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The exact traveling wave solution of the fractional Sharma-Tasso-Olever equation can be obtained by using the function expansion
method, but the general traveling wave solution cannot be obtained. After transforming it into the Sharma-Tasso-Olever equation of
the integer order by the fractional complex transformation, the general solution of its traveling wave is obtained by a specific function
transformation. Through parameter setting, the solution of the kinked solitary wave is found from the general solution of the traveling
wave, and it is found that when the two fractional derivatives become smaller synchronically, the waveform becomes more smooth,
but the position is basically unchanged. The reason for this phenomenon is that the kink solitary wave reaches equilibrium in the
counterclockwise and clockwise rotation, and the stretching phenomenon is accompanied in the process of reaching equilibrium. This
is a further development of our previous work, and this kind of detailed causative analysis is rare in previous papers.

1. Introduction In equation (1), if a = f3, we get [5]
Because of many phenomena, integer-order differential equa- 9* o® a 12 2a 3a
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tions cannot be well described, which makes fractional nonlin- 5 3pu o 3p S| TUaeam | | TP am -
ear differential equations have research significance. As an t * x *
effective mathematical modeling tool, it is widely used in the (2)
mathematical modeling of nonlinear phenomena in biology,
physics, signal processing, control theory, system recognition, In equation (1), if B =1, we get the time-fractional STO
and other scientific fields. The widely studied fractional equation [6, 7]
Sharma-Tasso-Olever (STO) equation in space and time [1-4]
ru . oku ({aﬁu} ? a%)) Dffu+3puu, +3puy + 3putt, + pid, =0,0<a<1. (3)
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Recently, we have looked at some papers that obtain the
exact solutions of the traveling wave of fractional-order equa-
tions and have illustrated some solitary wave solutions con-
tained in the exact traveling wave solutions. These articles
used different methods to obtain a large number of accurate
traveling wave solutions in various forms. In order to better
understand our work, we present the definitions and proper-
ties of the conformable fractional derivative as follows.

Given a function f : [0,00] — R. Then, the conformable
fractional derivative of f of order 0 < a < 1 is defined as [8]

7,07 (t) =i ) 210,

e—0 &

(4)

The conformable derivative is a fractal derivative [9].
According to the fractal derivative theory, the influence of
environmental abnormal fluctuation on physical behavior is
equivalent to the influence of fractal space-time transforma-
tion [10, 11]. Several properties of conformable fractional
derivative definition are as follows:

T.(af +bg)=aT,(f)+bT,(g),foralla,beR,
T,(C)=0,
Ta(t”) = bt" forall b€ R, (5)
To(fg)=9To(f) +fTa(9),

d
if f is differentiable, T, (f)(t) =t'"* d_{ (t).

These properties have been proved in literature [8], and
there is no need to repeat them here. The physical interpreta-
tion of the conformable fractional derivative can be found in
the literature [12].

According to Theorem 2.11 (chain Rule) in literature
[13], we show the following properties of consistent frac-
tional derivatives.

Tof(9(t)) = fo(9(t))g' (1)t (6)

For more detailed knowledge, refer to literature [13]. For-
mula (6) is briefly proved as follows.

Proof. Set u =t + &t'~* in the definition, and you get

T (g(1) = lim T I =1 (0(0)
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(7)

Now, let us look at some of the work with the STO equation
of fractional order to find the exact traveling wave solution.
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In literature [1], the author used fractional complex
transformation for equation (1) and then used the exp-
function method to obtain its precise traveling wave solution.

In literature [2], the author used fractional complex
transformation on equation (1) and then used (G'/G?)
-expansion method to obtain the precise traveling wave solu-
tion of equation (1).

In literature [3], the author used fractional complex
transformation on equation (1) and then used the novel
(G'/G)-expansion method to obtain the exact traveling
wave solution of equation (1); the generalized Kudryashov
method was also used to obtain the precise traveling wave
solution of equation (1).

In literature [4], the author used the improved (G'/G)
-expansion method to get the exact traveling wave solution
of equation (1) after using the complex fractional
transformation.

In literature [5], the author used fractional complex
transformation for equation (2), and then extended tanh-
coth method was used to obtain the precise traveling wave
solution of equation (2).

