dx

+W1 xð Þ,

V1 xð Þ =W2
1 xð Þ − ℏffiffiffiffiffiffiffi

2m
p W′1 xð Þ + E1

0,W1 xð Þ = −
ℏffiffiffiffiffiffiffi
2m

p d ln ψ1
0

dx
:

ðA:11Þ

The SUSY partner Hamiltonian is defined by [27, 28].

H2 = A−
1A

+
1 + E1

0 = −
ℏ2

2m
d2

dx2
+V2 xð Þ, ðA:12Þ

where

V2 xð Þ =W2
1 xð Þ + ℏffiffiffiffiffiffiffi

2m
p W′1 xð Þ + E1

0

= V1 xð Þ + 2ℏffiffiffiffiffiffiffi
2m

p W′1 xð Þ = V1 xð Þ − ℏ2

m
d2

dx2
ln ψ

1ð Þ
0

� 	
:

ðA:13Þ
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Using Equation (A.12), for H1 and H2, the energy eigen-
values and eigenfunctions are obtained as

E2
n = E1

n+1, ψ2
n = E1

n+1 − E1
0

� �−1/2
A−
1ψ

1
n+1, ψ1

n+1 = E2
n − E1

0
� �−1/2

A+
1ψ

2
n:

ðA:14Þ

Here Em
n represents the energy eigenvalue, where n andm

denote the energy level and the m’th Hamiltonian Hm,
respectively. Hence, it is clear that if H1 has p ≥ 1 bound
states with corresponding eigenvalues E1

n, as well as eigen-
functions ψ1

n defined in 0 < n < p, then we can always gener-
ate a hierarchy of ðp − 1Þ Hamiltonians, i.e., H2,H3,⋯,Hp

such that the ðHmÞ has the same spectrum of eigenvalue as
H1, apart from the fact that the first ðm − 1Þ eigenvalues of
H are absent in H [27, 28]:

Hm = A+
mA

−
m + E1

m−1 = −
ℏ2

2m
d2

dx2
+Vm xð Þ, ðA:15Þ

where

A−
m = ℏffiffiffiffiffiffiffi

2m
p d

dx
+Wm xð Þ, Wm xð Þ = −

ℏffiffiffiffiffiffiffi
2m

p d ln ψ
mð Þ
0

dx
, m = 234,⋯pð Þ:

ðA:16Þ

We also have

E mð Þ
n = E m−1ð Þ

n+1 =⋯ = E1
n+m−1,

ψ mð Þ
n = E1

n+m−1 − E1
m−2

� �−1/2 ⋯ E1
n+m−1 − E1

0
� �−1/2

A−
m−1 ⋯ A−

1ψ
1
n+m−1, 

Vm xð Þ = V1 xð Þ − ℏ2

m
d2

dx2
ln ψ

1ð Þ
0 ⋯ ψ

m−1ð Þ
0

� 	
:

ðA:17Þ

such that, by knowing all the eigenfunctions and eigenvalues
of H1 we also obtain the corresponding eigenfunctions ψ1

n
and energy eigenvalues E1

n of the ðp − 1Þ Hamiltonians ðH2,
H3,⋯,HpÞ.
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