In literature [6], the author used fractional complex
transformation for equation (3) and then used the Riccadi
function expansion method to obtain the exact traveling
wave solution of fractional-order equation (3).

In literature [7], the author used fractional complex
transformation in equation (3) and then used a new general-
ized (G'/G)-expansion method to obtain the precise travel-
ing wave solution of the fractal equation (3).

Here, we have just listed some of the articles on the accu-
rate line-wave solution to the STO equation of fractional
order. It can be seen from literature [1-7] that the first step
of these authors was to reduce the STO equation of the frac-
tional order to a nonlinear ordinary differential equation by
using fractional complex transformation and then to solve
the reduced equation by various methods to obtain the solu-
tion of the original fractional-order equation. In addition to
the methods provided in literature [1-7], there are other
techniques that can be used to obtain wave solutions of dif-
ferent structures [14-19]. It can be seen from equations
(1)-(3) that the most general equation is equation (1), so
we only discuss the accurate general traveling wave solution
of equation (1).

For equation (1), a, 8 are conformable fractional deriva-
tives and the fractional complex transformation used is [20]

ct®  kxP
> t = U > =— T h 8
s )= U@ €= + 0
where ¢, k are parameters to be determined. Through equa-
tion (8), equation (1) can be transformed into

2 m
cU' + 3k2p(U’) +3K2pUU" + 3kpU?U" + K2 pU" = 0.
(9)

In literature [1-7], some articles integrate equation (13)
once and then assume that the integral constant is zero,
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which will lead to the exact solution obtained being less gen-
eral than its original one [21, 22]. Equation (9) is a third-
order differential equation, and in general, its general solu-
tion should contain three arbitrary constants. From this per-
spective, the exact line-wave solutions obtained in the article
[1-7] we mentioned are not general solutions, but only par-
tial solutions. In this paper, we consider the integrability of
equation (9) and combine with the fractional complex trans-
formation to obtain the general traveling wave solution of the
fractional STO equation, which is different from the exact
solution obtained by using the function expansion method
in known literature. As we all know, from the exact solutions
of traveling waves, various forms of solutions can be obtained
by choosing appropriate parameters, such as soliton solu-
tions and periodic wave solutions. This conclusion can be
obtained by bifurcation analysis of the first integral equation
of equation (9) [23]. If the reader wants to know how the
exact linear wave solutions of equation (9) are bifurcated
and how the exact traveling wave solutions correspond to dif-
ferent forms of solutions, please refer to [23]. We selected
from the general solution of traveling wave a kink solitary
wave to fractional-order parameter change on the influence
of the waveform, found that when two fractional-order
parameters decrease at the same time, the kink soliton will
become more smooth, but the location remains the same
basic phenomenon, through the analysis found that the cause
of this phenomenon is a kink soliton in the clockwise and
counterclockwise to balance. Papers with such detailed anal-
ysis are rare.

2. The General Solution of the Fractional STO
Equation in Space and Time in the
Traveling Wave

Substituting equation (8) into equation (1) for transforma-
tion, we get

2 m
U’ + 3k2p(U’) +3K2pUU" +3kpUU’ +KpU" =00.
(10)

Integrate equation (10) once, and we get
cU + 3K pUU" + kpU® + KPpU" + C, =0,  (11)

where "U'" = dU/dE, C, is the integral constant.
Considering the specific function transformation,

u="1, (12)

where "F'" = dF/d&,F = F(£), we can easily get the following
equation.

2
’ F”F—(F/)
U=k——r 72
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3 (13)
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UU =k F3 >
m 2
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UII :k

F3
(14)

Substituting equations (13) and (14) into equation (11),
we get

: F'F'F (F'>3 (F’)3
v _
k— +3Kk* + pk*
KE TP P PR
2
(F F+F'F —2F'F">F— (F”F— (F') )21:’
4
+ pk 7
+Cy=0.

(15)

Arrange equation (15) to get

F ! FW m Cc C
k— +pk*— +C,=0=>F + —F + -2F=0 (16
F P F 0 Pk3 pk4 ( )
Equation (16) is a familiar three-differential equation,
and its general solution can be easily obtained, denoted
as p=c/pk’#0, q=Cy/pk®; then, equation (16) has a
characteristic equation

r4pr+q=0 (17)

The three roots of equation (17) can be obtained by
Cardin formula in the following order:

(18)
(19)
(20)

where w = (-1 +/3i)/2.




(1) When discriminant A= (g/2)* + (p/3)’ =0, that is,
(Cy)* =4c%/27pk, the three roots of equation (17)
are reduced to

71:2’3/_%72:%:\3/%‘ (21)

equation (16) has the following general solution:
F(§)=C, @V 028 1 (C, + CE)eV 2%, (22)

where C,, C,, and C; are arbitrary constants

Without loss of generality, we can assume C, is not equal
to zero. By substituting equation (22) into equation (12) and
combining with complex transformation equation (8), the
general traveling wave solution of the original equation (1)
is expressed as

C23/~(q)eV s & (czs/m +Cy 3/ [@R)E + c3)e\3/<72>f
¢ C, eV E L (C, + O E)eV a2k
i kze/f(ﬁz“)ez\}/mE + (CIC/aTE + CIC, i/ (al2)E + (Co/Cy) ) eV P
VR 4 ((C,1C,) + (C4ICy )E)eV @k '

(23)

In equation (23), there are only two arbitrary constants,
which is caused by the fixed arbitrary constant C,. Without
loss of generality, we could writeC, = C,/C;, C5 = C5/C;.

(2) When discriminant A = (q/2)* + (p/3)’ # 0, equation
(19) has the following general solution:

F(&)=Ce"® + Cye + Cye'™t, (24)

where C,, C,, and C; are arbitrary constants

Without loss of generality, we can assume C, is not equal
to zero. By substituting equation (24) into equation (12) and
combining with complex transformation equation (8), the
general traveling wave solution of the original equation (1)
is expressed as

Cyriet + Cyrye’s + Cyryel®

C,ent + Cyent + Cyest
_k rl(z’Is + (CZ/CI)rzeTZ’E + (Ce/Cl)r3e’3E
end + (C,/C et + (C5/Cy et

U=k

(25)

Without loss of generality, we could write C, = C,/C,,
C; = C,/C,, and we have an arbitrary constant C; hidden in
the parameter q.

3. The Discussion and Explanation

We observed some articles about the STO equation of frac-
tional order and found that they more or less ignored the
properties of the equation itself in the solution process, and
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Solution (27) red: « = 3 =1, blue: « = B = 0.7, yellow: « = $ = 0.4

Figure 1: 3D plot of solution (27) for various values of « = 3, and
k=1,p=2,c=-12,C,=C;=1.

the exact solution of the traveling wave obtained by various
function expansion methods was not the general solution.
Because in general, it makes sense that the precise general
solution to equation (10) should contain three arbitrary con-
stants. In the following part, we will find the kinked solitary
wave solution from the general solution obtained in this
paper and analyze the influence of the synchronous change
of two fractional derivatives on the kinked solitary wave solu-
tion waveform and the reasons for this phenomenon.

Let & in equation (25) be the expression in equation (8),
namely,

_ct® . kx (26)
T a B

We take the integral constant C, in equation (11) as
zero; then, r|,r,, and r; in equation (25) are valued as

1 =0,1,=\/p=/—clpk’, 15 =—\/=p = —/—clpk’; then,

equation (25) is rewritten as

_ krle”E + (CZ/CI)rzerzf + (C3/C1)r3e’3£
ené + (C,/C))ent + (C5/C, et
_ C,rye" + Cyryest
1+ Cyef + Cgeré
_ kC4 Wza J=apk ((et*1a)+(ke/B)) C; 7C/Pk3ef\/fu/pk’((ct”/oc)ﬁ»(kxﬂ/ﬁ))
1+ C4e\/7c/pk5((ct"/o()+(kxﬂ/ﬁ)) n C567\/—c/pk'((ct“/zx)+(kxﬁ/[3))

U

(27)

In equation (27), take k=1,p=2,c=-1.2,C,=C5 =1;
then, the diagram of solution (27) of equation (1) chang-
ing with o= f8 is shown in Figure 1. This is the kink sol-
itary wave solution, which is a particular solution of the
general solution (25) of equation (1). When a=f=1,
the fractional-order STO equation degenerates into an
equation of integer order. At this point, the diagram of
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Fi1GUrE 2: 3D plot of solution (27) for values of a=f=1, and
k=1,p=2,c=-12,C,=C5=1.

« = 1; solution (27) red: 8 = 1, blue: f=0.7, yellow: 8= 0.4

F1GURE 3: 3D plot of solution (27) for various values of f3, and
k=1,p=2,c=-12,C,=C5=1.

equation (27) is taken from Figure 1, as shown in
Figure 2. After setting values for other parameters,
Figure 1 explains the perspective view of the solution
(27), when the values of o= are 1, 0.7, and 0.4 in turn.

As can be seen from Figure 1, as the fractional derivative
o and f3 become smaller synchronically, the twist of the kink
solitary wave becomes smoothed, but the position of the twist
of the kink solitary wave basically remains at the straight line
x =t on the t-x plane. In order to further explain this phe-
nomenon and promote our previous work [24], this paper
conducts a more detailed study of the influence of fractional
derivative on the shape of kink solitary wave in two steps.
First, the value of the time fractional derivative « is fixed,
and only the change of the spatial fractional derivative S is
observed. The result is shown in Figure 3. It can be seen from
Figure 3 that the spatial fractional derivative 8 values 1, 0.7,
and 0.4 in turn, and the kinked solitary wave rotates at the

B = 1; solution (27) red: & = 1, blue: a = 0.7, yellow: & = 0.4

FIGURE 4: 3D plot of solution (27) for various values of &, and
k=1,p=2,c=-12,C,=C5=1.

kinked position in the ¢-x plane, and the direction of rotation
is close to the line t =0 inside the t-x plane. Secondly, the
value of the spatial fractional derivative f3 is fixed, and only
the change of the time fractional derivative « is observed.
The result is shown in Figure 4. It can be seen from
Figure 4 that the time fractional derivative « is 1, 0.7, and
0.4 in turn, and the kinking position of the kink solitary wave
in the t-x plane also rotates, with the direction approaching
the line x = 0 in the x-t plane.

By comparing Figures 3 and 4, it is found that the spatial
fractional derivative 8 becomes smaller, making the kink of
the kink isolated wave as shown in the figure rotate clockwise
in the t-x plane, while the time fractional derivative «
becomes smaller, making the kink of the kink isolated wave
as shown in the figure rotate counterclockwise in the t-x
plane. When the fractional derivatives change synchroni-
cally, the kinks of the isolated wave in Figure 1 reach a bal-
ance in the clockwise rotation and counterclockwise
rotation, and the position of the kinks almost stays the same.
Meanwhile, the kinks of the isolated wave stretch together in
the clockwise and counterclockwise rotation, which makes
the kinks of the isolated wave smoothen.

4. Conclusion

The exact traveling wave solutions obtained by the function
expansion method are usually not the general traveling wave
solutions of fractional-order nonlinear partial differential
equations. In this paper, the fractional-order STO equation
is transformed into an integer-order STO equation through
the complex fractional-order transformation, and then, the
general traveling wave solution of the fractional-order STO
equation is obtained through the transformation of a specific
function, which will make our understanding of the traveling
wave solution of the fractional-order STO equation more
comprehensive. By setting parameters, a kinked solitary wave
solution is extracted from the general traveling wave solution,



and the influence of the fractional derivative on the kinked
solitary wave is analyzed in detail. It is found that the kinked
solitary wave becomes more smooth when the fractional-
order parameters are synchronized, but the position of the
kinked solitary wave is basically unchanged. The position of
the kinked solitary wave is basically unchanged because we
have two fractional-order parameters, one of which becomes
smaller so that the kinked waveform rotates clockwise, and
the other fractional-order parameter becomes smaller so that
the kinked waveform rotates counterclockwise. Such clock-
wise rotation and counterclockwise rotation achieve a bal-
ance. The kink solitary wave becomes smoother because of
the tugging phenomenon that accompanies the process of
reaching equilibrium.
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